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Abstract
We perform three-dimensional, time-dependent sitrarla of dense, fluidized suspensions of solid
cylindrical particles in a Newtonian liquid in fylperiodic domains. The resolution of the flow diés an
order of magnitude finer than the diameter of tylendrical particles. At their surfaces no-slip cions
are applied through an immersed boundary metholl)|Boupled to the lattice-Boltzmann method that
is used as the fluid flow solver. The marker poiafsthe IBM are also used to detect and perform
collisions between the cylinders. With these platresolved simulations, we study the effects @& th
aspect ratio of the cylinders and the solids voldraetion on the superficial slip velocity betwekunid
and solids, on the solids velocity fluctuationswasdl as on the orientation of the cylinders. Tispexct
ratio (length over diameter of the cylinders) raafrem 0.5 to 4, the solids volume fraction goestaip
0.48. Reynolds numbers based on average settlitogityeare of the order of 1 to 10. At constant
Archimedes number, we observe only minor sensiwiof the settling Reynolds number on the aspect

ratio.
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Introduction

Solid particles carried by fluid flow are a ubigquis phenomenon in nature as well as in engineering.
Practical relevance and a rich spectrum of phygptednomena have motivated extensive research in
solid-fluid suspensions. One of the branches cdaesh aims at predicting suspension dynamics tiiroug
computer simulations. These are based on numerisalving mass, momentum and energy balances of
the fluid phase as well as the dynamical equataine solids phase and on coupling the phases in a
meaningful manner.

There are — generally speaking — three levels tdildat which suspension simulations can be
performed. At the first and most resolved levek fluid flow is simulated at a spatial and temporal
resolution that is sufficient to capture the flovoand individual particles. The solid particle surés act
as moving no-slip conditions for the fluid flow. &@mumerical flow solution directly provides the
hydrodynamic forces and torques on the particlas dhe then used to integrate their equationsnefl
and rotational motion. Sugbarticle-resolved simulations are usually performed on fixed gridat theed
to be much finer — by at least one order of magiitun each coordinate direction — than the sizthef
particles. This resolution requirement limits pa#giresolved simulations to relatively small syssemith
currently up to order one million particlés.

To accommodate larger-scale systems with many imarticles, one option is to coarsen the grid
on which the fluid flow is solved. If in this prage grid spacings become of the order of the parside
or larger, we enter the realm of discrete elemeethod / computational fluid dynamics (DEM/CFD)
simulations. This is the second level of detaiso$pension simulations. Given that one does notves
the flow around individual particles anymore, hyadypamic forces and torques on the particles are not
directly available from the fluid flow solution. As surrogate, empirical correlations are used timate
the forces and torques as a function of local dovh: particle-based Reynolds numbers, solidsmelu
fractions, and possibly other parameters charaatgrithe flow and microstructure in the direct wity

of a particlé? Next to hydrodynamic force and torque modeling, ékchange of information between the



Eulerian (fluid flow) and Lagrangian (particle nat) components of the simulation is a topic of\ati
research:’*

Eulerian-Eulerian (EE) simulations are the thindeleof detail of suspension simulations. The solids
phase is treated as a continuum that penetratdhiitigphase (and vice versa). Modeling relatesneiag
much more — to the stresses in the solids phaseelss the forces involved in the interaction betw
the phases®

It has no doubt that the shape of the solid pasditias impact on the flow behavior of the solids-
liquid mixture: Hydrodynamic forces and torques eleg on particle shape; in collisions, momentum
exchange and how it is distributed over linear angular components depends on shape; the way {dense
suspensions structure and pack themselves alsodepea the shape of the particles. Where the ntjori
of the works on simulating solid-liquid suspensienat all three levels of detail as identified abov
assumes the particles to be of a — more or lepberisal shape, it is thus useful to explore thHe ob the
shape of the particles on the dynamics of a sugpeni this paper we do this by means of particle-
resolved simulations with particles of cylindricilape. The choice for cylinders has a few readoribe
first place we have — with applications in biomasaversion in mind — an interest in the flow dynesni
of fiber suspensions. In the second place, theexperimental data available regarding the behasfior
suspensions of cylindrical particlé&? Related to this, we plan on doing experiments elues and the
availability of accurately sized cylindrical patés (e.g. to be cut from long rods) makes partiofesuch
shape very suitable. In the third place, cylindexge only one aspect ratio (length over diametethat
one can explore particle shape effects based gingga single parameter.

