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Abstract 

We perform three-dimensional, time-dependent simulations of dense, fluidized suspensions of solid 

cylindrical particles in a Newtonian liquid in fully periodic domains. The resolution of the flow field is an 

order of magnitude finer than the diameter of the cylindrical particles. At their surfaces no-slip conditions 

are applied through an immersed boundary method (IBM), coupled to the lattice-Boltzmann method that 

is used as the fluid flow solver. The marker points of the IBM are also used to detect and perform 

collisions between the cylinders. With these particle-resolved simulations, we study the effects of the 

aspect ratio of the cylinders and the solids volume fraction on the superficial slip velocity between fluid 

and solids, on the solids velocity fluctuations, as well as on the orientation of the cylinders. The aspect 

ratio (length over diameter of the cylinders) ranges from 0.5 to 4, the solids volume fraction goes up to 

0.48. Reynolds numbers based on average settling velocity are of the order of 1 to 10. At constant 

Archimedes number, we observe only minor sensitivities of the settling Reynolds number on the aspect 

ratio.  
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Introduction 

Solid particles carried by fluid flow are a ubiquitous phenomenon in nature as well as in engineering. 

Practical relevance and a rich spectrum of physical phenomena have motivated extensive research in 

solid-fluid suspensions. One of the branches of research aims at predicting suspension dynamics through 

computer simulations. These are based on numerically solving mass, momentum and energy balances of 

the fluid phase as well as the dynamical equations of the solids phase and on coupling the phases in a 

meaningful manner.  

There are – generally speaking – three levels of detail at which suspension simulations can be 

performed. At the first and most resolved level, the fluid flow is simulated at a spatial and temporal 

resolution that is sufficient to capture the flow around individual particles. The solid particle surfaces act 

as moving no-slip conditions for the fluid flow. The numerical flow solution directly provides the 

hydrodynamic forces and torques on the particles that are then used to integrate their equations of linear 

and rotational motion. Such particle-resolved simulations are usually performed on fixed grids that need 

to be much finer – by at least one order of magnitude in each coordinate direction – than the size of the 

particles. This resolution requirement limits particle-resolved simulations to relatively small systems with 

currently up to order one million particles.1 

 To accommodate larger-scale systems with many more particles, one option is to coarsen the grid 

on which the fluid flow is solved. If in this process grid spacings become of the order of the particle size 

or larger, we enter the realm of discrete element method / computational fluid dynamics (DEM/CFD) 

simulations. This is the second level of detail of suspension simulations. Given that one does not resolve 

the flow around individual particles anymore, hydrodynamic forces and torques on the particles are not 

directly available from the fluid flow solution. As a surrogate, empirical correlations are used to estimate 

the forces and torques as a function of local conditions: particle-based Reynolds numbers, solids volume 

fractions, and possibly other parameters characterizing the flow and microstructure in the direct vicinity 

of a particle.2 Next to hydrodynamic force and torque modeling, the exchange of information between the 
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Eulerian (fluid flow) and Lagrangian (particle motion) components of the simulation is a topic of active 

research.3,4 

Eulerian-Eulerian (EE) simulations are the third level of detail of suspension simulations. The solids 

phase is treated as a continuum that penetrates the fluid phase (and vice versa). Modeling relates – among 

much more – to the stresses in the solids phase as well as the forces involved in the interaction between 

the phases.5,6 

It has no doubt that the shape of the solid particles has impact on the flow behavior of the solids-

liquid mixture: Hydrodynamic forces and torques depend on particle shape; in collisions, momentum 

exchange and how it is distributed over linear and angular components depends on shape; the way (dense) 

suspensions structure and pack themselves also depends on the shape of the particles. Where the majority 

of the works on simulating solid-liquid suspensions – at all three levels of detail as identified above – 

assumes the particles to be of a – more or less – spherical shape, it is thus useful to explore the role of the 

shape of the particles on the dynamics of a suspension. In this paper we do this by means of particle-

resolved simulations with particles of cylindrical shape. The choice for cylinders has a few reasons. In the 

first place we have – with applications in biomass conversion in mind – an interest in the flow dynamics 

of fiber suspensions. In the second place, there is experimental data available regarding the behavior of 

suspensions of cylindrical particles.7,8,9 Related to this, we plan on doing experiments ourselves and the 

availability of accurately sized cylindrical particles (e.g. to be cut from long rods) makes particles of such 

shape very suitable. In the third place, cylinders have only one aspect ratio (length over diameter) so that 

one can explore particle shape effects based on varying a single parameter.  

Reports on suspension simulations with non-spherical particles are becoming commonplace in the 

literature. They have been applied in the context of DEM simulations by Mahajan et al10 where the focus 

is on gas fluidization. Particle-resolved simulations through fixed beds of non-spherical particles11 

provide valuable insights into the relation between the bed’s micro structure and its pressure drop.  

Simulations resolving the flow around a steady, cylindroid particle have been used to measure 
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hydrodynamic forces and torques as a function of Reynolds number and angle-of-attack.12 This data can 

then be used in DEM/CFD simulations to capture the dynamic interaction between solid and fluid. 

Our interest is in the collective dynamical behavior of cylinder suspensions and how it depends on 

key dimensionless parameters: aspect ratio, solids volume fraction and particle-based Reynolds number. 

For this, dense assemblies of identical cylindrical particles that are free to move and rotate have been 

created. The flow systems are periodic in all three coordinate directions. The suspensions are brought in a 

fluidized state by balancing the net gravity force on the particles by an opposing body force – that can be 

interpreted as a vertical pressure gradient – on the interstitial fluid. We evolve these systems to a dynamic 

steady state and then measure overall characteristics such as fluid-solid slip velocity, the orientation of the 

fibers with respect to gravity, and velocity fluctuation levels. These results can be placed in context by 

e.g. comparing them to results from the literature13 for spherical particles. The aim of this paper thus is to 

characterize the dynamics and structure of dense, homogeneous suspensions of cylindrical particles in 

liquid through particle-resolved numerical simulation.  

