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Abstract. Task delegation lies at the heart of the service economy, and is a funda-
mental aspect of many agent marketplaces. Research in computational trust con-
siders which agent a task should be delegated to for execution, given the agent’s
past behaviour. However, such work does not consider the effects of the agent
delegating the task onwards, forming a chain of delegations before the task is fi-
nally executed (as occurs in many human outsourcing scenarios). In this paper we
consider such delegation chains, and empirically demonstrate that existing trust
based approaches do not handle these situations as well. We then introduce a new
algorithm based on quitting games, to cater for recursive delegation.

1 Introduction

Agents seeking to achieve some goal may delegate tasks to others. Such delegations
seek to increase the likelihood of the task being successfully executed, given the pre-
sumption that the agent receiving the task (the delegatee) is willing and capable to
do so, on the part of the agent delegating the task (the delegator). While this is the
commonly adopted view, the delegatee may actually not be the best suited agent for
executing the task, but rather be able to further delegate (due to its knowledge or con-
nections) to others who are. This type of recursive delegation has — to our knowledge
— rarely been considered in the multi-agent systems community, though it captures
a common situation where, e.g., projects are repeatedly contracted and subcontracted
within organisations.

We believe that existing approaches to trust are ill-suited to making delegation de-
cisions in domains where recursive delegation is possible. This arises due to several
factors, namely that 1) agents within such a system are faced with a choice of whether
to execute a task, or delegate it onwards; 2) delegators must learn about the compe-
tencies of their neighbours with respect to both delegation and execution; and 3) the
topology of the network of possible interactions may change. The likelihood of a task
being successfully executed thus depends on multiple conditions, resulting in poten-
tially large changes in the likelihood of successful task execution, which are difficult to
handle.

In this work, we propose an algorithm that explicitly considers recursive delegation
by building on quitting games [15]. We then compare the performance of this algorithm
to several existing techniques, empirically demonstrating its improved behaviour. Crit-
ically, we do not consider reputation, but only direct trust observations, meaning that
evaluating our algorithm against many existing trust and reputation based approaches
would be inappropriate. Instead, our evaluation concentrates on trust-based approaches
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for partner selection based on multi-armed bandits, namely an ε-greedy approach [17],
UCB1 [2], Thompson Sampling [5], and the Gittins Index [7]. We describe these ap-
proaches in Section 2. In Section 3, we present our new quitting game based algorithm,
providing an empirical comparison between the various approaches in Section 4. We
discuss our results and situate them within existing work in Section 5, before conclud-
ing in Section 6.

2 Background

The problem of task delegation among partners with unknown competencies can be
viewed as an exploitation/exploration problem, where partners should have tasks del-
egated to them (exploitation), while unknown agents should occasionally have tasks
delegated to them so as to determine their competence (exploration). A common frame-
work for modelling, precisely, this class of problems is offered by multi-armed bandit
models, or multi-armed bandits (MABs) for short; an overview of which will be pro-
vided in what follows, accompanied by the algorithms used to solve them.

2.1 Multi-Armed Bandits

A multi-armed bandit problem depicts a scenario where a single agent must repeatedly
select one among several courses of action, obtaining a reward from this action. The
repeated occurrence of an action can affect the rewards it yields, an effect modelled by
a random variable which — whenever the action is performed — can cause a change
to occur in the reward state underpinning the action. In the MAB model, each potential
action is referred to as an arm, while choosing the action is referred to as pulling an
arm.

Definition 1 (Multi-Armed Bandits — Arms). An armA is a tuple 〈X, r,h, f〉 where
X is an ordered list of possible states of the arm, and r is a probability distribution over
possible rewards, parameterised by X .

The history of the arm, h, is a set of pairs (xh, lh) where lh ∈ Z is the number of
times the arm was pulled while in the state indexed by xh. The current state of the arm
is the state associated with the largest index of the arm’s history with a non-zero lh.

Denoting the set of all possible histories as H , and the index of the current state of
the arm as x, f is a probability distribution over the states [xh,xh+1] parameterised
over H .

