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Abstract

   Although epidemiologic studies have shown 

that age is the chief risk factor for osteoarth-

ritis (OA), the relationship between aging and 

the development of OA has not been completely 

understood yet. However, accumulating evi-
dences in vivo and vitro have shown that the 

development of OA is, at least in part, attribut-

able to the age-related chondrocyte senescence. 
This review focuses on how chondrocyte senes-

cence affects the articular cartilage degenera-

tion and how oxidative stress affects the chon-

drocyte senescence. Further, I would like to 
introduce our hypothesis that oxidized low-den-

sity lipoprotein, which is the most important 

molecule causing atherosclerosis, is involved in 

the pathogenesis of OA by playing a role as an

oxidative stressor. It is interesting that even 

though mitotically inactive, senescent cells are 

far from being biologically inert. Many genes in 

senescent cells display higher expression levels 

that do not merely correlate with cell cycle 

arrest. Chondrocyte senescence is associated 

with an increased production of inflammatory 

mediators and matrix degrading enzymes char-

acteristic of the senescent secretory phenotype. 

Age-related oxidative stress and damage may 

play a central role in cartilage aging through 
modulation of cell signaling pathways that regu-

late anabolic and catabolic activity. 
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Abbreviations

OA : osteoarthritis 

ox-LDL : oxidized low-density lipoprotein 

hTERT : human telomerase reverse transcriptase 

SIPS : stress-induced premature cell senescence 
TNF-a : tumor necrosis factor-a 

ROS : reactive oxygen species 

EGF : epidermal growth factor 

Rb : retinoblastoma protein 
IL : interleukin 

MMP : matrix metalloproteinase 

IGFBP-7: insulin-like growth factor binding 

protein-7 
SA f-gal : senescent associated fi-galactosidase 

siRNA : small interfering RNA 

IGF-I : insulin-like growth factor-1 
FGF : fibroblast growth factor 

TGF-f : transforming growth factor-f 

LOX-1 : lectin-like oxidized low-density lipo-

protein receptor-1 
MAPK : mitogen activated protein kinase 
ERK : extracellular signal-regulated kinase 
MEK : mitogen-activated protein kinase kinase 
JNK : c-jun N-terminal kinase 
BAC : bovine articular chondrocyte 
NAC : N-acetyl cystein 
Akt : protein kinase B 
PI3k : Phosphoinositide 3-kinase 
COL 10 : type X collagen 
Runx 2 : runt-related transcription factor 2 
VEGF : vascular endothelial growth factor 
ALP : alkaline phosphatase

Introduction

 Epidemiologic studies have shown that age is 

the chief risk factor for osteoarthritis (OA)L2 and 
that OA is the most common cause of chronic 

locomotive disability in the elderly people.3'4



M. Akagi

Degenerative changes and thinning in articular 
cartilage is one of the most important pathologic 
findings in OA. It is not a simple "mechanically 
wearing out with time" and changes in the joint 
attributable to aging can be distinguished from 
those due to the disease. The relationship 
between aging and the development of OA has 
not been completely understood yet. However, 
accumulating evidences in vivo and vitro have 
shown that the development of OA is, at least in 

part, attributable to the age-related changes in 
the joints, which plays a role in conjunction with 
other factors such as excessive mechanical load, 

joint injury (injury of articular cartilage, menis-
ci, subchondral bone and ligaments), life-style 
related diseases and genetics. The surgical des-
tabilization of the knee in young animals, which 
can induce OA-like changes in the joint without 
any contribution of aging,5'6 indicates that the 
excessive mechanical stress is one of the most 
important factors to develop cartilage degenera-
tion. These evidences suggest that the aging and 
the development of OA are inter-related but not 
inter-dependent. However, there is a possibility 
that the excessive mechanical load may enhance 
chondrocyte aging in a cellular level, where 
chondrocytes undergo terminal differentiation to 
become hypertrophic chondrocytes. If it is the 
case, the chondrocyte senescence and the devel-
opment of OA may be inter-related and inter-
dependent. 
 OA is clinically defined as joint dysfunction 

due to progressive changes in several structures 
 of the joint,  including the articular cartilage, the 

menisci in the knee, bone, muscle, synovium, and 
other soft tissues (ligaments and tendons). 
Among these joint structures, the articular carti-
lage has been extensively studied especially in 
regards to aging. This review focuses on how 
chondrocyte aging (senescence in a cellular level) 
affects the articular cartilage degeneration (senes-
cence in a tissue level) from the point of view of 
oxidative stress. Further, I would like to intro-
duce our hypothesis that oxidized low-density 
lipoprotein (ox-LDL), which is the most impor-
tant molecule causing atherosclerosis, is involved 
in the pathogenesis of OA through one of 
oxidative stressors inducing cell senescence. 
Cell Senescence and Oxidative Stress 