The paper is organized as follows: in the next section the flow systems are defined and the main 

dimensionless numbers characterizing them introduced. We then discuss the numerical method which is 

an extension of a method we introduced in 201214, and provide numerical settings. The subsequent 

Results section begins with qualitative impressions of the flow systems studied and results of verification 

tests – primarily domain size and spatial resolution effects. Then results in terms of average quantities 

over the full dimensionless parameter range covered in this paper are discussed. In the final section we 

reiterate the main conclusions and provide a perspective on future research.    

 

Flow systems 

Solid cylindrical particles with length ℓ , diameter d, and density ρp  are placed in a three-dimensional 

domain of size ⋅ ⋅nx ny nz  that contains a Newtonian liquid with density ρ  and kinematic viscosity ν . 

The density ratio has been mostly fixed to ρ ρp =2.0 with the exception of one set of simulations where it 
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was varied between 1.25 and 3. With n  identical particles, the overall solids volume fraction is 

2

4

π
φ =

ℓn d

V
 with = ⋅ ⋅V nx ny nz  the total volume. The flow domain is periodic in all three coordinate 

directions. Gravity acts in the negative z-direction, =− zg eg . The domain is such that 2= =nx ny nz . 

Periodicity and the net gravity force on the particles make that it is important to explicitly force-balance 

the entire solid-fluid system. The procedure we follow in this respect is the same as was described in a 

previous paper on particle-resolved simulations with spherical particles in fully periodic domains.13 It is 

summarized here and – in addition – the consequences for dealing with non-spherical particles are 

addressed. 

The mixture density is defined as ( )1ρ φ ρ φ ρ≡ + −p . Then the net gravity force on one particle 

is ( )ρ ρ=− −g zF ep pV g  with 2
4
π= ℓpV d  the volume of the particle. If there are n  identical particles, the 

total downward force is ( ) ( )( )1ρ ρ φ ρ ρ φ− − =− − −z ze ep p pnV g Vg . This we compensate by applying a 

body force (force per unit volume) on the fluid volume ( )1 φ− V  in positive z-direction: 

( )ρ ρ φ= −b zf ep g .  

The equation of  linear motion of a particle is written as 

 ( )ρ ρ ρ= + − −p h c zu F F ep p p p

d
V V g

dt
  (1) 

with hF  the force the fluid exerts on the particle, and cF  the contact force due to collisions with other 

particles and close-range interactions (e.g. lubrication) between particles. The way hF  and cF  are 

determined in a simulation is explained in the next section. 

The equation of rotational motion of a particle is15 

 ( )+ × = +p p p h cI ω ω Iω T T
d

dt
  (2) 
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with I  the moment of inertia tensor, and hT  and cT  hydrodynamic and contact torque respectively. We 

will be solving this equation for each particle in a reference frame attached to the particle. Then the 

moment of inertia tensor is diagonal with 21
11 8 ρ= p pI V d  and ( )2 21 1

22 33 16 12ρ= = + ℓp pI I V d  where the “1” 

direction is along the center line of the cylinder and the “2” and “3” direction are two orthogonal lateral 

directions. The kinematics of rotation has been  dealt with through quaternions. This also will be 

discussed in the next section. 

In dimensionless terms, the physical input parameters of the simulation are aspect ratios (ℓ d  and 

nx d , 1
2= =nx nz ny nz ), the density ratio γ ρ ρ≡ p , and the Galileo number 3 2Ga ν= gd . Galileo 

number and density ratio can be combined to form the Archimedes number ( )Ar Ga 1γ= − . As an 

important output parameter we will be considering the Reynolds number based on the slip velocity 

between solids and liquid: Re
ν

−
=

z pz eu u d
 where zu  is the volume-averaged superficial velocity 

in the z-direction, pzu  the average velocity of the particles in z-direction, and the overbar indicates 

averaging over a time window during which the system is in a dynamically steady state. As the length 

scale the equivalent particle diameter ed  is introduced. It is the diameter of a sphere that has the same 

volume as a particle: 23 3 2= ℓed d . We note that the slip velocity −z pzu u  is the velocity that would 

be observed in settling experiments such as the ones reported by Richardson & Zaki16,17 and therefore will 

also be referred to as (average) settling velocity in this paper.  

  

Numerical procedures 

The simulation procedure consists of (1) a lattice-Boltzmann (LB) solver for the fluid flow; (2) an 

immersed boundary method to impose no-slip at the particle surfaces; (3) a collision algorithm that 

detects (near-) contact between particles and determines contact forces and torques (cF  and cT  in Eqs. 1 
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and 2 respectively); (4) an ODE solver that updates particle linear and angular velocities and particle 

center locations; (5) a quaternion-based procedure for keeping track of particle orientations. For items (1), 

(2), and (4), the methods are very much the same as the ones used to generate the results in Reference 13 

for liquid-fluidized spherical particles. Item (3) (collisions) is different: a hard-spheres, event-driven 

approach in 13 is replaced by a soft-collisions approach in the current paper. There was no need for item 

(5) in [13] since for spheres there is no need for keeping track of orientation.  

