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Abstract

The Indo-US coudé feed stellar spectral library (CFLIB) made available to the astronomical community recently
by Valdes et al. (2004, ApJS, 152, 251) contains spectra of 1273 stars in the spectral region 3460 to 9464 Å at a
high resolution of 1 Å (FWHM) and a wide range of spectral types. Cross-checking the reliability of this database
is an important and desirable exercise since a number of stars in this database have no known spectral types and a
considerable fraction of stars has not so complete coverage in the full wavelength region of 3460–9464 Å resulting in
gaps ranging from a few Å to several tens of Å. We use an automated classification scheme based on Artificial Neural
Networks (ANN) to classify all 1273 stars in the database. In addition, principal component analysis (PCA) is carried
out to reduce the dimensionality of the data set before the spectra are classified by the ANN. Most importantly, we
have successfully demonstrated employment of a variation of the PCA technique to restore the missing data in a
sample of 300 stars out of the CFLIB.
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1. Introduction

Automated schemes of data validation and analysis have
assumed added significance recently as larger databases are
increasingly becoming available in almost all areas of obser-
vational astronomy. With the advent of bigger CCD detectors
in spectroscopy, the need for having large libraries of stellar
spectra at high spectral resolution is also getting fulfilled.
Jacoby, Hunter, and Christian (1984, hereafter JHC) made
158 spectra available in the range of 3510–7427 Å at 4.5 Å
resolution. Prugniel and Soubiran (2001) published a library
of 708 stars using the ELODIE eschelle spectrograph at the
Observatoire de Haute-Province that covers a wavelength band
of 4100–6800 Å at a resolution of R = 42000. Cenarro et al.
(2001) have provided a database of 706 stellar spectra in
the wavelength region 8350–9020 Å at 1.5 Å resolution and
Le Borgne et al. (2003, hereafter STELIB) with 247 spectra
in the range of 3200–9500 Å at 3 Å resolution. Moultaka et al.
(2004, hereafter ELODIE) compiled 1959 spectra in the range
of 4000–6800 Å at a resolution of 0.55 Å.

More recently, Valdes et al. (2004) observed more than 1200
stars with emphasis on broad wavelength coverage (3400–
9500 Å) at a resolution of ∼ 1Å (FWHM) at an original disper-
sion of 0.44 Å per pixel. Their coudé feed stellar spectral
library (CFLIB) provides a resolution sufficient to resolve
numerous diagnostic spectral features that can be used in the
automated parameterization of spectra.

Neural networks are a form of multiprocessor computing
system, with simple processing elements with a high degree of
inter-connection, simple scalar messaging, and adaptive inter-
action between elements. In a supervised back propagation
algorithm, the network topology is constrained to be feed-
forward, i.e., connections are generally allowed from the input
layer to the first (and mostly only) hidden layer; from the first
hidden layer to the second, . . . , and from the last hidden layer
to the output layer. The hidden layer learns to recode (or to
provide a representation for) the inputs. More than one hidden
layer can be used. The architecture is more powerful than
single-layer networks: it can be shown that any mapping can
be learned, given two hidden layers (of units).

Automated schemes like the Artificial Neural Networks
(ANN) have been used in Astronomy for a number of data
analysis tasks like scheduling observations (Johnston, Adorf
1992), adaptive optics (Angel et al. 1990), stellar spectral
classification (Gulati et al. 1994; von Hippel et al. 1994),
and star–galaxy separation studies (Odewahn et al. 1992). In
addition Gulati, Gupta, and Rao (1997a) extended the ANN
analysis to compare synthetic and observed spectra of G and
K dwarfs. Gulati, Gupta, and Singh (1997b) estimated inter-
stellar extinction E(B − V ) using ANN from low-dispersion
ultraviolet spectra for O and B stars. Bailer-Jones, Gupta,
and Singh (2002) provide a review of the ANN applications
in astronomical spectroscopy.