 Definition of cell senescence generally 
accepted is a significant decrease in proliferative 
ability, where cells cannot further divide in 
culture after a period of 30-40 population dou-

blings, often referred to as the "Hayflick limit".7 
This form of cell senescence is called "replicative 
senescence", which is supposed to result from a 
cell cycle arrest. There are some evidences to 
indicate that replicative senescence play an 
important role in aging in a tissue level and an 
individual level. For example, fibroblasts iso-
lated from older human or animal skin reach 
replicative senescence sooner than cells isolated 
from younger individuals.8 In addition, the cells 
with replicative senescence in older adults have 
shortened telomeres and the formation of senes-
cence-associated (SA) heterochromatin.8 It is 
reasonable to consider that cell senescence is a 
essential mechanism to prevent proliferation of 
cells with damaged DNA and thus to avoid 
tumorigenesis. 
 Replicative senescence is associated with alter-
ations in DNA structure and function including 
telomere shortening and dysfunction." 
Telomeres are found at the ends of chromosomes 
and it's structures, the terminal guanine-rich 
sequences of chromosomes (TTAGGG repeats in 
humans and other vertebrates), work to stabilize 
the chromosome during replication by protecting 
the chromosome end against exonucleases. 
Telomere length decreases with incomplete re-

plication during mitosis and, when decreased to 
a critical length, it signals a cell to stop dividing 
and to enter replicative senescence."12 Mean-
while, telomerase is an RNA-dependent DNA 

polymerase that synthesizes telomeric DNA 
sequences and comprises two essential compo-
nents. One is the functional RNA component 

(in humans called hTERC), which serves as a 
template for telomeric DNA synthesis. The 
other is a catalytic protein (hTERT) with reverse 
transcriptase activity and the primary determi-
nant for the enzyme activity.13,14 Although 
hTERT is generally repressed in normal somatic 
cells, telomerase activation in human vascular 
smooth muscle cells protects telomere shortening 
with replication.15 Because vascular cell senes-
cence occurs in human atherosclerotic lesions 
and is associated with telomere shortening, 
telomerase activity seems to be important in 

guarding against cell senescence.16 Telomere 
shortening has been shown in OA chon-
drocytes,17-19 and the lifespan of senescent chon-
drocytes retrieved from OA cartilage can be 
increased by exogenous expression of telomer-
ase,20 indicating an important relationship 
between chondrocyte senescence and telomerase
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activity. 
In addition to replicative senescence, stress-

induced premature cell senescence (SIPS) also 
occurs by which cells without discernible attri-
tion of telomeres show a growth arrest.21'22 In 

quiescent cells such as chondrocytes, this mode 
of cell senescence (SIPS) may be more important 
than the replicative senescence, because progres-
sive telomere shortening due to repeated cycles of 
cell division does not completely explain senes-
cence in those cells. Some stressors identified 
include DNA damage, oxidative stress, 
suboptimal culture conditions, and PI3k in-
hibitors. Proatherogenic and proinflammatory 
factors such as ox-LDL, tumor necrosis factor-a 

(TNF-a), and hydrogen peroxide have also been 
implicated in SIPS,1°,21-23 and these can suppress 
telomerase activity by inactivating the PI3k/Akt 

pathway.24 Oxidative damage to DNA can 
directly contribute to SIPS and because the ends 
of chromosomes are particularly sensitive to 
oxidative damage, it can result in telomere insta-
bility similar to that seen with replicative senes-
cence.°4°'25 SIPS due to oxidative stress fits quite 
well with one of the long-standing theories of 
aging first proposed by Harman in the 1950s that 
invoked free radicals, or reactive oxygen species 