The LB scheme we used is due to Somers and Eggels18,19. It uses a uniform, cubic lattice with 

spacing ∆  and takes time steps ∆t . It has been supplemented with an immersed boundary method to 

impose velocities at off-lattice locations through interpolation and forcing.20,21,22 The cylindrical surfaces 

are represented by closely spaced marker points (nearest neighbor distance 0.5≈ ∆ ). At these points, the 

fluid is forced to match the solid surface velocity (that can be calculated from the linear and angular 

velocity of the cylinder) so that no-slip is achieved. By integrating the forces required to impose no-slip 

over the surface of each particle, the total force and torque each particle exerts on the fluid can be 

calculated; these we give symbols ibF  and ibT  respectively. This force and torque are exerted on the fluid 

external to the particle, as well as to the fluid internal to the particle. The latter contributions (intF  and 

intT ) can be estimated by assuming that the internal fluid moves as a solid body with the particle.23,24 The 

hydrodynamic force and torque (hF  and hT   in Eqs. 1 and 2) on each particle become ( )=− −h ib intF F F  

and ( )=− −h ib intT T T  respectively. The dynamical equations for particle linear and angular velocity then 

can be written as  

 ( ) ( )ρ ρ ρ ρ− =− + − −p ib c zu F F ep p p p

d
V V g

dt
  (3) 

 ( ) ( )( )− + × − =− +int p p int p ib cI I ω ω I I ω T T
d

dt
  (4) 

In Eq. 4, intI  is the moment of inertia of the internal fluid. For modest to low density ratios the 

coefficients in front of the d dt  terms of Eqs. 3 and 4 can get small. This then leads to severe time step 
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limitations if an Euler forward method would be applied to integrate the equations numerically. For this 

reason, a split-derivative time-stepping procedure14,21 has been used for updating Eqs. 3 and 4. This 

allows a time step that is the same as the time step of the LB scheme. The term 

( )
1

1ρ ρ ρ
γ

 − = −    
p pu up p p p

d d
V V

dt dt
 in Eq. 3 has been discretized as 

( ) ( ) ( ) ( )1 1
1

ρ
γ

+ − − − − ∆ ∆  

p p p pu u u uk k k k

p pV
t t

 

with ( )k  denoting the time level. This then leads to the following update rule for linear velocity 

 ( ) ( ) ( )
( ) ( )

1 11 1 1
1 1
γ γ ρ ρ γ

+ −
   ∆ ∆  = + − − + −∆ −        

ib c
p p p z

F F
u u u e

k k
k k k

p p p p

t t
t g

V V
  (5) 

Once linear velocity is updated, we displace the center location of each particle through an Euler explicit 

step: ∆ = ∆p px u t .  

Rotational motion of each particle is solved in a reference frame attached to the particle so that the 

moment  of inertia tensor is diagonal and constant. An approach analogous to that of linear motion has 

been followed for numerically integrating rotational motion (Eq. 4):  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 11 1 1
1 1
γ γ γ

+ − − − −
       = + − −∆ +∆ −∆ − ×            

p p p ib c p pω ω ω I T I T I ω Iωk k k k k k kt t t   (6) 

Keeping track of the orientation of the particles makes use of quaternions.24,25 Each particle’s 

orientation is characterized with a unit quaternion ( )0,= qq q  with 0q  a scalar value and q  a three-

dimensional vector ( )1 2 3, ,q q q  and 2 2 2 2
0 1 2 3 1+ + + =q q q q . An exact solution for the evolution of a 

quaternion rotating with an angular velocity pω  over a time interval ∆t  starting from ( )kq  at time level 

( )k  is available26:  

 ( ) ( ) ( ) ( )( )1 1 1
2 2cos , sin+ = ∆ ∆pω�

k kq q t t   (7) 

with the symbol �  denoting a quaternion multiplication. We use Eq. 7 for updating the quaternion of each 

particle from one time step to the next.  
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Quaternions effectively facilitate transferring information between the ( )1 2 3, ,x x x  coordinate system 

attached to a cylinder and the inertial ( ), ,x y z  system. The rotation of a vector x  in the ( )1 2 3, ,x x x  system 

to a vector y  in the ( ), ,x y z  can be expressed as 

 =y Sx   (8) 

with24 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2
2 3 1 2 0 3 1 3 0 2

2 2
2 1 0 3 1 3 2 3 0 1

2 2
3 1 0 2 3 2 0 1 1 2

1 2 2 2

2 1 2 2

2 2 1 2

 − + − + 
 
 = + − + −
 
 

− + − + 
 

S

q q q q q q q q q q

q q q q q q q q q q

q q q q q q q q q q

  (9) 

The coordinates of the marker points for the IBM are stored for one reference cylinder in the ( )1 2 3, ,x x x  

coordinate system. Equation 8 is used for each cylinder at each time step to transfer its marker points to 

the ( ), ,x y z  system in order to apply the IBM. One result of the IBM is the torque ibT  associated to each 

particle in the ( ), ,x y z  system. Since we solve the equation of rotational motion (Eq. 4) in the ( )1 2 3, ,x x x  

system, ibT  needs to be rotated to the latter system. This requires the inverse of S  which is its transpose: 

1− =S ST . As is described below, the matrix S  also is beneficial when performing collisions between 

particles.  

We are dealing with dense suspensions and expect collisions between particles to be frequent. The 

marker points for executing the IBM are used to detect close proximity between particle surfaces. Below 

a certain threshold, this proximity then locally activates a repulsive force that performs the collision. 

Consider two marker points “1” and “2” that belong to two different particles (Particle A and Particle B), 

see Figure 1. Each marker point is accompanied by a unit vector that is normal to the particle’s surface, 

pointing outward. The contact force contribution on Particle A due to the proximity of points 1 and 2 is 

determined as      

 ( )
( )

0 0  if   and ;  otherwiseλ

λ

δ λ
δ δ δ δ δ λ

λ

− −
= − < < =

−

2 1
12 12

2 1

n n
F F 0

n n
k   (10) 
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where we have three model parameters:  a spring constant k , a threshold normal distance 0δ , and a lateral 

threshold distance λ . The total contact force on Particle A is the sum of all contact forces of all particles 

surrounding Particle A. For calculating the contribution of 12F  to the contact torque on Particle A, we 

assume 12F  to act at Point 1.  

It should be noted that the contact force at Point 1 due to Point 2 acts in the direction ( )−2 1n n ,  not 

in the direction 1n  normal to the surface of Particle A. In this way the force at Point 2 due to Point 1 is in 

exactly the opposite direction and of the same magnitude: =−21 12F F . 