Another powerful statistical tool for data analysis is the



178 H. P. Singh et al. [Vol. 58,

Table 1. ANN training and test cases.∗

Case Training Testing λ Region Resolution Classification
(Library, (Library, error

number of spectra) number of spectra)

A1 JHC, 158 CFLIB, 1273 4100–5500 Å 4.5 Å 674.3
A2 JHC, 158 ELODIE, 1959 4100–5500 Å 4.5 Å 514.8
A3 JHC, 158 STELIB, 247 3600–7400 Å 4.5 Å 861.2
B1 ELODIE, 174 ELODIE, 1959 4000–5500 Å 1 Å 496.4
B2 ELODIE, 174 ELODIE, 1959 4000–6800 Å 1 Å 576.0
B3 ELODIE, 174 CFLIB, 1272 4000–5500 Å 1 Å 742.7
B4 ELODIE, 174 CFLIB, 1273 4000–6800 Å 1 Å 848.5
C1 STELIB, 247 CFLIB, 1273 4000–6800 Å 3 Å 643.9
C2 STELIB, 247 CFLIB, 1273 3500–9400 Å 3 Å 670.6
C3 STELIB, 247 ELODIE, 1959 4000–6800 Å 3 Å 501.8

∗ Two hidden layers were used for all the cases.

principal component analysis (PCA). It involves a mathe-
matical procedure that transforms a number of (possibly)
correlated variables into a (smaller) number of uncorrelated
variables called principal components. The first principal
component accounts for as much of the variability in the data
as possible, and each succeeding component accounts for as
much of the remaining variability as possible. Objectives of
principal component analysis are to discover or to reduce the
dimensionality of a data set and to identify new meaningful
underlying variables. The technique has been used widely for
a number of applications in Astronomy, viz., for stellar classi-
fication by Murtagh and Heck (1987), Storrie-Lombardi et al.
(1994), and Singh et al. (1998), by Francis et al. (1992) for
QSO spectra, and for galaxy spectra by Sodré and Cuevas
(1994), Connolly et al. (1995), Lahav et al. (1996), and Folkes,
Lahav, and Maddox (1996).

Another important application was developed by Unno and
Yuasa (1992, 2000) for supplementing missing observational
data using a generalized PCA technique. Subsequently, Yuasa,
Unno, and Magono (1999) made use of this technique to deter-
mine distances of 183 mass-losing red giants.

The primary aim of this paper is to perform validity checks
on the CFLIB by running the ANN code on various inter library
sets like JHC, ELODIE, and STELIB. In the next section we
describe the ANN analysis. In section 3, we demonstrate the
possibility of using PCA for filling the gaps in the spectra of
CFLIB. In section 4, we summarize important conclusions of
the study.

2. ANN Analysis

A classification scheme using ANN involves two stages: a
training stage and a testing stage. In the training stage, the input
patterns and the desired output patterns are defined before the
learning process of the ANN is carried out. During training,
the network output and the desired output are compared and
the network weights are adjusted. We employ a back propa-
gation algorithm (Rumelhart et al. 1986) to achieve this. The
learning is stopped when the desired error threshold is reached

and the network weights are frozen for use with the test set. In
the testing stage, the test patterns are used by the network and
classified in terms of the training classes.

In what follows, we have trained the ANN on three libraries
with a view to run validity checks on the CFLIB. Three
libraries that we used for training are:

1. JHC (Jacoby et al. 1984) with 158 spectra available in
the range of 3510–7427 Å at 4.5 Å resolution

2. ELODIE (Moultaka et al. 2004) with 1959 spectra in the
range of 4000–6800 Å at a resolution of 0.55 Å

3. STELIB (Le Borgne et al. 2003) with 247 spectra in the
range of 3200–9500 Å at 3 Å resolution

A total of 10 test cases were run and are summarized in
table 1. We also give the wavelength region used in each case,
resolution, and the resulting classification error. Cases A1–A3
involved training of the ANN by JHC and testing on, respec-
tively, the CFLIB, ELODIE, and STELIB. Cases B1–B4
involved training the ANN with 174 individual classes of
ELODIE and testing on ELODIE (4000–5500 Å, Case B1),
ELODIE (4000–6800 Å, Case B2), CFLIB (4000–5500 Å,
Case B3), and CFLIB (4000–6800 Å, Case B4). The last
three cases C1–C3 involved training on STELIB and testing
on CFLIB (4000–6800 Å, Case C1), CFLIB (3500–9400 Å,
Case C2), and ELODIE (4000–6800 Å, Case C3).

The resolution used for training and testing for cases A1–A3
is 4.5 Å which is the resolution of JHC, 1 Å for cases B1–B4
which is the resolution of CFLIB, and 3 Å for cases C1–C3
which is the resolution of STELIB. The higher resolutions of
some of the testing cases were degraded to match the resolution
of the training library by Gaussian convolution. The testing is
done on the complete libraries, i.e., for 247 stars of STELIB,
1959 stars of ELODIE, and 1273 stars of CFLIB.

The classification scatter plots from these analyses are
shown in figures 1–3. The MK spectral types have been coded
numerically for use by the ANN. The MK alphabetic type O
is given a numeric code of 1000, B is 2000, A is 3000, and so
on with M being 7000. The subclasses are multiplied by 100
and added in, thus an F5 star is coded as 4500. The luminosity
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Fig. 1. Classification scatter plots for Cases A1–A3. Expression by numbers in axes for classification is referred to the text.

Fig. 2. Classification scatter plots for Case B1–B4.
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Fig. 3. Classification scatter plots for Case C1–C3. Also shown is case C1 with PCA preprocessing where first 15 principal components were used.

classes I, II, III, IV, and V are coded as 1.5, 3.5, 5.5, 7.5, and
9.5, respectively. An F5 V star is thus coded as 4509.5. In the
present scheme, the luminosity class is given a low weight and
the main emphasis on classification of the spectral types.

In the following we provide a discussion on the classification
accuracy of the three sets of cases:
Cases A1–A3

The Cases A1–A3 use JHC as the training set with A1 and
A2 in the wavelength region 4100–5500Å, i.e., in the blue part
of the spectrum. In the case A3, JHC was trained for the full
span i.e. 3600–7400 Å and tested on STELIB in the same band.
The blue region classification error is lowest for ELODIE and
somewhat inferior for CFLIB. However, the full span classifi-
cation of STELIB deteriorates the error to about 861, i.e., 8.6
sub-spectral-type.
Cases B1–B4

In Case B1–B4, ELODIE was used as the training set and
was tested on both ELODIE and CFLIB in the blue and
full span. The training set of 174 spectra was preselected
from amongst the 1959 ELODIE full set with one example
spectra per spectro–luminosity class. The best classification
is obtained for the case B1 with blue region of ELODIE. For
the same region of CFLIB, i.e., case B2, the classification is
somewhat inferior. The full span classification case B3 for
ELODIE and case B4 for CFLIB are consequently with higher
classification errors.

Cases C1–C3
Cases C1–C3 use STELIB as the training set and the test

sets are CFLIB limited span C1, ELODIE limited span C3, and
CFLIB full span case C2. The limited span cases of C1 and C3
show errors of 6.43 and 5.01 sub-spectral types but remarkably
the case C2 with full span shows an error of only 6.7.

The most useful result as far as CFLIB is concerned, is the
case C2 since the largest wavelength span is used for this case.
It may be noted that except JHC, all other spectral libraries
have gaps in them and this contributes greatly into the classifi-
cation errors. Further, we also used a PCA based preprocessor
for all the cases to reduce the dimensionality of the train–test
sets as described in Singh et al. (1998). The resulting classi-
fication errors using first 15 principal components are only
marginally poorer than the ones listed in the last column of
table 1. Last panel in figure 3 shows the scatter plot of case C1
with PCA.