(ROS), as mediators of aging.26 Oxidative stress 
has been found to induce cell senescence in vitro 
and there is in vivo evidence for age-related 
oxidative stress in many tissues.8 Both modes of 
senescence are associated with suppressed cell 

proliferation, impaired physiological cell func-
tion. It is likely that both the telomere shorten-
ing-initiated and stress-induced cell senescent 
modes may contribute jointly to the pathogenic 

process of many chronic diseases in vivo.21 
 ROS are generated by intracellular enzymes 

such as nicotine amide adenine dinucleotide 

phosphate (NADPH) oxidase and 5-lipox-
ygenase in response to activation of specific cell 
signaling pathways. These ROS serve as secon-
dary messengers that regulate signal transduction 
by activating redox-sensitive kinase and inhibit-
ing redox-sensitive phosphatase.27'28 Insufficient 
levels of ROS can be detrimental to certain 
signaling pathways, such as the epidermal 

growth factor (EGF) pathway that regulates cell 
proliferation, while excessive levels of ROS may 
inhibit pathways, such as the insulin-signaling 

pathway, through activation of the stress-in-
duced kinase JNK.27'2s A direct role for ROS in 
cell senescence has been shown where mitogenic

signals increases the ROS level and elicits a 

positive feedback activation of ROS-protein 
kinase C delta (PKCS) signaling pathway, 
which cooperates with the p161NK4A-retinoblas-
toma protein (Rb) pathway, to promote cell 
senescence.30 Senescent cells exhibit altered 
activity and expression of regulatory proteins 
that control growth and proliferation, including 

p53 and the cyclin-dependent kinase inhibitors 
p21ci11, and p16INK4a 8,23 Activation of p53 
occurs from DNA damage or from telomere 
shortening and serves to inhibit cell-cycle pro-

gression. Activated p53 increases the expression 
of p21, which contributes to senescence. As p21 
declines in senescent cells, p16 is increased which 
appears to serve a more long-term role in the 
inhibition of cell-cycle progression through inhi-
bition of Rb.8 

 It is interesting that even though mitotically 
inactive, senescent cells are far from being 
biologically inert. Many genes in senescent cells 
display higher expression levels that do not 
merely correlate with cell cycle arrest.31 Senes-
cent cells can secrete proteins, including de-

gradative enzymes, inflammatory cytokines, and 
growth factors that may stimulate tissue aging 
and tumorigenesis and hence possess a more 
complex role in promoting chronic diseases.8'32'33 
Sometimes referred to as "the senescent secretory 

phenotype",23'34 these activities of senescent cell 
may be particularly relevant to the development 
of OA. This phenotype is characterized by the 
increased production of cytokines, including 
interleukin-6 (IL-6) and interleukin-1 (IL-1), 
MMPs, and growth factors such as EGF. Recent 
studies have also provided evidence for a role of 
the IL-8 receptor chemokine XC receptor 2 

(CXCR2)35 and insulin-like growth factor bind-
ing protein-7 (IGFBP-7)36 in senescence, suggest-
ing autocrine loops of secreted proteins contrib-
ute to cell senescence. The accumulation of cells 
expressing the senescent secretory phenotype can 
also contribute to tissue aging through damage 
to the extracellular matrix, such as seen with the 
degradation of dermal collagen due to an age-
related increase in collagenase.23'34 
Chondrocyte Senescence and Oxidative Stress 

 Many studies have shown that chondrocytes 
isolated from the elderly exhibit distinct features 
of typical senescent cell (Figure). Chondrocytes 
after multiple passages in cell culture undergo 
replicative senescence with telomere shorten-
ing.37 Evidence of telomere shortening in chon-
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Fig. A tentative model of the development of OA related to 

     aging, oxidative stress, chondrocyte senescence. Patho-
     logical biomechanical stresses, including cytokines, 

     fibronectin fragments, ox-LDL, and so on, causes an 
     increase in ROS levels in chondrocytes. The pathologi-

     cal increase in oxidative stress results in both modes of 
     chondrocyte senescence, SIPS and replicative senes-

     cence. The role of ox-LDL and sequels attributable to 
the ox-LDL/LOX-1 system that has already been 

     demonstrated in our studies are shown as issues marked 

     with underlines. See the list of abbreviations.