In DEM simulations, it is usual practice to include damping in the collision process, thereby 

mimicking a restitution coefficient smaller than one and mitigating instabilities. In particle-resolved 

simulations, damping is – at least partly – taken care of by resolving the fluid flow in between particle 

surfaces. When the space between particle surfaces gets smaller than one lattice-spacing, however, the 

flow there is not sufficiently resolved. For simulations involving resolved spherical particles it is then 

common practice to add radial lubrication forces based on low-Reynolds analytical expressions27 to the 

forces acting on the particles.13,29 Sometimes also tangential lubrication forces as well as torques are 

included.28 In this paper the role of lubrication/damping forces has been explored by explicitly including 

forces that are proportional to the velocity difference between marker points in close proximity. Suppose 

the two marker points in Figure 1 have velocity 1u  and 2u  due to the translational and rotational motion 

of particle A and B respectively. Their relative velocity is decomposed in the velocity along the average 

unit normal ( ) ( )
( )

2

−
= − ⋅ −

−

2 1n
2 1 2 1

2 1

n n
∆u n n u u

n n
 and the velocity perpendicular to the average unit 

normal ( )= − −t n
2 1∆u u u ∆u . The normal and tangential damping force are written as 

 *
*

1 1
  if   and ;  otherwiseλ

λ

δ λ
δ δ δ λ

δ δ λ

  − = − < < =   

n n n
12 12F ∆u F 0n

d
d

k   (11) 
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 *
*

1 1
  if   and ;  otherwiseλ

λ

δ λ
δ δ δ λ

δ δ λ

  − = − < < =   

t t t
12 12F ∆u F 0t

d
d

k   (12) 

with 

 * * if  and  if δ δ δ δ δ δ δ δ= > = ≤sat sat sat   (13) 

Here we – again – introduce a number of parameters. The pre-factors nk  and  tk  determine the strength 

of the damping interactions; δd  is the distance along the average normal of two marker points below 

which the damping force becomes active; δsat  is the distance below which the damping force saturates. 

The 
*

1 1

δ δ

  −   d

 dependence is borrowed from expressions for the radial lubrication force between 

spherical particles in particle-resolved simulations.28 The parameter δd  then depends on the spacing of the 

grid on which the fluid flow is solved. If the distance between particle surfaces is larger than δd , the flow 

between the surfaces is considered resolved and no additional lubrication force is required; if the distance 

becomes smaller than δd , the lubrication force is switched on. In this paper we set δ =∆d . Given that the 

lubrication force diverges for 0δ→  it has been saturated below a certain threshold distance (δsat ).13 In a 

numerical sense we want to avoid large damping forces, in a physical sense saturation occurs as a result 

of surface roughness.  

For spherical particles, tangential lubrication follows a ln δ  rather than a 1 δ  relationship. Here, for 

simplicity, tangential lubrication and normal lubrication are given similar expressions. By setting 

0.1=t nk k  it is ensured that tangential lubrication is weaker by an order of magnitude than normal 

lubrication, something we observed in simulations with spherical particles.13 The parameter nk  is treated 

as an ad-hoc parameter. It will require future refinements as it – in principle – depends on the fluid 

viscosity as well on the shape (local curvature) of the solid surfaces in close proximity. Specific values 

for the model parameters are given and motivated in the next section.  

 



 12

Set-up of simulations 

Particles are placed in a non-overlapping manner in the ⋅ ⋅nx ny nz  fully periodic flow domain. Initially 

fluid and particles are at rest. At time zero, gravity and the body force on the liquid bf  become active and 

we let the system develop to a dynamically steady state. This process we monitor by keeping track of 

Re
ν

−
=

z pz eu u d
 as a function of time. After reaching dynamically steady state, the simulations are 

continued in order to collect data for determining statistical flow quantities. The length of this averaging 

time window is of the order of 210 νd . All average flow quantities reported were based on data collected 

in steady-state time windows. 

As for the choice of numerical parameters, the most important one is the spatial resolution of a 

simulation. Since we use uniform cubic lattices it can be expressed as the number of lattice distances ∆  

spanning the diameter d of a cylinder. The default resolution is 16= ∆d  and resolution effects have been 

studied by also simulating systems with 12= ∆d  and 24= ∆d . The default domain size is 

9 9 18⋅ ⋅ = ⋅ ⋅nx ny nz d d d .  

We want the collisions as much as possible to happen when cylinder surfaces actually touch, i.e. not 

before surfaces touch and not when cylinder volumes overlap. In the former scenario the particles are 

behaving as slightly larger, in the latter as slightly smaller than they actually are which has consequences 

for the effective solids volume fraction and thus potentially for slip velocities. Previous work14 shows that 

if the spring constant 
2 2

00.2ρ δ≈ pup pk V  (Eq. 10), surfaces approximately touch at the moment their 

relative velocity is reverted in a collision. The simulations are designed such that particle speeds pu  are 

of the order 10-2 in lattice units. We chose the interaction distance (see Eq. 10) 0 0.02δ = d . This then sets 

k  to a value of the order of 5. 

The lubrication coefficient nk  is estimated in analogy with spherical particles of diameter d. For 

such systems the pre-factor in Eq. 11 would read 23 8πρν=nk d ; this expression we apply for cylindrical 
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particles having diameter d. As mentioned above, 0.1=t nk k  and δ =∆d . Finally, the lubrication 

saturation distance has been set to 0.1δ = ∆sat . 