Figure 4 displays some example learning curves of the ANN
training sessions for Cases A3, B2–B4, C1–C3, and a PCA
version of C1–C3. The B2–B4 (and C1–C3) are same training
sessions. All the learning curves fall to a low rms learning error
at the level on number of iterations of 30000. The PCA version
however requires much less number on iterations (∼ 10000) to
bring down these errors.
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Fig. 4. ANN training session learning curves for some selected cases.

3. Restoration of Missing Data Using PCA

To fill the gaps in the spectra one can use the data from
a similar type star which doesn’t have a gap at the same
wavelength. However, we present here a preliminary study of
an automated method for restoration of missing data for a set
of spectra of 300 stars in the wavelength region 4000–4300 Å
selected from the CFLIB. The list of stars with their spectral
types is given in table 3 in Appendix. The method of restora-
tion is adopted from Unno and Yuasa (1992) and is briefly
described here for the present data set.

To begin with, we have 301 flux values at 1 Å interval in
the range for 4000–4300 Å for 300 stars. A sample of seven
spectra are shown in figure 5. For the i-th star, let F i

j and wi
j be

the j -th observed flux value and its weight respectively, where
j = 1,. . . ,n (n = 301) and i = 1,. . . ,N (N = 300). If a particular
flux value F i

j for a particular star is missing, its weight is equal
to zero.

For applying the PCA, the normalized data f i
j is defined as

f i
j =

[
F i

j −〈Fj 〉
]

σj

, (1)

where 〈Fj 〉 and σj are the mean and the standard deviation of
Fj respectively and are given by

Fig. 5. Representative spectra of seven stars out of the total of 300
stars. The spectral types are listed on the vertical axis.



182 H. P. Singh et al. [Vol. 58,

Fig. 6. Histogram of restoration error and the number of stars for the six cases. All stars with restoration errors greater than ±0.2 are binned together.

〈Fj 〉 =

N∑
i=1

wi
jF

i
j

N∑
i=1

wi
j

, (2)

and

σ 2
j =

N∑
i=1

wi
j

[
F i

j −〈Fj 〉
]2

N∑
i=1

wi
j

. (3)

Following Unno and Yuasa (1992), we define virtual data xi
j

and their corresponding weight vi
j for each observed flux value

f i
j for each star as

vi
j = 1−wi

j , (4)

N∑
i=1

vi
j x

i
j = 0,

N∑
i=1

vi
j (xi

j )2 =
N∑
i=1

vi
j . (5)

Equation (5) represents the statistical constraint that the
mean value of the virtual data is zero and the standard deviation
is unity. For such a case, the correlation coefficient between the
j -th quantity and the k-th quantity is defined by

Cjk =
1
N

N∑
i=1

(wi
jf

i
j + vi

j x
i
j )(wi

kf
i
k + vi

kx
i
k). (6)

The most probable value of xi
j are thus given by the following

set of n simultaneous linear algebraic equations:

n∑
l=1

1
λl


µ2

lj x
i
j +

∑
k �=j

µljµlk(wi
kf

i
k + vi

kx
i
k)


 = 0, (7)

(j = 1, . . . ,n),

where λl is the l-th eigenvalue and µ
j
l represent the j -th

component of the l-th eigenvector in the PCA. The final
adjusted value for the normalized j -th flux value for the i-th
star is given by

wi
jf

i
j + vi

j x
i
j . (8)

To check the veracity of this procedure let us assume that
from the data set only one flux value F s

1 is missing. This means
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Fig. 7. Restoration error plotted against the normalized original data for all the six cases. The outlier at the bottom left of most of the plots is HD 31996.

Table 2. Cases studied for flux restoration analysis using PCA.