Definition 2 (Multi-Armed Bandits — Pulling an arm). Pulling an arm with current
state xi and history h = [(x1, l1), . . . , (xi, li), (xi+1, 0), . . . (xn, 0)] will update the
arm’s history to h′ as follows:

h′ =

{
[(x1, l1), . . . , (xi, li + 1), (xi+1, 0), . . . (xn, 0)] if f(h) = x

[(x1, l1), . . . , (xi, li), (xi+1, 1), . . . (xn, 0)] otherwise

A multi-arm bandit is, then, a set A of arms. The number of times each arm was
pulled starts at zero. Pulling an arm updates the arm as described above, and — given
that the arm is in state x, yields a reward R with likelihood r(x,R).
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A policy is a function S : [a1, . . . , an]× [r1, . . . , rn]→ A. In other words, given a
sequence of arm pulls and the rewards obtained, the policy specifies which arm should
be pulled next. The main problem considered by the MAB literature involves iden-
tifying a policy which is in some sense optimal, e.g., which maximises rewards, or
minimises regret. It has been long established that if the MAB’s states and the proba-
bility distribution of its rewards are known, the Gittins Index can be used to identify the
optimal arm to pull [7].

Formally, the Gittins Index for arm i in state xi, with a discount factor for future
rewards of β, is defined as follows:

G(xi) = supσ>0
E[
∑σ−1
t=0 β

tr(xi)| initial state of arm]

E[
∑σ−1
t=0 β

t| initial state of arm]

The Gittins Index computes the expected reward of pulling arm xi against the cost
of not pulling it, and thus identifies the arm with the highest expected reward as the
one that should be pulled. Calculating the Gittins Index is computationally prohibitive
[7], in response to which various numerical approximations have been proposed in the
literature [3, 8].

More importantly, in practice, the probability distribution of the rewards and the
states of each arm may not be known. In this case, the Gittins Index may be used as a
heuristic based on beliefs about rewards and arm states, which means that different ways
of calculating these beliefs will result in different procedures with very distinct prop-
erties. We now describe several such heuristics addressing the MAB problem, namely
UCB1 [2], ε-greedy [17], and Thompson Sampling [5]. We will compare the perfor-
mance of our approach to these heuristics in Section 4.

2.2 MAB Heuristics

We begin this section by briefly describing several well-known MAB heuristics in the
context of standard MABs. In Section 3 we detail how these heuristics must be modified
to deal with recursive delegation.

UCB1. Rather than simply maximising rewards, upper confidence bound (UCB) algo-
rithms, exemplified by UCB1 [2], attempt to minimise decision-theoretic regret — the
difference between the expected reward obtained had the optimal arm been pulled, and
the expected reward of some other arm pulling policy. UCB1 is simple to implement
and works well in practice, while guaranteeing that the achieved regret will grow only
logarithmically with the number of arm pulls that occur.

For an arm j, UCB1 tracks the average reward obtained from that arm (µj), and the
number of times the arm has been pulled (nj), as well as the total number of times that
the MAB’s arms have been pulled (n). It then picks arm j, so as to maximise an upper
bound on the mean expected reward given by the following equation [2]:

µj +

√
2 lnn

nj
,
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This choice guarantees that the probability of deviating from the population mean de-
cays exponentially in time, in accordance with the Chernoff-Hoeffding inequality [10].
Once the arm has been pulled, µj ,nj and n are updated to identify the next arm to pull.

Thompson Sampling. This is another simple approach to selecting an arm, and does so
by sampling an expected reward based on the arm’s history, before selecting the arm
whose sample reward is maximal. To perform such sampling, a probability distribution
over the arms is required [1]. In this work we consider binary rewards, and we therefore
perform our sampling using a Beta distribution, whose parameters record the number of
times the arm returned a reward, and the number of times it did not. Thompson sampling
then samples each arm using this probability distribution, and selects the arm which —
using this sampling — has the highest expected reward.

ε-Greedy. This heuristic selects the arm which will yield the highest expected reward
with likelihood 1 − ε [17]. In the remaining cases, it will pick an arm at random. It is
important to note that this heuristic differs from Thompson Sampling in that no sam-
pling over the arms takes place, meaning that the best arm (in the sense of the expected
reward) is always picked, unless a random arm is chosen (with likelihood ε).

All of the heuristics described above seek to balance exploitation (that is, selecting
the arm most likely to give a high reward) with exploration (that is, learning more about
the likelihood that the arms will give a reward). If the distribution governing the reward
an arm gives is stationary, then these heuristics work well, and give well-understood
convergence guarantees. However, in the case of recursive delegation, agents at each
level learn simultaneously, meaning that the stationary distribution assumption is —
until the learning stage ends — violated. It is for this reason that these heuristics func-
tion poorly when applied to recursive delegation. We conclude this section by briefly
describing how we adapted the heuristics to operate in the domain of recursive delega-
tion.