 

Results 

Effects of numerical settings and domain size 

First it will be established to what extent numerical settings impact the behavior of the two-phase flow 

systems being investigated. In order to  accommodate fine meshes, spatial resolution effects were tested 

in relatively small domains with size 6 6 12⋅ ⋅ = ⋅ ⋅nx ny nz d d d  (i.e. smaller than the default size by a 

factor 2 3 in each coordinate direction). In Figure 2, results for two particle types ( 1=ℓ d  and 

2=ℓ d ), achieved on three grids (with particle diameter over grid spacing 12,16 and 24∆=d ) are 

compared in terms of the Reynolds number based on the average slip velocity Re, as well as in terms of 

the Reynolds number based on the particles’ fluctuating velocities ( )
2

,Re α α α ν= −rms e p pd u u , with 

α  a coordinate direction (z is vertical, xy is horizontal). In addition to spatial resolution effects, also the 

impact of the kinematic viscosity of the liquid (in lattice units) has been assessed. Lattice-Boltzmann 

simulations of suspensions of spherical particles using the immersed boundary method showed – at fixed 

Reynolds numbers – some effect of viscosity on the drag force.22 All results in Figure 2 are for the same 

Galileo number of Ga=864; at given diameter and viscosity, gravitational acceleration was adapted to 

achieve this value. 

Viscosity effects are most pronounced for the lower resolution of 12∆=d  and reduce quickly on 

finer grids. For a viscosity 0.02ν =  (in lattice units) the resulting Reynolds numbers depend strongest on 

the resolution, for instance showing an increase of 7% in the slip-velocity Reynolds number of 2=ℓ d  

cylinders when refining from 12∆=d  to 24. The higher viscosities have much weaker dependencies on 

resolution. Slip velocity Reynolds number variations are within 2%. Based on these observations and 
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considering computational feasibility, the results presented in the remainder of this paper are with a 

resolution of 16∆=d  and kinematic viscosities of 0.04ν =  or 0.06. 

By applying fully periodic boundary conditions, we attempt to represent an unconfined flow and so 

mimic what is happening in a fluidized system away from walls or other obstructions. In principle, 

particles and fluid interact with themselves over the periodic boundaries so that we need sufficiently large 

domains for representative simulations. In Figures 3 (qualitative) and 4 (quantitative) we compare results 

obtained with different domain sizes.  From Figure 4 we conclude that Reynolds numbers based on the 

average slip velocity (Re) are quite insensitive for the system size. In the range 6 12= −nx d  differences 

are less than 3% with slightly increasing slip velocities for larger domains; the strongest sensitivity is for 

the largest ( 4=ℓ d ) cylinders. 

The Reynolds numbers associated with the fluctuating particle velocities clearly depend on domain 

size. Where for the smallest cylinders considered ( 1=ℓ d ) we might see convergence when extending 

the domain from 9=nx d  to 12, this is not the case for the longer cylinders where differences of up to 

15% are observed.  

For reasons of computational affordability, this paper will mainly present results obtained in 

domains with 9=nx d  for which average slip velocities have largely converged, and fluctuating 

velocities – admittedly – have not. Impressions of simulations in such domains are given in Figure 5 for 

the four cylinder aspect ratios. In the cases shown in the figure, and also in other cases, the distribution of 

particles is more or less homogeneous over the domain volume. We have not observed the voidage wave 

instabilities that have been reported – experimentally as well as computationally – in liquid fluidized beds 

with uniformly sized spherical particles.13,28 

Average flow quantities at constant Ga 

A series of simulations have been conducted to study hindered settling as a function of solids volume 

fraction and cylinder aspect ratio at a constant Galileo number of Ga=864. In experimental terms this 

means that we fluidize cylinders of the same diameter d with different lengths and in different quantities 
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made of the same solid material in the same liquid feeling the same gravitational acceleration. Under the 

earth’s gravity and with d=1 mm cylinders, Ga=864 would be achieved in a liquid with kinematic 

viscosity of 6 23.4 10  m sν −≈ ⋅ . The density ratio was 2.0γ = . 

Results for average settling velocities are presented in Figure 6 in a double-logarithmic form that 

anticipates a Richardson & Zaki relation16,30 to describe hindered settling: ( )Re Re 1 φ∞= −
N

. As can 

be seen, this relation represents the results well and allows – through least-squares fitting – for 

determination of the parameters Re∞  and N. Clearly Re∞  increases with increasing ℓ d , simply because 

the particles get larger. There also is a consistent trend of N with ℓ d  with N reducing from 4.34 to 3.32 

if ℓ d  increases from 0.5 to 4.0.  

It is hypothesized that the variation in the exponent N with ℓ d  as observed in Figure 6 is related to 

the way the particles orient themselves and/or the levels with which their velocities fluctuate. We first 

note, however, that for spherical particles it was already asserted by Richardson & Zaki16 that the 

exponent N depends on the Reynolds number: 

 0.14.45Re for 1 Re 500−
∞ ∞= < <N   (14) 

Substituting values of Re∞  as derived from the fits in Figure 6 in Eq. 14 results in lower values for N 

than the ones we obtain for the cylinders (in Figure 6). The extent to which N varies with Re∞  according 

to Eq. 14, however,  is of a comparable level as the variations in N found in Figure 6. 

The distributions of the angles ϕ  of the cylinders’ center lines with the vertical are given in Figure 

7 for all the simulations represented in Figure 6. For a randomly oriented collection of cylinders, the end 

points of cylinders would be uniformly distributed over a sphere with radius 2ℓ  so that ϕ  is distributed 

according to sinϕ  (0 2ϕ π≤ ≤ ); 0ϕ=  is vertical orientation; 2ϕ π=  horizontal. The cylinders with 

1=ℓ d  closely follow this sinϕ  behavior for all solids volume fractions. Only for the highest 

( 0.48φ = ) there is a slight preference for horizontal orientations. Particles with 0.5=ℓ d  are disks. 
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Beyond a certain Reynolds number (Re 7≈ ), single disks tend to orient themselves with their center line 

vertically.31 This then explains the angle distribution for 0.10φ =  that is skewed towards low values of 

ϕ . It has Re 8.7≈ , as well as sufficient space between the particles to orient themselves as single disks 

would. Increasing φ  reduces the Reynolds number as well as the maneuvering space for the particles 

which leads to a gradual increase in preference for larger angles. 