Reports on suspension simulations with non-spHepiadicles are becoming commonplace in the
literature. They have been applied in the contéBM simulations by Mahajan et*8where the focus
is on gas fluidization Particle-resolved simulations through fixed bedsnoh-spherical particlés
provide valuable insights into the relation betwdba bed’s micro structure and its pressure drop.

Simulations resolving the flow around a steady,inciybid particle have been used to measure



hydrodynamic forces and torques as a function giBlels number and angle-of-atta@kThis data can
then be used in DEM/CFD simulations to capturedyramic interaction between solid and fluid.

Our interest is in the collective dynamical behawbcylinder suspensions and how it depends on
key dimensionless parameters: aspect ratio, seblisne fraction and particle-based Reynolds number.
For this, dense assemblies of identical cylindrigatticles that are free to move and rotate haws be
created. The flow systems are periodic in all tloeerdinate directions. The suspensions are braagint
fluidized state by balancing the net gravity foocethe particles by an opposing body force — thatloe
interpreted as a vertical pressure gradient — enrterstitial fluid. We evolve these systems tyaamic
steady state and then measure overall charaatsrsich as fluid-solid slip velocity, the orienpatiof the
fibers with respect to gravity, and velocity fluation levels. These results can be placed in corgx
e.g. comparing them to results from the literatufer spherical particles. The aim of this paperstiito
characterize the dynamics and structure of denm@obeneous suspensions of cylindrical particles in
liquid through particle-resolved numerical simubati

The paper is organized as follows: in the nextisedhe flow systems are defined and the main
dimensionless numbers characterizing them intragdludée then discuss the numerical method which is
an extension of a method we introduced in 261and provide numerical settings. The subsequent
Results section begins with qualitative impressions of flbev systems studied and results of verification
tests — primarily domain size and spatial resofutdfects. Then results in terms of average quastit
over the full dimensionless parameter range coverdtdis paper are discussed. In the final seciven

reiterate the main conclusions and provide a petsfgeon future research.

Flow systems

Solid cylindrical particles with lengttf, diameterd, and densityp, are placed in a three-dimensional
domain of sizenx-ny-nz that contains a Newtonian liquid with densjyand kinematic viscosity .

The density ratio has been mostly fixedptp/p =2.0 with the exception of one set of simulatioriere it



was varied between 1.25 and 3. With identical particles, the overall solids volumectran is

<¢> _ nméd?

with V = nx-ny-nz the total volume. The flow domain is periodic ihthree coordinate

directions. Gravity acts in the negatizelirection, g=—ge,. The domain is such thaitx = ny =nz/2.

Periodicity and the net gravity force on the péscmake that it is important to explicitly forcatance
the entire solid-fluid system. The procedure wéofelin this respect is the same as was described in
previous paper on particle-resolved simulationssiherical particles in fully periodic domainé.lt is
summarized here and — in addition — the consegsefaredealing with non-spherical particles are

addressed.

The mixture density is defined as= <¢>pp +<1—(q§>)p . Then the net gravity force on one particle
is F, = —(pp —;‘;)VpgeZ with V, =z (d? the volume of the particle. If there aneidentical particles, the
total downward force iS—(pp —ﬁ) nv,ge, = —(1—<¢>)(pp —p)¢Vgez. This we compensate by applying a
body force (force per unit volume) on the fluid wwie (1-(¢))V in positive zdirection:
fb :(pp_p)¢gez

The equation of linear motion of a particle isttem as

d _
Vpppaup:Fh+Fc_<pp_p)Vpgez (1)
with F, the force the fluid exerts on the particle, afdthe contact force due to collisions with other

particles and close-range interactions (e.g. laioa) between particles. The wdy, and F, are

determined in a simulation is explained in the redtion.

The equation of rotational motion of a particis

d
Iamp-i—(opx(I(op):Th-i—Tc (2)



with | the moment of inertia tensor, afig and T, hydrodynamic and contact torque respectively. We
will be solving this equation for each particle anreference frame attached to the particle. Then th
moment of inertia tensor is diagonal with =4 p V,d* and |, = 1 ;= p V, (1—16d2 +1—12£2) where the “1”
direction is along the center line of the cylin@ad the “2” and “3” direction are two orthogonatelal
directions. The kinematics of rotation has beenaltdeith through quaternions. This also will be
discussed in the next section.