2.3 Applying MAB Heuristics to Recursive Delegation

Agents able to delegate to others must make two choices when tasked with an action,
namely whether to execute the action themselves, or delegate it onwards (and in the
latter case, must also decide who to delegate to). Each agent has a list of delegatees
to which they can delegate a task. By viewing the delegatee agents as neighbours of
the delegator, we obtain a directed graph over which a path represents a sequence of
delegations.

We unify the execution/delegation decision for an agent by associating a dummy
agent with each agent in the system, allowing the actual agent to delegate to the dummy
agent, and ensuring that the dummy agent has no delegatee agents that they can pass
the task onto. A task reaching the dummy agent must therefore be executed (by the
agent associated with the dummy agent). Figure 1 illustrates a sample delegation net-
work consisting of 6 agents (a, . . . , f ), together with dummy agents (a′, . . . , f ′). In this
scenario, one possible sequence of delegations (also referred to as a delegation chain)
is a, b, c, f , f ′
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Fig. 1: A network of agents illustrating possible delegation links. Dotted lines indicate
links to dummy agents which, when delegated to, execute the task.

To use the heuristics described above in a recursive context, agents make a local
delegation decision, choosing who to pass the task to based only on their neighbours’
potential to become delegatees. If a dummy agent receives the task, then it is executed,
and feedback on success or failure is then provided to every agent in the delegation
chain. Each agent then updates the statistics relevant to its delegation decision with
respect to its neighbours, and the process repeats. Clearly, this approach prevents an
agent from considering how others within the chain make decisions, and we claim that
this affects the effectiveness of MAB heuristics in recursive delegation scenarios.

2.4 Quitting Games

We formulate an alternative approach to delegation which explicitly considers the ac-
tions available to agents through a game-theoretic mechanism based on quitting games
[15]. Quitting games are multi-player stochastic games where players are faced with
two choices, namely to continue (c) or to quit (q). The game ends and the players ob-
tain rewards in two situations, whenever a quit action occurs, or the game reaches some
terminal time. If the game does not end after the players have selected a move, i.e. si-
multaneous continue actions, then it enters another iteration where players act again,
repeating this process until termination. Figure 2 illustrates a generic two-player quit-
ting game between agents a and b.

The first entry in each terminal node appearing in Figure 2, corresponds to the re-
ward accrued to a, the other denotes b’s reward. Whenever (ca, qb) is played, a receives
rca and b obtains rqb , whereas (ca, cb) leads to yet unrealised rewards denoted by “	”.
Agents a and b plan future moves by formulating strategies based on the anticipation of
potential ε− equilibria.

Definition 3 (Quitting Game – Strategies). At every iteration t within a time hori-
zon T , each player i is provided with a set of actions Ai = {ci, qi}. A strategy is a
probability measure xit : T → [0, 1] denoting the likelihood of playing ci at iteration t.

Definition 4 (Quitting Game – ε-equilibrium). A profile or vector of strategies xt,
produces a stream of rewards rSt , contributed by those players St who have chosen not
to quit the game, giving rise to an expected reward vit(xt) := Ex[rStIt<∞]. A solution
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Fig. 2: Quitting Game in Extensive Form

concept states the criteria for playing a particular profile. ε-equilibrium is the solution
concept employed when solving a quitting game. A profile xt is an ε-equilibrium if the
expected reward it yields plus an overhead εt > 0, is at least that of any other strategy
yit for every player i:

vit(xt) ≥ vit(x−it , yit)− εt.

Note that if εt = 0, the above expression produces a Nash equilibrium. ε-equilibria
can be further qualified as cyclic if there exists a point in time τ ∈ T when xit = xit+τ , or
stationary if xit = xi0 for each t ∈ T . For instance, given rqa > 0, rca < rqb , rqa < rca ,
and rcb ≥ rqb , the stationary profile (xa, cb), xat � 1 is an ε − equilibrium of the
game in Figure 2. More generally, every quitting game where players prefer unilateral
termination to indefinite continuation, has a cyclic subgame perfect ε-equilibrium [15],
while every two and three players quitting game has a stationary ε-equilibrium [16].