drocytes has also been reported in cells isolated 
from older adults.18 However, it is much more 
likely that the SIPS induced by chronic extrinsic 
stress cause chondrocyte senescence, because it 
has been reported that telomere shortening in 
chondrocytes could occur due to DNA damage 
caused by ROS.25,38 ROS generated from exces-
sive mechanical loading and/or stimulation by 
cytokines could also contribute to DNA damage 
and subsequent telomere shortening.39-41 

 Evidence of cell senescence in tissues from 
older adults can be obtained by examining for 
the presence of senescence markers. These 
markers currently include histological staining 
for senescent associated (SA)-/3ga1, SA hetero-
chromatin, increased p53, p21, and p16 and 
reduced Wnt2.35 Staining for SA-fgal has been 
shown to be present in articular chondrocytes

from older adults18 and in OA chondrocytes.37 
Chondrocyte SA-/3gal staining, as well as 
telomere shortening, has also been noted after 
treatment in vitro with IL-l/3 or H202 consistent 
with SIPS.42 Dai et al have provided evidence 
that SIPS in vitro is also accompanied by an 
increase in chondrocyte p53 and p21 expression 
as additional markers of the senescent 

phenotype.42 The senescence marker p161NK4A has 
also been examined and found to be present at 

greater levels in OA chondrocytes relative to age-
matched normal tissue, which in turn had higher 
levels than fetal tissue.43 In the latter study, 
siRNA knockdown of p16INK4A was noted to 
enhance chondrocyte proliferation and matrix 

gene expression. 
 There is accumulating evidence that chon-

drocytes can exhibit features of "the senescent 
secretory phenotype", which has important 
implications for the role of chondrocyte senes-
cence in the development and progression of OA. 
When compared to cells isolated from young 
tissue donors, human articular chondrocytes 
from older adults were found to secrete more 
MMP-13 into the media after stimulation with 
either IL-1p or fibronectin fragments.44 Isolated 
human chondrocytes were also found to produce 
more IL-144 and more IL-745 with increasing 
donor age and, like IL-1 and fibronectin frag-
ments, IL-7 can also induce MMP-13 produc-
tion.45 MMP-13 serves as a major mediator of 
type II collagen cleavage in the cartilage.46,47 
Studies have shown increased immunostaining 
for MMP-3 and MMP-13 in cartilage with 
aging48 as well as an age-related accumulation of 
collagen neoepitopes representing cleaved col-
lagen.49,5° 
 Chondrocyte senescence can contribute to a 

decline in chondrocyte numbers due to increased 
cell death, although the extent of cell death with 
aging or in OA has varied among studies.51-53 
There are certainly reasons to expect an age-
related increase in death of chondrocytes includ-
ing the decline in growth factor activity, the loss 
of survival promoting matrix proteins, and the 
increase in oxidative damage. The response of 
chondrocytes to IGF-I declines with age and 
IGF-I is an important autocrine survival factors 
in cartilage.54 Although matrix alterations occur 
with aging, it is not known if these affect the 
ability of either type II collagen55 or fibronectin 
signaling through the a5/3l integrin56 to pro-
mote chondrocyte survival. Oxidative damage
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from ROS could also contribute to chondrocyte 
death. Levels of ROS increase in cartilage with 
aging and chondrocytes from older adults are 
more susceptible to ROS-mediated cell death.57 
Because of a low ability of recruiting cells in 
cartilage, any loss of cells could cause negative 
changes in cartilage function. 

 As same in other tissues, oxidative stress may 

play an important role in aging of the cartilage. 
Oxidative stress results when the amount of ROS 
exceeds the anti-oxidant capacity of the cell 

(Figure). This can be due to either increased 
production of ROS or decreased levels of anti-
oxidants and in aging both are often respon-
sible.27 Glutathione is a major intracellular anti-
oxidant that also participates in regulating 
redox-signaling events. An increase in levels of 
oxidized glutathione can be a sign of oxidative 
stress.8 Evidence for an age-related increase in 
oxidative stress in human chondrocytes was 
obtained by finding an increase in the ratio of 
oxidized to reduced glutathione in isolated 
cells.57 Increased levels of intracellular ROS 
were also detected in cartilage from old rats 
when compared to young adults.58 It may be 
important that an age-related increase in intracel-
lular oxidative stress can make human chon-
drocytes57 and rat chondrocytes58 more suscep-
tible to cell death induced by oxidants. 