Case Reconstructed flux Number of principal components λ region

(a) 4000 Å 10 4000–4009 Å
(b) 4077 Å 10 4077–4086 Å
(c) 4291 Å 10 4291–4300 Å
(d) 4000 Å 20 4000–4019 Å
(e) 4077 Å 20 4077–4096 Å
(f) 4281 Å 20 4281–4300 Å

that ws
1 = 0 and all the other weights wi

j except ws
1 are equal to

unity. In this simplified situation, equations (7) reduce to(
n∑

l=1

µ2
l1

λl

)
xs

1 +
n∑

l=1

µl1

λl

(
n∑

k=2

µlkf
s
k

)
= 0, (9)

(s = 1, . . . ,N ).

Equation (9) can be easily solved to get xs
1 for the missing

flux f s
1 . By exchanging the columns, one can compute xs

2, xs
3,

and so on for the missing flux for any wavelength and for any

star. Six separate cases were studied and are listed in table 2.
The results of our preliminary analysis are shown in figures 6
and 7.

Case (a) uses a flux region of 10 Å starting from 4000 Å
and thus 10 principal components to reconstruct the fluxes at
4000 Å for all the 300 stars. From figure 6a we see that 256
stars have restoration error (f i

1 − xi
1) within ±0.1. Figure 7a

shows the restored error vs. original value of the normalized
flux f i

1 (with mean zero). It is clear that for most of the stars the
reconstruction is good. Case (d) uses 20 principal components
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and the reconstruction of flux at 4000 Å is comparable, maybe
slightly worse as is clear from figure 6d and figure 7d.

We also tested the validity of this flux reconstruction method
by attempting to reproduce a strong absorption feature, namely
the 4077 Å Sr II feature, visible in the representative spectra in
figure 5. Case (b) attempts to achieve this using 10 principal
components rather successfully as is clear from figure 6b and
figure 7b respectively. The flux at 4077 Å was reconstructed to
within ±0.1 for a total of 281 stars out of 300. The case (e) with
20 principal components also reproduces the flux at 4077 Å
well although no better than case (b) (279 stars within ±0.1)
suggesting that the 10 PC’s are enough for the data reconstruc-
tion in this data set. Lastly, cases (c) and (f) show similar
behavior in reconstructing towards the end of the wavelength
interval and the results are plotted in figure 6c and f, and
figure 7c and f.

Another interesting offshoot of this analysis was in picking
outliers, stars which have either no known MK spectral types or
have noisy spectra. Figure 7a,b,d,e,f clearly show one outlier
for which our scheme is unable to restore or reconstruct the
fluxes. The star is HD 31996 and it indeed has no MK spectral
class assigned to it (table 3) as was verified from the CFLIB and
the SIMBAD database. Another star, HD 46687, also has no
known spectral type but its spectrum resembles an M type star.
For this star, our analysis was able to reconstruct the fluxes.
The spectra of these two stars obtained from the CFLIB are
plotted in figure 8.

4. Conclusions

We have performed an extensive analysis based on artificial
neural networks to classify stars in an automated manner in the
Indo-US CFLIB using three databases viz., JHC, STELIB, and
ELODIE. The main aim of this exercise was two-fold. One
was to perform the reliability checks on CFLIB to see how
the gaps in the library affect the classification accuracy. We
find that the despite the presence of gaps, we have achieved
classification accuracy of less than one main class. The second
aim was to evolve and test automated procedures of classifying
stellar spectra. This was achieved by trying our ANN scheme
on ten different cases of training and testing on different pairs
of libraries. The schemes are numerically intensive, with the
ANN training stage requiring several hours of CPU time on
the fastest of workstations. A PCA analysis was employed
successfully to reduce the dimensionality of the data set and
hence faster training without appreciable loss in classification
accuracy.