To use these ideas in the context of recursive delegation, a delegator playing a quit-
ting game may never see the task executed, depending on the periodicity of the cyclic
equilibrium, unless the delegation process unfolds either as a recursive negotiation with
the same delegatee, or every delegation chain is constrained to no more than two dele-
gatees. While most quitting games have more than 3 players in the context of recursive
delegation – and we therefore have no guarantees regarding ε-equilibria – these games
appear to capture an important aspect of recursive delegation. Therefore, the algorithm
for recursive delegation which we propose in the next section builds on quitting games
and, as discussed in Section 4, appears to outperform other MAB based approaches in
this context.

3 Approach

As indicated in Section 2.1, the problem of task delegation may be seen as an exploita-
tion/exploration problem in the spirit of MABs, where delegators waver between dele-
gating the task to competent partners (exploitation) and delegating the task to unknown
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Fig. 3: Delegation Game in Extensive Form

partners (exploration). It is also apparent from Section 2.4 that recursive delegation has
a natural predisposition to a game-theoretical treatment, due precisely to its explicit
approach to recursion. In this section we present an algorithm for recursive delegation
based on quitting games. Details on the corresponding adaptation of MAB heuristics,
and the Gittins Index in particular, will be briefly addressed by the end of this section,
procuring a comparable benchmark for Section 4.

3.1 Delegation as a Quitting Game

Quitting games are readily adaptable to recursive delegation. They typify the occur-
rence of self-embedded instances of strategic interaction, resembling the replication of
delegation requests along a delegation chain. That is, if a delegator (a) and a potential
delegatee (b) were to play a quitting game, to determine whether to delegate a task or
not, the profile (ca, cb) would take them both to a new iteration of the same delega-
tion request. Unlike a standard quitting game, however, a delegation process requires
distinct strategic scenarios, where, e.g., b becomes a delegator facing a new delegatee.
For this reason we have adjusted quitting games to this type of interactions, preferring
instead the term delegation games when referring to them.

The players of a delegation game have a delegate (d) action and an execute (e)
action, and their rewards depend on future delegate actions. Every pair of agents pop-
ulating each instance of the game consists of one former delegatee acting as delegator,
and one new agent serving as potential delegatee. Delegation games can only be pro-
longed by (di, dj) profiles for every delegator i and delegatee j – provided there are
available delegatees and sufficient time –, and are brought to an end whenever an exe-
cute action occurs. Future actions are formulated in terms of strategies and the pursue
of ε− equilibria.

Definition 5 (Delegation Game). A delegation game is a tuple 〈N , (Ai,u
i, ri)i∈N 〉.

All N agents, or players, pair up with each other in accordance with a predefined
topology of interaction. A player generating a delegation request will be referred to as
delegator, while a player at the receiving end of the delegation request will be termed
delegatee. Potential delegatees within the reach of a delegator are said to be the latter’s
neighbours.
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Every iteration of the game comprises several instances of strategic interaction.
There are as many instances in a single iteration, as available delegatees can be found.
At every iteration t within a time horizon T , each player i is provided with a set of
actions Ai = {di, ei}.

Definition 6 (Delegation Game – Strategies and Expected Rewards). A strategy is a
probability measure xit : T → [0, 1] indicating the likelihood of playing di at iteration
t. Vectors of strategies xt are termed profiles. riDt is a random variable representing the
rewards obtained from delegation by each player i, given the set of delegatees Dt at
iteration t. uit : xt−1 × R → ∆(Ai) is a measurable set-valued function that updates
each player’s strategies once an action ej occurs or a terminal node is reached. Profiles
induce a probability distribution which permits the computation of the expected rewards
vit(xt) := Ex[rDtIt<∞].

Figure 3 depicts one iteration of a (deterministic) delegation game. Agents a, b, c,m
and n are arranged in a tree-like structure, where b and c are a’s neighbours, m and
n are c’s neighbours, while b and m have no neighbours, and n is linked to another
unspecified tree which allows delegation to continue. a has to decide between choosing
a delegatee from {b, c} or executing the task itself i.e. it has to decide whether to play
da,b, da,c or ea.

Each one of the three branches radiating from a, in Figure 3, exemplifies an absorb-
ing state of a delegation game. a can play ea and perform the task itself. It can also
delegate the task to b, in which case b might accept the task by playing eb, or not by
playing db, thus returning the task to a and forcing the occurrence of ea. In each case, a
and b receive (ra, 0), (ra,b, rb) and (ra, 0), respectively. Alternatively, a could delegate
to c. If n decides to play en, it receives rn, while c and a obtain rc,n and ra,c. The
rewards of any agent in the delegation chain emanating from n’s neighbour, will not
be realised until some agent plays an execute action, the delegation process reaches a
terminal node like b, or the time horizon is exhausted.