 As additional evidence for oxidative stress 

playing a role in chondrocyte senescence, chon-
drocyte senescence in vitro was associated with 
oxidative stress59 and exogenous addition of 
ROS to cultured chondrocytes was found to 
induce markers of the senescent phenotype.42 
There is also evidence for reduced levels of anti-
oxidant enzymes in cartilage with aging and in 
OA that would contribute to chondrocyte 
oxidative stress. In chondrocytes from aged rats, 
catalase, but not superoxide dismutase or 

glutathione peroxidase, was found at lower 
levels than in young adults.58 Proteomic studies 
of human articular chondrocytes found a 
decrease in mitochondria] superoxide dismutase 
with aging60 as well as a decrease in OA cells 
when compared to cells from normal tissue.64 
Although not studied in aging, cartilage from 
adults with OA also had less extracellular super-
oxide dismutase than normal cartilage62 and gene 
array studies performed with RNA isolated from 
OA cells revealed a decreased expression of 
superoxide dismutase and glutath i one perox-
idase.63

 One marker of protein oxidation is the pres-
ence of nitrotyrosine, which can be detected 
using anti-nitrotyrosine antibodies. Nitrotyr-
osine is created by the reaction of protein 
tyrosine residues with peroxynitrite (ONOO-) 
formed when the ROS superoxide (02 * -) and 
nitric oxide (NO* ) react.64 Increased immunos-
taining for nitrotyrosine has been noted with 
aging in normal human and monkey cartilage.65 
Nitrotyrosine has also been detected in OA tis-
sue.63'65 In monkey cartilage, the presence of 

positive immunostaining for nitrotyrosine cor-
related with a reduced anabolic response to IGF-
I in chondrocytes isolated from nearby tissue, 
suggesting that oxidative damage may be one 
mechanism for the reduced growth factor 
response.65 In addition, excess levels of NO, a 
reactive nitrogen species, have also been found to 
reduce the chondrocyte response to IGF-I.66 
Likewise, earlier studies noted that treatment 
with H202 inhibits chondrocyte proteoglycan 
synthesis.67 
 The source of ROS contributing to oxidative 

stress and oxidative damage can include both 
free radicals generated as by-products of aerobic 
metabolism as well as ROS generated in response 
to specific stimuli such as growth factors and 
cytokines. Although chondrocytes live in an 
environment with a low oxygen tension, they do 
consume oxygen and therefore exhibit aerobic 
metabolism.68 It has been demonstrated that 
stimulation by cytokines and growth factors 
including IL-1, TNF-a, FGF, TGF- f69-72 and 
fibronectin fragments73 increases ROS levels in 
chondrocytes. As discussed further below, we 

previously demonstrated that ox-LDL binding to 
lectin-like oxidized low-density lipoprotein rece-

ptor-1 (LOX-1) also increases ROS production 
in cultured bovine articular chondrocytes. ROS 

produced by those stimulation has been reported 
to result in DNA damage of chondrocyte.40 

 The underlying mechanisms by which 
oxidative stress contributes to chondrocyte senes-
cence have not been well defined. Studies in 
other cell types have provided evidence that 
oxidative stress contributes to senescence 
through modulation of the activity of specific 
cell signaling pathways.8'74 As noted above, this 
can be due to modulation of the activity of a 
number of redox-sensitive kinases and phos-

phatases. The activity of MAP kinase pathways, 
which include ERK, JNK, and p38, may be 

particularly important. Caveolin-1 is an integral
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membrane protein that serves as a scaffold and 
can regulate cell-signaling pathways involved in 

 senescence.8 Caveolin-1 has been found to play 
a role in chondrocyte senescence induced by IL-
1 and H2O2 through activation of the p38 MAP 
kinase.42 More recently, Yin et al have demon-
strated that ROS can contribute to chondrocyte 
IGF-I resistance and reduced proteoglycan syn-
thesis by causing an imbalance in the activity of 
the phosphoinositide-3 (PI-3) kinase-Akt path-
way.75 Because IGF-I can also stimulate chon-
drocyte anti-oxidant capacity,72 resistance to 
IGF-I could further contribute to a redox imbal-
ance. 
Ox-LDL-induced oxidative stress and chon-
drocyte senescence 