“Long” cylinders ( 4=ℓ d ) orient mostly vertically, at least if 0.10φ > . This also is qualitatively 

visible in Figure 5 (right panel). For settling cylinders with higher aspect ratios ( 5≥ℓ d ) this has been 

observed experimentally as well.7 The cylinders with 2=ℓ d  go through an interesting transition with 

increasing φ : from a preference for horizontal center lines at low φ , to more vertical at high φ ; it is 

the opposite of the transition the 0.5=ℓ d  particles go through. 

So far, average velocity has been discussed. Particle velocities fluctuate as a result of the random 

nature of the suspension with – for individual particles – a constantly changing hydrodynamic 

environment. Particle fluctuations and their scaling with solids volume fraction and Reynolds number are 

subject of fundamental research32 and are practically relevant for transport processes in multiphase 

systems as they relate to mixing and dispersion in the solids as well as in the liquid phase.33 In fluidized 

systems, particle velocity fluctuations are anisotropic with vertical fluctuations stronger by approximately 

a factor of 2 compared to horizontal fluctuations.34  

Figure 8 shows particle velocity distribution functions confirming the anisotropy in our 

suspensions: wider distributions for z-velocities compared to xy-velocities. We also see that the width of 

the distributions very strongly depends on the solids volume fraction: the strong hindrance in dense 

suspensions limits particle velocity fluctuation levels.  

It is usual practice7 to normalize particle velocity fluctuation root-mean-square values by the 

average settling velocity. The way these relative velocity fluctuations depend on solids volume fraction 

and cylinder aspect ratio is shown in Figure 9. Vertical as well as horizontal component go through a 
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maximum at 0.3φ ≈ , irrespective of ℓ d . Similar profiles have been reported experimentally as well as 

computationally for spherical particles at low34 as well as intermediate33 Reynolds numbers. In addition, a 

clear trend with respect to ℓ d  can be observed: the lower aspect ratios have higher relative velocity 

fluctuation levels. 

Average flow quantities at constant Galileo number based on equivalent diameter 

We thus observe significant differences in the behavior and structure of the suspension with aspect ratio 

ℓ d  and overall solids volume fraction φ . Since the Reynolds numbers changed as ℓ d  changed, it is 

worthwhile to clarify to what extent the differences observed can be ascribed to ℓ d  and/or to Re.  

Aspect ratio and Reynolds number can be decoupled by scaling the flow systems differently. So far 

we kept 3 2Ga ν= gd  constant, motivated by considerations for experimental validation (comparing 

cylinders with the same diameter but different lengths). If instead, we keep 3 2Ga ν=e egd  constant, we 

are comparing cylinders of different length having the same volume, that will show – at the same φ  – 

comparable average settling speeds and thus Reynolds numbers. We have set Ga 1.5 864 1296= ⋅ =e  and 

performed a series of simulations varying ℓ d  and φ  in the same range as in the previous section, 

keeping the density ratio constant at 2γ = . In these simulations, Gae  has been kept constant by 

appropriately setting g . For the chosen value of Ga 1296=e , the systems with 1=ℓ d  in this section are 

the same as the ones with Ga 864=  in the previous section.  

The hindered settling behavior is shown in Figure 10. It is remarkable to see that now the results for 

the  different cylinder aspect ratios almost collapse, i.e. the settling velocity Reynolds number primarily 

depends on the solids volume fraction, and hardly on ℓ d . For further interpretation, the data are also 

plotted on a linear Reynolds number scale in Figure 10, leading to the same conclusion. The “universal” 

Richardson & Zaki exponent is to a good approximation the one that was found for 1=ℓ d  in Figure 6: 

3.9≈N . Qualitatively, the orientation angle distributions remain unaltered as compared to the set 
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obtained for Ga 864=  (Figure 7), see Figure 11 (where we omitted the 1=ℓ d  distributions as they are 

the same as in Figure 7). The most striking difference between the angle distributions in Figure 11 and in 

Figure 7 is the more pronounced vertical alignment of the cylinders with 4=ℓ d  at the higher solids 

volume fractions in Figure 7, i.e. the alignment slightly reduces when the Reynolds number gets smaller. 

Relative particle velocity fluctuation levels are shown in Figure 12. The overall trend is the same as 

for the previous set of simulations: highest levels at 0.3φ ≈  and vertical velocity fluctuations 

approximately a factor of two larger than horizontal velocity fluctuations. Closer comparison between 

Figure 9 (Ga 864= ) and Figure 12 (Ga 1296=e ) shows a weaker sensitivity of relative fluctuation levels 

with respect to ℓ d . Where in Figure 9 the clear trend is a decrease of fluctuation levels with increasing 

ℓ d , this is much less so in Figure 12, although also there the 4=ℓ d  particles have the weakest 

fluctuations. 

In a final set of simulations we consider the role of the Archimedes number (based on the 

equivalent diameter ed ): ( ) ( )3 2Ar 1 1 Gaγ ν γ= − = −e e egd . Above, Ga 1296=e  and 2γ =  were 

constant so that Are  is constant. We now keep Are constant at Ar 1296=e  and vary the density ratio in 

such a way that the net weight of a single particle (proportional to ( ) 31γ− egd ) is the same for all aspect 

ratios; Gae  is thus not constant anymore. The results of this set of simulations are compared to the ones 

with Ga 1296=e  in Table 1 in terms of average settling velocity Reynolds number and relative particle 

velocity fluctuation levels. There is a close agreement between the two sets of simulations from which we 

conclude that – under the conditions investigated – the density ratio has limited significance for these 

average flow properties. 

  

Conclusions 

This paper reports on particle-resolved simulations of dense suspensions of cylindrical solid particles in 

Newtonian liquid. Fully periodic, three-dimensional domains were used to study fluidization / hindered 



 19

settling of cylinders that varied in length-over-diameter aspect ratio from 0.5 to 4. We demonstrated that  

it was feasible to choose the simulation parameters such that grid-independent results for average and 

fluctuating velocities could be obtained. Fluctuating velocity levels increased with the size of the periodic 

computational domains to an extent that was different for different aspect ratios. Therefore, results for 

these quantities are likely underestimated in the current study. Average velocities were to a good 

approximation independent of domain size. 