When rewards are subject to stochastic processes, the selection of an action has to
be expressed in terms of strategic profiles (xt), as in Definition 6. The probability dis-
tribution these profiles induce is then used to calculate the expected rewards (vit). By
contrasting expected rewards in the manner of an ε-equilibrium, delegators and delega-
tees select a particular strategy, which once played provokes the respective information
states to update (uit). These ideas on how a delegation game operates, are presented in
Algorithm 1.

In Algorithm 1, a set B ⊂ N of neighbours is assigned to each of the N agents, and
their respective rewards sampled from an uniform distribution (line 4). The resulting
initial state allows the computation of individual mixed strategies i.e. the probabilities
of delegating, whenever pairs of agents and neighbours engage in a delegation request
(line 6). Note that the notation is preserved except for r·,1 and r·,0, denoting the rewards
of executing the task given a delegatee’s willingness to further delegate or not. As long
as there are neighbours who have not received such a request, despite holding a positive
probability of delegating, the selection of the one with the highest expected pay-off
will take place (lines 8 and 9), seeking a Nash equilibrium. If capable of executing
the task, as given by a random “state of nature” (line10), this latter agent will have to
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weigh up the possibility of passing the task down the delegation chain or attempting its
completion, thereby triggering a learning process (lines 11-15).

Algorithm 1 Delegation Game (DIG)

Input: P := {ai, adi}i∈N : Tuple of agents and their neighbours, r: Array of sampled rewards.
Output: S: Sequence of agents receiving a delegation request, x: Array of mixed strategies.
1: function DIG(Pi)
2: S ← {Si}i∈N , x← {xi}i∈N , r ← {ri}i∈N
3: for j=1→ N do
4: adj ← {ak}k 6=j∈B⊂N , rj ← {U(rj,0, rj,T )}j∈B⊂N ,Sj ← ∅,xj ← 0

5: for ak ∈ adj do
6: xj,k =

rj,1−rj,0
rj,k−rk

7: x← x ∪ {xj,k}
8: while (x 6= ∅) ∧ (∃j[Sj == ∅]) do
9: m← argmaxj∈adj (r)

10: if (random() < xj,m) then
11: if am ∈ Sj then
12: Update xj,m, rj,m
13: else am /∈ Sj
14: Sj ← Sj ∪ {am}
15: return LEARN(Pm; rm,xm)
16: else
17: aj executes the task
18: Sj ← ∅
19: return (S,x)

1: function LEARN(Pi; ri,xi)
2: if ri,0 ≤ ri,1 then
3: ai executes the task
4: Update xk,i, rk,i
5: else
6: return DIG(Pi)

3.2 Delegation as Nested MABs

We now specify a second heuristic which treats recursive delegation as a set of nested
MABs, and where each agent makes a local decision regarding how to delegate based
on an approximation to the Gittins Index. This heuristic is described in Algorithm 2.

Algorithm 2 is initialised in the same manner as Algorithm 1. It implements the
Gittins Index through a beta reputation mechanism captured in lines 14-17, which feeds
the numerical approximation to the index as specified in lines 6-8. The former is but a
counter of successful delegation events, acting as a wrapper of the latter over recursive
calls. In this way, monitoring behaviour is accounted for with a binary random variable
keeping track of successful and failed choices.
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The main procedure in Algorithm 2 is Brezzi and Lai’s proposal of a MAB opti-
mal policy. For a large number of trials, and a time-discounting rate c ∈ [0.8, 1] – as
calibrated by Brezzi and Lai [3] for efficient performance–, the following closed-form
function is used to approximate the Gittins Index [3]:

G(T ) ≈ µ+

√
µ(1− µ)
T + 1

ψ

(
1

(T + 1)c

)
;

where µ is the mean of the compound distribution of the random variable indicating a
successful delegation, and

ψ(t) =



√
t/2 , t ≤ 0.2

0.49− (0.11t)−1/2 , t ∈ (0.2, 1]

0.63− (0.26t)−1/2 , t ∈ (1, 5]

0.77− (0.58t)−1/2 , t ∈ (5, 15]

{2log(t)− loglog(t)− log(16π)}1/2 , otherwise

approximates the boundary of the continuation region, delineating the set of iterations
for which it is suboptimal to stop the exploration of potential delegatees.