In dimensionless terms, the physical input parareegéthe simulation are aspect ratiggd and
nx/d, nx/nz=ny/nz=1), the density ratioy=p,/p, and the Galileo numbeBa= gd*/v*. Galileo
number and density ratio can be combined to fore Alnchimedes numbeAr:Ga(y—l). As an

important output parameter we will be considerihng Reynolds number based on the slip velocity

(u,)—(ug)| e

v

between solids and liquidRe=

Where<uz> is the volume-averaged superficial velocity

in the z-direction, <upz> the average velocity of the particles adirection, and the overbar indicates

averaging over a time window during which the sysis in a dynamically steady state. As the length

scale the equivalent particle diametgr is introduced. It is the diameter of a sphere trag the same

volume as a particled, = §/3¢d*/2. We note that the slip velocil<3u2>—<upz> is the velocity that would

be observed in settling experiments such as the @mperted by Richardson & Zaki’ and therefore will

also be referred to as (averageijling velocity in this paper.

Numerical procedures
The simulation procedure consists of (1) a latticdéBnann (LB) solver for the fluid flow; (2) an
immersed boundary method to impose no-slip at t@wige surfaces; (3) a collision algorithm that

detects (near-) contact between particles and métes contact forces and torqués @nd T, in Egs. 1



and 2 respectively); (4) an ODE solver that updatmsicle linear and angular velocities and particle
center locations; (5) a quaternion-based procefdurieeeping track of particle orientations. Fonie (1),
(2), and (4), the methods are very much the santieeasnes used to generate the results in Refedehce
for liquid-fluidized spherical particles. Item (3gollisions) is different: a hard-spheres, evenmar
approach in is replaced by a soft-collisions approach in theent paper. There was no need for item
(5) in [13] since for spheres there is no needkémping track of orientation.

The LB scheme we used is due to Somers and Efgel& uses a uniform, cubic lattice with
spacingA and takes time stepAt. It has been supplemented with an immersed boyndathod to
impose velocities at off-lattice locations throtigterpolation and forcing>?**The cylindrical surfaces
are represented by closely spaced marker poingsdsieneighbor distance 0.5A ). At these points, the
fluid is forced to match the solid surface velodftihat can be calculated from the linear and amgula
velocity of the cylinder) so that no-slip is acheelv By integrating the forces required to imposesli
over the surface of each particle, the total fomoel torque each particle exerts on the fluid can be

calculated; these we give symbdéts and T, respectively. This force and torque are exertetherfluid
external to the particle, as well as to the fluiternal to the particle. The latter contributiorts,( and
T,.) can be estimated by assuming that the internil fhoves as a solid body with the particlé! The
hydrodynamic force and torqué&,(and T, in Egs. 1 and 2) on each particle becofje= —(F, —F, )
and T, =—(T,, — T, ) respectively. The dynamical equations for partiiclear and angular velocity then

can be written as

Yooy o) gt =—Fu + R (o= Vot 3)
<I _Iim>%mp+mpx(<l_Iint)(’)p):_Tib +Tc (4)

In Eq. 4, |, . is the moment of inertia of the internal fluid. rFmodest to low density ratios the

int

coefficients in front of thed/dt terms of Eqgs. 3 and 4 can get small. This thedsldéa severe time step



limitations if an Euler forward method would be &g to integrate the equations numerically. Fas th
reason, a split-derivative time-stepping procetfiffehas been used for updating Egs. 3 and 4. This

allows a time step that is the same as the timg st¢ the LB scheme. The term

Vp<pp—p)%up :Vppp[l—%]%up in Eq. 3 has been discretized \4p,,

(k+1) _ 1,(k) (k) _ (k=2
Up " —Up _iup —Up

At v At

with (k) denoting the time level. This then leads to tHewang update rule for linear velocity

(k+1)
Up =

1+=
Y

oyt Ve, Vs,

AtFY AtFY
1]u(k> Ly At | AtR

— At [1— —1] ge, (5)
Y

Once linear velocity is updated, we displace th@earelocation of each particle through an Eulerliekp
step: Ax, =U,At.
Rotational motion of each particle is solved ireterence frame attached to the particle so that the

moment of inertia tensor is diagonal and constAntapproach analogous to that of linear motion has

been followed for numerically integrating rotatibnaotion (Eq. 4):

m(pk+1) _ [1 n 1
Y

ol — Lol AUTY 4 AT - At [1— —1] | *1[m<pk> x(1o} )} 6)
2l 2l

Keeping track of the orientation of the particleskms use of quaterniofi?® Each particle’s

orientation is characterized with a unit quatern'npﬁ:(qo,q) with g, a scalar value and a three-

dimensional vector(q,,d,,q;) and Jq§+qf+q§+q§:1. An exact solution for the evolution of a
quaternion rotating with an angular velocity, over a time intervalAt starting fromq(k> at time level
(k) is availablé®:

g =qg" o(cog1At) @, sif3At)) 7)

with the symbolo denoting a quaternion multiplication. We use Efpriupdating the quaternion of each

particle from one time step to the next.