 Ox-LDL has been recognized as one of the 
most important molecules causing atheroscler-
osis.76 A novel receptor for ox-LDL, designated 
lectin-like ox-LDL receptor 1 (LOX-1), was 
cloned recently from cultured bovine aortic en-
dothelial cells.77 Ox-LDL uptake through this 
receptor, which is expressed on the vascular 
endothelium, is critically involved in endothelial 
activation and dysfunction in atherogenesis.78 
While, the involvement of lipid peroxidation in 
cartilage degeneration associated with aging and 
the pathogenesis of OA has been suggested by in 
vivo79'S0 and in vitroS1'82 studies. Some 
epidemiologic studies have suggested that OA 
and atherosclerosis share a common 
epidemiologic background in terms of the 
involvement of lipid peroxidation.83>84 Other 
epidemiologic studies have shown that age is the 
chief risk factor for atherosclerotic diseases.85 
Further, endothelial cells in atherosclerotic 
lesions also show attributes of cell senescence.86 

 Interestingly, Nakagawa et al showed that 
LOX-1 is expressed and ox-LDL is found in 
chondrocytes in rat zymosan-induced arthritis 

(ZIA) and that treatment with anti-LOX-1 
blocking antibody suppresses articular cartilage 
degeneration in ZIA, suggesting that ox-LDL 
binding to LOX-1 is involved in cartilage degen-
eration.87 Their in vitro study using cultured rat 
articular chondrocytes showed that LOX-1 
expression is detectable in basal culture condi-
tions and that ox-LDL reduces rat chondrocyte 
viability through LOX-1, which induces 
nonapoptotic cell death.88 As mentioned above, 
we previously demonstrated that ox-LDL bind-
ing to LOX-1 in cultured bovine articular chon-
drocytes (BACs) increases the production of

intracellular ROS, suggesting that ox-LDL 
increases intracellular oxidative stress similar to 
IL-lf or fibronectin fragments89'90 and that the 
ox-LDL/LOX-1 system plays a role in both 
endothelial and chondrocytic dysfunction. 

More recently, Kakinuma et a19' and Akagi et 
a192 reported the presence of ox-LDL and LOX-
1 expression in articular cartilage from patients 
with rheumatoid arthritis and OA, respectively. 
They also showed that ox-LDL can penetrate the 
cartilage matrix and associate with LOX-1, 
increasing MMP-3 production from cultured 
explants of human articular cartilage.91 They 
further demonstrated that the presence of ox-
LDL and expression of LOX-1 in chondrocytes 
correlates with degenerative grades of OA carti-
lage.92 Simopoulou et al also showed that ox-
LDL is detectable in the synovial fluid of OA 

joints and that LOX-1 mRNA and protein are 
expressed in chondrocytes from OA cartilage.93 
Further, we demonstrated that mechanical ten-
sile load and ox-LDL synergistically induce 
LOX-1 in cultured BACs, resulting in decreased 
cell viability and proteoglycan synthesis.94 
These accumulating evidences possibly suggest 
that binding of ox-LDL to LOX-1 may cause 
cartilage degeneration in the context of chon-
drocyte senescence. 

 Clusters or clones of proliferating chon-
drocytes surrounded by newly synthesized matrix 
molecules constitute one of the histologic hall-
marks of the chondrocytic response in the early 

phase of OA.94-97 Anabolic growth factors 
trapped previously in the matrix may be released 
in a process of matrix degradation, which acti-
vates chondrocytes to proliferate and synthesis 
matrix macromolecules.98 These factors in the 
synovial fluid may have better access to chon-
drocytes because of fissuring or loosening of the 
collagen network or damage to the collagen 
matrix itself.95 These phenomena are thought to 
represent repairing responses of damaged carti-
lage. The progressive degeneration of cartilage 
in the later phase of OA may be attributed to 
limited repairing responses caused by cell senes-
cence associated with reduced cell function and 

proliferative ability.98'99 
SA f-gal activity is recognized as an impor-

tant biological marker of cell senescence'°° and is 
higher in cloned chondrocytes in the OA carti-
lage.17'19 In culture, ox-LDL increased the num-
ber of SA f-gal-positive BACs in a dose-depen-
dent manner, which can be reversed by pretreat-
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ment anti-oxidant N-acetyl cystein (NAC). 
Further, ox-LDL reduced the cell proliferative 
ability, as evaluated by BrdU incorporation, in a 
dose-dependent manner. Pretreatment with anti-
LOX-1 blocking antibody cancelled these effects 
of ox-LDL on BACs as well as reported in the 
endothelial progenitor cells.10' The induction of 
cell senescence caused by ox-LDL occurred 
within 24 hours and did not need subculturing, 
indicating that ox-LDL can induce the SIPS 
through the oxidative stress in chondrocytes. 