Both STELIB and ELODIE libraries have variable spans of
wavelength gaps where the fluxes are filled with zeros (similar
to CFLIB). Such gaps lead to classification errors in the
PCA and ANN schemes. However, we have carried out some
preliminary analysis with the basic χ2 minimization scheme on

Fig. 8. Spectrum of the two stars HD 31996 and HD 46687 which
have no known spectral types. Star HD 31996 is the outlier in the flux
restoration analysis.

these libraries wherein the gap portions were omitted in both
train and test sets. This lead to a remarkable improvements in
the classification accuracy.

We have also employed a generalized principal component
analysis to first create and then fill the gaps in a sample of
300 stars out of the CFLIB in the blue region. At present, we
have used a simplified system to reconstruct flux values at one
wavelength bin at a time for these 300 stars. We hope to exploit
the full potential of the scheme and attempt to fill larger gaps
in stellar spectra in a subsequent study.

MY and HPS are grateful to JSPS (Japan Society for
Promotion of Science) and DST (Department of Science &
Technology, India) for financial support for exchange visits
which made this work possible. MY would like to thank
Emeritus Professor W. Unno of the University of Tokyo
for helpful discussions. The research has made use of the
SIMBAD database, operated by CDS, Strasbourg, France and
the INDO-US CFLIB managed by NOAO, Tucson, AZ, USA.

Appendix. List of Stars for Data Restoration Analysis

The list of 300 stars with their HD numbers and the spectral
types is given in table 3. Two stars HD 31996 and HD 46687
have no known spectral types.
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Table 3. Sample of 300 stars used for data restoration analysis.

HD Sp. type HD Sp. type HD Sp. type

100889 B9.5 V 141680 G8 III 191615 G8 IV
102212 M1 III 141714 G3.5 III 195324 A1 I
102224 K0.5 III 142091 K1 IV 196867 B9 IV
102328 K3 III 142198 K0 III 198001 A1 V
102870 F9 V 142373 F8 V 25329 K1 V
103047 K0 143107 K2 III 28978 A2 V
103287 A0 V 143666 G8 III 29613 K0 III
104985 G9 III 143761 G0 V 29645 G0 V
105043 K2 III 145328 K1 III 30562 F8 V
105262 B9 146791 G9.5 III 30614 O9.5 I
106365 K2 III 147677 K0 III 30652 F6 V
106714 G8 III 148387 G8 III 30739 A1 V
107113 F4 V 148783 M6 III 30743 F5 V
107213 F8 V 148786 K0 III 30812 K1 III
107383 G8 III 149161 K4 III 31295 A0 V
107418 K0 III 149630 B9 V 31421 K2 III
107950 G6 III 149661 K2 V 31996 0.0
108225 G9 III 149757 O9 V 32147 K3 V
108954 F9 V 150012 F5 IV 33111 A3 III
109317 K0 III 150100 B9.5 V 33256 F2 V
109345 K0 III 150117 B9 V 35468 B2 III
109358 G0 V 150449 K1 III 35497 B7 III
110281 K5 150453 F3 V 36673 F0 I
110897 G0 V 150680 G0 IV 36861 O8 III
111335 K5 III 150997 G7.5 III 37043 O9 III
111591 K0 III 151431 A3 V 37160 K0 III
111765 K4 III 151613 F2 V 37984 K1 III
111812 G0 III 151769 F7 IV 38656 G8 III
112300 M3 III 151862 A1 V 38899 B9 IV
113226 G8 III 152569 F0 V 39003 G9.5 III
113436 A3 V 152614 B8 V 39283 A2 V
113848 F4 V 152815 G8 III 39587 G0 V
113996 K5 III 15318 B9 III 39801 M1
114038 K1 III 153597 F6 V 39853 K5 III
114092 K4 III 153653 A7 V 39866 A2 II
114330 A1 IV 153808 A0 V 40035 K0 III
114357 K3 III 154278 K1 III 40111 B0.5 II
114642 F6 V 154431 A5 V 40136 F1 V
114710 F9.5 V 154445 B1 V 40183 A2 IV
115004 K0 III 154660 A9 V 40239 M3 II
115136 K2 III 155763 B6 III 40536 A6
115202 K1 III 157741 B9 V 40801 K0 II
115383 G0 V 157910 G5 III 41117 B2 I
115539 G8 III 158716 A1 V 41330 G0 V
115604 F3 III 158899 K4 III 41597 G8 III
115617 G5 V 159332 F6 V 41636 G9 III
116292 K0 III 160765 A1 V 41692 B5 IV
116656 A2 V 161056 B1.5 V 42475 M1 I
117176 G5 V 161868 A0 V 42543 M1 I
117243 G5 III 163588 K2 III 43039 G8.5 III