Algorithm 2 Dynamically Indexed Delegation (DID)

Input: P := {ai, adi}i∈N : Tuples of agents and their neighbours, s: Array of probabilities of
successful execution, δ: Array of time-discounting parameter.

Output: S: Sequence of agents receiving a delegation request, µ: Array of probabilities of suc-
cessful delegation.

1: function DID(Pi; δi, si)
2: S ← ∅, µ← {µi}i∈N , µi ∼ Beta(1, 1).
3: for i=1→ N do
4: adi ← {aj}j 6=i∈K , CountSuccessai ← 0, δi ← [0.8, 1)

5: αi = CountSuccessai , βi = CountFailureak∈adi
6: µi ← 1

(1+βi/αi))

7: Gi,j ← µj +
(µj(1−µj)
αj+βj+1

)1/2ψ(1/(αj + βj + 1)log(δ−1
i )
)

8: m← argmax({Gi,k}k∈adi)
9: if am 6= ai then

10: S ← S ∪ {am}
11: return DID(Pm; δm, sm)
12: else
13: Self-execute
14: if Outcome == True then
15: CountSuccessai ← CountSuccessai + 1
16: else
17: CountFailureai ← CountFailureai + 1

18: return Outcome
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4 Evaluation

Having described our MAB and quitting game based heuristics, we now turn to eval-
uating their effectiveness. We begin this section by detailing our experimental setup,
following which we describe our experiments and results.

4.1 Experimental Setup

Our evaluation consisted of running the various heuristics over 1000 delegation re-
quests, each run over 100 different graphs representing different possible agent delega-
tions. The algorithms were tested on two types of structures: 4-level directed trees (as in
Figure 2), and networks of randomly formed neighbourhoods (as in Figure 1). The trees
have a branching factor of 5 neighbours per node, with a final population of 156 agents.
The random networks have a fixed population of 100 agents, some of which may not be
reachable. Agents in random networks also possess 5 neighbours each, sampled from
all available nodes excluding their immediate predecessor and the root.

We experimented with different parameters for each of the heuristics. For ε-greedy,
ε takes on values between 0.05 and 0.1 [17]. Thompson Sampling was recovered from
a Bayesian variation of the same algorithm with no exploration. The discount factor in
DID ranged within [0.8,1), as to remain consistent with the closed-form approximation
to the Gittins Index [7]. The initial probabilities of delegation were sampled from an
uninformative Beta distribution.

For each heuristic, we measured the probability that a delegation would be success-
ful after the nth iteration (averaged over the 100 runs), as well as the regret value for
the action. This latter value is computed as the difference between the probability that
a task would be successfully executed if the optimal delegation path was followed, and
the final likelihood of successful execution.

4.2 Results

Figure 4a shows the performance of the various heuristics over directed trees. We ob-
serve that the DIG heuristic significantly increases the chance of successful delegation
when compared to other approaches. Thompson Sampling appears to outperform the
remaining approaches, but takes longer to approach its optimal value than other tech-
niques.

With regards to regret, we observe (Figures 4b and 5a) that DIG by maximising the
likelihood of successful delegation also minimises its regret, and that this relationship
holds for the remaining algorithms. Furthermore, none of the algorithms obtain levels
of regret greater than UCB1’s theoretical upper regret bound (Figure 4b and Table 1).

Turning to random networks, Figure 6a demonstrates that DIG and DID outperform
all other approaches. It appears that the rate of convergence for Thompson sampling
significantly lags behind the other approaches. Our results for regret (Figure 6b) are
similar to those for directed trees.

1 The mean rate of convergence was approximated by the error of deviating from a probability

of delegating equal to 1 (et), over the first 175 trials i.e., q ≈ log(et+1/et)
log(et/et−1)

, t ∈ {1, . . . , 175}.
The cut-off point was obtained through the Welch method [19].
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Fig. 4: Comparative Performance over Directed Trees
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Fig. 5: Comparative Performance over Directed Trees

If we consider the length of the resulting delegation chains, we observe that in di-
rected trees (Figure 5b) all algorithms occasionally create chains which span the height
of the tree, though ε-greedy algorithms usually converge to a single delegation instance.
We believe that the latter is due to the algorithm’s focus on exploitation over explo-
ration. In the case of random networks, this behaviour changes, with ε-greedy exploring
the network at length, while other approaches quickly converge to different delegation
chain lengths.