As mentioned above, the "telomere hypothe-
sis" is generally accepted to explain the re-

plicative cell senescence. Telomerase is activated 
in the proliferating cells of tissues under repair, 
which prolongs the cellular replicative capacity 
and postpones cell senescence.102-104 The regula-
tion of telomerase activity is thought to play an 
important role in tissue repair and regeneration. 
We investigated whether the telomerase activity 
of BACs changes with the culture conditions that 
induced distinct proliferating activity in chon-
drocytes. Cultured chondrocytes with a higher 

proliferating activity have a higher telomerase 
activity, although the activity in all chondrocytes 
is lower than in HeLa cells. This suggests that 
the telomerase activity in BACs is upregulated 
during cell expansion, agreeing with previous 
reports on chondrocytes37,1°5 and somatic 
cells.106,107 Taken together, these data imply that 
the telomerase activity in proliferating and clon-
ing chondrocytes in the early phase of OA is 
upregulated and plays an important role in tissue 
repair by postponing cell senescence and 
maintaining cell function. Thus, we investigated 
the effects of ox-LDL on the telomerase activity 
of the 70% confluent BACs. The telomerase 
activity was suppressed significantly in a time-
and dose-dependent manner by adding ox-LDL. 
This suppressive effect on the telomerase activity 
was reversed by pretreatment with the LOX-1 
blocking antibody, indicating that ox-LDL sup-

presses telomerase activity through its receptor 
LOX-1. Ox-LDL probably impairs the tissue 
repair of degenerative cartilage in the early phase 
of OA because suppression of telomerase activity 
in proliferating cells results in telomere shorting 
and instability, leading to cell senescence.",19 
We also investigated the intracellular signaling 

pathway by which ox-LDL alters telomerase 
activity. Telomerase activity is regulated by 

phosphorylation of the reverse transcriptase 
(hTERT), and protein kinase C or protein

kinase B (Akt) plays a critical role in the phos-

phorylation of hTERT.108 In general, the PI3k/ 
Akt pathway plays important roles in the prog-
ress of the cell cycle, cell proliferation, regula-
tion of nuclear transcription factors, cell sur-
vival,l°9,110 and chondrocyte differentiation and 
apoptosis.111 Activation of this pathway 
increases the production of aggrecan,"2 and 
inactivation of this pathway suppresses cell via-
bility in articular chondrocytes.88 We found that 
ox-LDL and LY294002 (a specific inhibitor of 
PI3k) suppressed the telomerase activity in a 
dose-dependent manner and that IGF-1 (an 
activator of PI3k) recovered the ox-LDL-in-
duced suppression of telomerase activity in 
BACs as well as in endothelial cells.24 In addi-
tion, ox-LDL reduced the amount of the pAkt 
without changing the amount of Akt. Taken 
together, these results suggest that ox-LDL-in-
duced suppression of telomerase activity can be 
attributed to inactivation of the PI3k/Akt path-
way through binding to LOX-1. 

 An interesting question is whether ox-LDL 
activates the pathways that are linked mechani-
cally to replicative senescence and SIPS, includ-
ing the ATM-p53-p21-Rb pathway and the p38-
MAPK-p l 6-Rb pathway, respectively.113-114 We 
are especially interested in whether adding ox-
LDL stabilizes p53 because a recent report shows 
that p53 destabilizes and permeabilizes 
lysosomes to shift f-galactosidase from the 
lysosomes to the cytosol, which is recognized as 
cytosolic staining of SA ,13-gal.114 We have 
already the ox-LDL/LOX-1 system increases 
expression of p53 in mRNA and protein levels 

(unpublished data) (Figure). 
Ox-LDL-induced oxidative stress and chon-
drocyte hypertrophy 