We observed significant differences in the way the particles are oriented relative to the vertical 

(gravity) direction. The orientations of cylinders with aspect ratio 1 are randomly oriented, almost 

irrespective of the solids volume fraction. The longer cylinders – specifically those with aspect ratio 4 – 

orient themselves preferentially vertically. For the other aspect ratios a significant dependency on the 

solids volume fraction of the distributions of orientation angles is observed. 

It is striking to see that the hindered settling behavior, i.e. the way the Reynolds number based on 

average settling velocity and equivalent diameters depends on the solids volume fraction, is almost 

independent of the aspect ratio of the cylinders if the Archimedes number based on the equivalent 

diameter is kept constant. This despite the fact that the orientation of the cylinders does depend on aspect 

ratio. As for spherical particles, the Richardson & Zaki exponent (N) depends on the Reynolds number. 

There is a clear need for experimental validation of the results presented here. Experiments are – 

among more – needed to provide guidance for establishing parameters related to short-range interactions 

that in this paper have been treated in an ad-hoc manner without much regard for the details of lubrication 

flow in the narrow (in the simulations unresolved) space between particles. By performing sensitivity 

analyses and comparing results with detailed (refractive index matched) quantitative flow visualizations, 

the importance of modeling short range interaction can be assessed and modeling can be improved. 

The computational demands of the simulations presented here are still fairly modest. All results 

presented are based on sequential simulations, requiring of the order of 3 Gbyte of memory and running 5 
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to 10 days for equilibration and collection of data for statistical analysis. Parallelization of the computer 

code for simulating larger domains with more particles is an important step to take in future work.  

. 
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Figure captions  

Figure 1. Collision detection between particles A and B that have marker points 1 and 2 and associated 

outward normals on their surface. An algorithm keeps track of the proximity of marker points on different 

particles and determines – below a certain threshold – their normal and tangential spacing (δ  and λδ  

respectively) Along with the relative velocity of the marker points, this determines the contribution of the 

contact force on A and B as a result of the proximity of 1 and 2 (Eqs. 10, 11 and 12). 

Figure 2. Effect of spatial resolution. Top: average slip-velocity Reynolds number Re as a function of 

spatial resolution in terms of ∆d . Bottom: Reynolds numbers associated to the fluctuating velocity 

Rerms  of the particles in vertical (z)  and horizontal (xy) direction. Two types of cylinders (=ℓ d  and 

2=ℓ d ) and three kinematic viscosities ν  (in lattice units) as indicated. System size 6.0=nx d ; 

Ga=864; overall solids volume fraction 0.29φ = ; density ratio 2.0γ = . 

Figure 3. Instantaneous realizations for 2=ℓ d , Ga=864, 0.29φ = , ν =0.04 (lattice units), and 

∆d =16. From left to right the system size is such that 6, 9,12=nx d  respectively. The fourth (far right) 

panel is the same realization as the third panel but now with the particles in front of the fluid velocity 

contour plane made invisible. 

Figure 4. System size effects. Top: average slip-velocity Reynolds number Re as a function of system 

size nx d . Bottom: Reynolds numbers associated to the fluctuating velocity Rerms  of the particles in 

vertical (z)  and horizontal (xy) direction. Three types of cylinders (=ℓ d , 2=ℓ d , 4=ℓ d ) as indicated. 

Ga=864, 0.29φ = , ∆d =16, ν =0.04 (lattice units). 

Figure 5. Impressions of systems with Ga=864, 0.29φ = , nx d =9, ∆d =16, ν =0.04 (lattice units) 

and (from left to right) ℓ d =0.5, 1, 2, 4. 

Figure 6. Hindered settling. Slip velocity Reynolds number as a function of 1 φ−  for various ℓ d  as 

indicated. The straight lines are least squares fits according to ( )Re Re 1 φ∞= −
N

. Ga=864, nx d =9, 

∆d =16, ν =0.04 (lattice units). 

Figure 7. Distributions of the angles ϕ  between cylinder centerlines and the vertical for all 20 cases 

represented in Figure 6 on hindered settling. The drawn black curve in each panel is sinϕ  which is 

representative for a random orientation distribution. 
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Figure 8. Particle velocity distribution functions. Top: ℓ d =2; bottom: ℓ d =4. The left panels show a 

comparison between horizontal (xy) and vertical (z) velocities at φ =0.29. The right panels show a 

comparison between vertical particle velocity distributions for various φ . 

Figure 9. Particle velocity fluctuation levels ( )
2

α α α
′ = −p p pu u u  normalized by the average settling 

velocity = −stl z pzu u u  as a function of solids volume fraction for all cases considered in Figure 6 

(on hindered settling). Red symbols indicate vertical (z) velocity fluctuations, black symbols horizontal 

(xy) fluctuations. 

Figure 10. Hindered settling. Slip velocity Reynolds number as a function of 1 φ−  for various ℓ d  as 

indicated. Different from Figure 6, now all simulations have the same Galilei number based on the 

equivalent diameter: Gae =1296. Top and bottom panel have the same data on a logarithmic and linear Re 

scale respectively. nx d =9, ∆d =16, ν =0.04 (lattice units) for 0.40φ ≤  and ν =0.06 for 0.40φ > . 

Figure 11. Distributions of the angles ϕ  between cylinder centerlines and the vertical for all 20 cases 

represented in Figure 10 on hindered settling that all have Gae =1296. The drawn black curve in each 

panel is sinϕ  which is representative for a random orientation distribution. 