Quaternions effectively facilitate transferringamiation between thgx,, x,, ;) coordinate system
attached to a cylinder and the inertjal y, z) system. The rotation of a vectrin the (X, X,,X,) System

to a vectory in the(x,y,z) can be expressed as
y =SX 8)
with®*
1-2(g+a3) 2q8,-dfy) 2ags+ag)

S=|2(q,0,+a;) 1-2adi+0a3) 2ag—ag) (9)
2(0%—0,) 2(a8,+98,) 1- a3+

The coordinates of the marker points for the IBM stored for one reference cylinder in the, x,,X;)

coordinate system. Equation 8 is used for eacmdgli at each time step to transfer its marker pdimt

the (X, y,z) system in order to apply the IBM. One result af tBM is the torqueT,, associated to each
particle in the(x, y, z) system. Since we solve the equation of rotatiomation (Eq. 4) in the{x;, X,,X,)
system, T, needs to be rotated to the latter system. Thigimes|the inverse o6 which is its transpose:

S'=S". As is described below, the matr& also is beneficial when performing collisions beén
particles.

We are dealing with dense suspensions and exphisiarms between particles to be frequent. The
marker points for executing the IBM are used teedetlose proximity between particle surfaces. Belo
a certain threshold, this proximity then locallytieates a repulsive force that performs the cabhsi
Consider two marker points “1” and “2” that belotogtwo different particles (Particl& and ParticleB),
see Figure 1. Each marker point is accompanied tnyitavector that is normal to the particle’s sada
pointing outward. The contact force contribution ParticleA due to the proximity of points 1 and 2 is

determined as

— A (n,—n,)
A |n,—n,

F, =k(6,—9) 9, if 6<¢,and|é,|<\; F,=0 otherwis (10)



where we have three model parameters: a springtaark , a threshold normal distandg, and a lateral

threshold distance . The total contact force on Partiddas the sum of all contact forces of all particles

surrounding Particlé\. For calculating the contribution d¥, to the contact torque on Particle we
assumefF,, to act at Point 1.

It should be noted that the contact force at Pbidtie to Point 2 acts in the directiom, —n,), not
in the directionn; normal to the surface of Partidde In this way the force at Point 2 due to Poins ini

exactly the opposite direction and of the same ntage: F,, = —F,,.

In DEM simulations, it is usual practice to includamping in the collision process, thereby
mimicking a restitution coefficient smaller thaneomand mitigating instabilities. In particle-resalve
simulations, damping is — at least partly — takare of by resolving the fluid flow in between peldi
surfaces. When the space between particle surfggtsssmaller than one lattice-spacing, however, the
flow there is not sufficiently resolved. For simtibas involving resolved spherical particles itthgen
common practice to add radial lubrication forceseahon low-Reynolds analytical expressidne the
forces acting on the particlé$?® Sometimes also tangential lubrication forces a# a torques are
included?® In this paper the role of lubrication/damping feschas been explored by explicitly including
forces that are proportional to the velocity difflece between marker points in close proximity. $8pp

the two marker points in Figure 1 have velodity and u, due to the translational and rotational motion

of particle A andB respectively. Their relative velocity is decompbse the velocity along the average

(n,—n,)

unit normal Au" :(nz—nl)'(uz_ul) 2
n,—n,|

and the velocity perpendicular to the average unit

normal Au' = (u2 —ul)—Au” . The normal and tangential damping force are write

5, —\ . .
M, =k" [%—%]%Au“ if 6" <¢, and|6,|<A; Fj, =0 otherwis (11)
d

10
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PAut if 8 <6, and|é,|<A; F, =0 otherwis (12)
5 6, A

with

§ =6if 6>6, ands =6, if6 <o, (13)
Here we — again — introduce a number of parametés.pre-factork” and k' determine the strength
of the damping interactionsj, is the distance along the average normal of twekemngpoints below

which the damping force becomes activg, is the distance below which the damping force rsds.