 Under physiologic conditions, articular chon-
drocytes maintain a stable phenotype to retain 
their function as a permanent cartilage. Differen-
tiation of chondrocytes is strictly regulated so 
that the cartilage does not undergo ossification 
through hypertrophic differentiation, as is the 
case with endochondral bone formation.115 
However, the characteristic pathological changes 
in the early phase of osteoarthritis (OA) cartilage 
show formation of clusters of activated and 

proliferating chondrocytes."6 These activated 
chondrocytes are hypertrophic in size and 
exhibit sustained functional and phenotypic 
changes, including an increase in alkaline phos-

phatase activity and expression of type X col-
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 lagen (COL 10), runt-related transcription factor 
2 (Runx2), vascular endothelial growth factor 

(VEGF), and MMP-13, which indicates that 
chondrocytes in OA cartilage assume the charac-
teristics of hypertrophic chondrocytes in growth 

plate cartilage.97,117,118 Hypertrophic chon-
drocytes, terminally differentiated chondrocytes 
in the growth plate that induce endochondral 
ossification expressing COL 10,119 destroy the 
cartilage matrix via MMP expression, introduce 
vascular channels and bone cells from the bone 
marrow to the cartilage, and eventually cause 
apoptosis.119 Interestingly, Morita et al recently 
showed that ROS regulates chondrocyte prolifer-
ation and the initiation of hypertrophic differen-
tiation in the growth plate,12' indicating that 

production of ROS by chondrocytes may also 
have an important physiologic role in vivo in the 
endochondral bone formation, suggesting a 

potential connection between ROS production 
in articular cartilage and chondrocyte hypertro-

phy observed in the early phase of OA. 
Oxidative stress, which may be induced by many 
mechanisms in OA, causes chondrocytes to dif-
ferentiate into hypertrophic chondrocyte-like 
cells, resulting in degeneration of cartilage 
because of cartilage matrix degradation and cell 
death. 
 Then, we recently investigated and reported 

that ox-LDL binding to LOX-1 increased the 
expression of COL10 and the activity of ALP in 
a dose-dependent manner, suggesting that ox-
LDL promotes hypertrophic differentiation in 
OA cartilage. The results of our study showed 
that both ox-LDL and H202 upregulate COL 10 
expression through upregulation of Runx2 in 
cultured BACs, and that NAC, an antioxidant, 
canceled the effect of ox-LDL and 1-1202 on 
COL10 expression. These results make it pos-
sible to propose a mechanism for the involve-
ment of ox-LDL in the development of OA in 
which ox-LDL-induced oxidative stress causes 

pathologic hypertrophic differentiation of 
articular chondrocytes through Runx2 upregula-
tion, following which the activated chondrocytes 
upregulate the hypertrophic cell markers, COL 10 
and ALP. We previously demonstrated in vitro 
that ox-LDL upregulates another hypertrophic 
chondrocyte marker, VEGF, by binding to 
LOX-1.122 Furthermore, we have recently obser-
ved that ox-LDL upregulates MMP-13 expres-
sion in BACs (unpublished data) (Figure).

Conclusions

 Although the relationship between chon-
drocyte senescence and development of OA has 
not been completely understood yet, accumulat-
ing evidences in vivo and vitro have shown that 
the development of OA is, at least in part, attrib-
utable to the age-related changes in the joints. 
Senescent chondrocytes show both a decline in 
the local availability of growth factors, as well as 
a decline in the chondrocyte's response to stimu-
lation with growth factors. Chondrocyte senes-
cence is associated with an increased production 
of inflammatory mediators and matrix degrading 
enzymes characteristic of the senescent secretory 

phenotype. Age-related oxidative stress and 
damage may play a central role in cartilage aging 
through modulation of cell signaling pathways 
that regulate anabolic and catabolic activity 

(Figure). 
 We propose a mechanism for the involvement 
of ox-LDL in the development of OA where ox-
LDL-induced oxidative stress causes SIPS of 
chondrocytes and results in suppression of 
telomerase activity through inactivation of the 
PI3k/Akt pathway. Furthermore, ox-LDL 
could induce pathologic chondrocyte hypertro-

phy through Runx2 upregulation, following 
which the activated chondrocytes upregulate the 
hypertrophic cell markers, COL10 and ALP. We 
have previously demonstrated in vitro that ox-
LDL upregulates other hypertrophic chon-
drocyte markers, MMPs91 and VEGF'22. The ox-
LDL-induced oxidative stress may play a signifi-
cant role in the pathogenesis of OA through 
chondrocyte senescence.
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