Figure 12. Particle velocity fluctuation levels ( )
2

α α α
′ = −p p pu u u  normalized by the average settling 

velocity = −stl z pzu u u  as a function of solids volume fraction for all cases considered in Figure 10 

with Gae =1296. Red symbols indicate vertical (z) velocity fluctuations, black symbols horizontal (xy) 

fluctuations.
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Figures  

 
Figure 1. Collision detection between particles A and B that have marker points 1 and 2 and associated 
outward normals on their surface. An algorithm keeps track of the proximity of marker points on different 
particles and determines – below a certain threshold – their normal and tangential spacing (δ  and λδ  

respectively) Along with the relative velocity of the marker points, this determines the contribution of the 
contact force on A and B as a result of the proximity of 1 and 2 (Eqs. 10, 11 and 12).   
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Figure 2. Effect of spatial resolution. Top: average slip-velocity Reynolds number Re as a function of 
spatial resolution in terms of ∆d . Bottom: Reynolds numbers associated to the fluctuating velocity 

Rerms  of the particles in vertical (z)  and horizontal (xy) direction. Two types of cylinders (=ℓ d  and 

2=ℓ d ) and three kinematic viscosities ν  (in lattice units) as indicated. System size 6.0=nx d ; 

Ga=864; overall solids volume fraction 0.29φ = ; density ratio 2.0γ = . 
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Figure 3. Instantaneous realizations for 2=ℓ d , Ga=864, 0.29φ = , ν =0.04 (lattice units), and 

∆d =16. From left to right the system size is such that 6, 9,12=nx d  respectively. The fourth (far right) 
panel is the same realization as the third panel but now with the particles in front of the fluid velocity 
contour plane made invisible. 
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Figure 4. System size effects. Top: average slip-velocity Reynolds number Re as a function of system 
size nx d . Bottom: Reynolds numbers associated to the fluctuating velocity Rerms  of the particles in 

vertical (z)  and horizontal (xy) direction. Three types of cylinders (=ℓ d , 2=ℓ d , 4=ℓ d ) as indicated. 
Ga=864, 0.29φ = , ∆d =16, ν =0.04 (lattice units). 
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Figure 5. Impressions of systems with Ga=864, 0.29φ = , nx d =9, ∆d =16, ν =0.04 (lattice units) 

and (from left to right) ℓ d =0.5, 1, 2, 4. 
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Figure 6. Hindered settling. Slip velocity Reynolds number as a function of 1 φ−  for various ℓ d  as 

indicated. The straight lines are least squares fits according to ( )Re Re 1 φ∞= −
N

. Ga=864, nx d =9, 

∆d =16, ν =0.04 (lattice units). 
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Figure 7. Distributions of the angles ϕ  between cylinder centerlines and the vertical for all 20 cases 
represented in Figure 6 on hindered settling. The drawn black curve in each panel is sinϕ  which is 
representative for a random orientation distribution. 
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Figure 8. Particle velocity distribution functions. Top: ℓ d =2; bottom: ℓ d =4. The left panels show a 

comparison between horizontal (xy) and vertical (z) velocities at φ =0.29. The right panels show a 

comparison between vertical particle velocity distributions for various φ . 
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Figure 9. Particle velocity fluctuation levels ( )
2

α α α
′ = −p p pu u u  normalized by the average settling 

velocity = −stl z pzu u u  as a function of solids volume fraction for all cases considered in Figure 6 

(on hindered settling). Red symbols indicate vertical (z) velocity fluctuations, black symbols horizontal 
(xy) fluctuations.  
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Figure 10. Hindered settling. Slip velocity Reynolds number as a function of 1 φ−  for various ℓ d  as 

indicated. Different from Figure 6, now all simulations have the same Galilei number based on the 
equivalent diameter: Gae =1296. Top and bottom panel have the same data on a logarithmic and linear Re 

scale respectively. nx d =9, ∆d =16, ν =0.04 (lattice units) for 0.40φ ≤  and ν =0.06 for 0.40φ > . 
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Figure 11. Distributions of the angles ϕ  between cylinder centerlines and the vertical for all 20 cases 

represented in Figure 10 on hindered settling that all have Gae =1296. The drawn black curve in each 

panel is sinϕ  which is representative for a random orientation distribution. 
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Figure 12. Particle velocity fluctuation levels ( )
2

α α α
′ = −p p pu u u  normalized by the average settling 

velocity = −stl z pzu u u  as a function of solids volume fraction for all cases considered in Figure 10 

with Gae =1296. Red symbols indicate vertical (z) velocity fluctuations, black symbols horizontal (xy) 

fluctuations. 
 
 



 38

Tables 
 
Table 1. Comparison of slip velocity Reynolds number (Re) and relative particle velocity fluctuation 
levels at ( ) 3 2Ar 1 1296γ ν= − =e egd  between simulations with (the default) density ratio 2.0 (blue font) 

and a density ratio such that the net gravity force on a single cylinder is the same irrespective of ℓ d  (red 
font). 
 
Are  ℓ d  φ  ρ ρp  Re ′

pxy pzu u  ′
pz pzu u  

1296 0.5 0.20 2.0 9.36 0.376 0.612 
   3.0 9.33 0.368 0.583 
  0.29 2.0 5.76 0.429 0.696 
   3.0 5.76 0.422 0.670 
  0.40 2.0 2.86 0.448 0.664 
   3.0 2.86 0.458 0.678 
 2.0 0.20 2.0 9.32 0.334 0.555 
   1.5 9.24 0.333 0.539 
  0.29 2.0 5.78 0.334 0.651 
   1.5 5.74 0.364 0.622 
  0.40 2.0 2.88 0.399 0.622 
   1.5 2.89 0.405 0.612 
 4.0 0.20 2.0 8.59 0.294 0.568 
   1.25 8.53 0.294 0.543 
  0.29 2.0 5.32 0.308 0.596 
   1.25 5.41 0.325 0.634 
  0.40 2.0 2.78 0.300 0.586 
   1.25 2.88 0.310 0.663 
 
 