HD Sp. type HD Sp. type HD Sp. type

117818 K0 III 163917 G9 III 43042 F6 V
117876 G8 III 163989 F6 IV 43232 K1.5 III
118055 K0 164259 F2 IV 43247 B9 II
118266 K1 III 164284 B2 V 43318 F6 V
120136 F6 IV 164353 B5 I 43380 K2 III
120164 K0 III 165029 A0 V 43827 K1 III
120348 K1 III 165358 A2 V 43947 F8 V
120452 K0 III 165401 G0 V 44007 G5 IV
121146 K2 IV 165645 F0 V 44033 K3 I
121370 G0 IV 165687 K0 III 44478 M3 III
122563 F8 IV 165760 G8 III 44537 M0 I
123657 M4.5 III 165908 F7 V 44769 A5 IV
123977 K0 III 166014 B9.5 V 44951 K3 III
124570 F6 IV 166046 A3 V 45282 G0
124850 F7 IV 166207 K0 III 45410 K0 III
124897 K1.5 III 167042 K1 III 45412 F8 I
125451 F5 IV 168151 F5 V 46184 K1 III
125454 G8 III 168656 G8 III 46687 0.0
126141 F5 V 168723 K0 III 47105 A0 IV
126271 K4 III 169191 K3 III 47205 K1 III
126868 G2 IV 169414 K2 III 47731 G5 I
127334 G5 V 170693 K1.5 III 47839 O7 V
128000 K5 III 171301 B8 IV 48329 G8 I
128750 K2 III 171391 G8 III 48432 K0 III
129312 G7 III 172569 F0 V 48433 K1 III
129336 G8 III 173087 B5 V 48737 F5 IV
129956 B9.5 V 173399 G5 IV 48781 K1 III
129972 G8.5 III 175317 F6 IV 50420 A9 III
129978 K2 III 175535 G7 III 51309 B3 I
130948 G1 V 175545 K2 III 54662 O7 III
131111 K0 III 175588 M4 II 54719 K2 III
131156 G8 V 175640 B9 III 55280 K2 III
132132 K1 III 175743 K1 III 55575 G0 V
132345 K3 III 175751 K2 III 57264 G8 III
133165 K0.5 III 176301 B7 III 57669 K0 III
133208 G8 III 176318 B7 IV 57727 G8 III
134083 F5 V 176582 B5 IV 58207 G9 III
134190 G7.5 III 176819 B2 IV 58343 B2 V
135742 B8 V 177724 A0 V 58551 F6 V
136064 F9 IV 177817 B7 V 59881 F0 III
136202 F8 III 178125 B8 III 60179 A1 V
136512 K0 III 178329 B3 V 61064 F6 III
136726 K4 III 180006 G8 III 61295 F6 II
137052 F5 IV 180711 G9 III 62509 K0 III
138716 K1 IV 182293 K3 IV 63302 K3 I
139195 K0 III 182568 B3 IV 65714 G8 III
139446 G8 III 183144 B4 III 65900 A1 V
139641 G7.5 III 184915 B0.5 III 67228 G1 IV
140027 G8 III 188350 A0 III 69897 F6 V
141004 G0 V 191243 B5 I 70110 F9 V
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