On account of the difference in the number of neighbours, and the presence of cy-
cles, the variance of marginal regret is less uneven, but larger on average in the random
graph case. There are more pronounced differences in the levels of regret as new agents
are discovered every trial, as shown in Figure 7b. Indeed, DIG settles at a 2-agent long
chain, leading to exceptional levels of successful delegation. In this sense, DIG can be
considered the most efficient algorithm.
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Algorithm Network
Structure

Probability of
Successful
Delegation

Mean Rate of
Convergence 1 Mean Regret

DIG D.T. 0.975 0.498 4.60
R.N. 0.985 0.434 10.821

DID D.T. 0.958 0.363 7.766
R.N. 0.974 0.324 15.842

ε-Greedy D.T. 0.927 0.437 31.352
R.N. 0.931 0.608 17.596

Thompson
Sampling

D.T. 0.947 0.731 21.281
R.N. 0.906 0.227 21.779

UCB1 D.T. 0.948 0.387 13.995
R.N. 0.858 0.172 33.689

Table 1: Relative Performance over Directed Trees (D.T.) and Random Networks (R.N.)

0 200 400 600 800 1000
Trials

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ob

ab
ilit

y 
of

 S
uc

ce
sf

ul
 D

el
eg

at
io

n

DIG
DID
Greedy
UCB1
Thompson

(a) Probabilities of Successful Delegation

0 200 400 600 800 1000
Trials

0

10

20

30

40

50

Cu
m

ul
at

iv
e 

Re
gr

et
Theoretical Upper Bounds

DIG
DID
Greedy
UCB1
Thompson

(b) Regret Metrics and Upper Bounds

Fig. 6: Comparative Performance over Random Networks

5 Discussion and Future Work

Our results demonstrate that the DIG strategy outperforms other approaches when deal-
ing with recursive delegation problems, and, as future work, we intend to investigate the
theoretical properties of the heuristic to further understand its properties and why this
result emerges.

We believe that our approaches operate better than existing heuristics due to the vi-
olation of the stationarity assumption in our domain. Our DID heuristic has similarities
to the manner in which the generalised Gittins Index is computed under weaker forms
of stationarity [11], suggesting the incorporation of evolutionary algorithms into future
research in the domain of recursive delegation.

By construction, delegation in our MAB framework conforms to a multilevel linear
program, where new delegation problems lie embedded in the constraints restricting
every agent’s objective. We intend to validate a similar mapping between DIG and mul-
tilevel bilinear programs against recent work on (stochastic) multilevel optimisation
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Fig. 7: Comparative Performance over Random Networks

problems [6], tracing back to questions on stationarity and the pertinence of evolution-
ary, hierarchical, and genetic algorithms [9].

Another strand of future work which we are actively pursuing involves increasing
the empirical faithfulness of our approach. This means introducing resource constraints,
explicit rewarding schemes, and potential costs to the delegation problem, by borrowing
ideas from the principal-agent theory literature [20], and results from coalitional game
theory [14].

There is little work in the computational trust community dealing with recursive
delegation. To our knowledge, the only work which addresses these issues is [13] and
[4]. In the former, the authors consider a supply chain problem and model it via recur-
sive MABs, but focus on budget constraints for each arm, solving local bandit problems
in parallel to identify trustworthy suppliers. [4] also consider the problem of recursive
delegation, and evaluate how simple algorithms for assigning responsibility for task
delegation failure across the delegation chain, affect the performance of the system.

6 Conclusions

In this paper we described the recursive delegation problem, and empirically demon-
strated that a heuristic based on quitting games outperforms different multi-arm bandit
based techniques, namely UCB1, ε-greedy, Thompson Sampling, and Lai and Brezzi’s
numerical approximation to the Gittins Index. Our heuristic outperforms these approaches
both with regards to regret, and the probability of successful delegation over different
graph topologies.

Our results are directly applicable to multi-agent system marketplaces, and ad-
dress an oft-ignored issue in computational trust research, which usually only considers
non-recursive task delegation. In this regard, extensions to include explicit rewarding
schemes and resource constrains seem a fruitful direction of future research. We believe
they will give rise to decisive contributions to computational trust theory and AI, if fur-
ther pursued along the lines of hierarchical reinforcement learning in non-stationary
environments [12, 18].
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