The i——l
5 4

d

dependence is borrowed from expressions for tligalrdubrication force between

spherical particles in particle-resolved simulasithThe parameteé, then depends on the spacing of the
grid on which the fluid flow is solved. If the dasice between particle surfaces is larger tharthe flow
between the surfaces is considered resolved amdditional lubrication force is required; if thestiince
becomes smaller thafy , the lubrication force is switched on. In this pape sety, = A . Given that the
lubrication force diverges fof — O it has been saturated below a certain threshskante §_, )EBIna

numerical sense we want to avoid large dampingefrin a physical sense saturation occurs as & resu
of surface roughness.

For spherical particles, tangential lubricatiorldals aln é rather than d/6 relationship. Here, for
simplicity, tangential lubrication and normal lutation are given similar expressions. By setting
k'=0.Xk" it is ensured that tangential lubrication is weakg an order of magnitude than normal

lubrication, something we observed in simulatiorithwpherical particle§’ The parametek” is treated
as an ad-hoc parameter. It will require futuremedfinents as it — in principle — depends on the fluid
viscosity as well on the shape (local curvaturejhef solid surfaces in close proximity. Specifidues

for the model parameters are given and motivatedamext section.
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Set-up of simulations

Particles are placed in a non-overlapping manngheénnx-ny-nz fully periodic flow domain. Initially
fluid and particles are at rest. At time zero, gsaand the body force on the liquig become active and

we let the system develop to a dynamically steddiesThis process we monitor by keeping track of

‘<u2>—<upz>‘ d,

v

Re= as a function of time. After reaching dynamicatgady state, the simulations are

continued in order to collect data for determingtgtistical flow quantities. The length of this eaging
time window is of the order af0d?/v . All average flow quantities reported were basediata collected

in steady-state time windows.

As for the choice of numerical parameters, the niogortant one is the spatial resolution of a
simulation. Since we use uniform cubic latticesah be expressed as the number of lattice distafAces
spanning the diameterof a cylinder. The default resolution ds=16A and resolution effects have been
studied by also simulating systems witth=12A and d =24A. The default domain size is
nx-ny-nz=9d-9d-18.

We want the collisions as much as possible to hapgeen cylinder surfaces actually touch, i.e. not
before surfaces touch and not when cylinder volumeslap. In the former scenario the particles are
behaving as slightly larger, in the latter as dligemaller than they actually are which has conseges

for the effective solids volume fraction and thusemtially for slip velocities. Previous wdfkshows that

if the spring constankzO.prVp‘up‘z/ég (Eq. 10), surfaces approximately touch at the nmmintieeir

relative velocity is reverted in a collision. Thensllations are designed such that particle spﬁeﬂ&are

of the order 18 in lattice units. We chose the interaction disea(see Eq. 10y, = 0.0 . This then sets
k to a value of the order of 5.
The lubrication coefficienk" is estimated in analogy with spherical particlésliameterd. For

such systems the pre-factor in Eq. 11 would reaer 3rprd?/8; this expression we apply for cylindrical

12



particles having diameted. As mentioned abovek' =0.k" and §, =A . Finally, the lubrication

saturation distance has been setfo=0.1A.

Results

Effects of numerical settings and domain size

First it will be established to what extent numakisettings impact the behavior of the two-phasew fl
systems being investigated. In order to accomneofiaé meshes, spatial resolution effects weresdest
in relatively small domains with sizex-ny-nz=6d-6d-120 (i.e. smaller than the default size by a
factor 2/3 in each coordinate direction). In Figure 2, resuldr two particle types {/d =1 and
¢/d =2), achieved on three grids (with particle diameieer grid spacingd/A =12,16 and 2. are

compared in terms of the Reynolds number baseth@mverage slip velocity Re, as well as in terms of

the Reynolds number based on the particles’ fluctgavelocitiesRe,, =d, (upa —<upa>)2/u, with

« a coordinate directiore (s vertical,xy is horizontal). In addition to spatial resolutiefiects, also the
impact of the kinematic viscosity of the liquid (fattice units) has been assessed. Lattice-Boltaman
simulations of suspensions of spherical particagithe immersed boundary method showed — at fixed
Reynolds numbers — some effect of viscosity onditag) force?® All results in Figure 2 are for the same
Galileo number of Ga=864; at given diameter andosgy, gravitational acceleration was adapted to

achieve this value.

Viscosity effects are most pronounced for the lovesolution ofd/A =12 and reduce quickly on
finer grids. For a viscosity = 0.02 (in lattice units) the resulting Reynolds numbaepend strongest on
the resolution, for instance showing an increas@%fin the slip-velocity Reynolds number 6fd = 2
cylinders when refining frond/A =12 to 24. The higher viscosities have much weakeedéencies on

resolution. Slip velocity Reynolds number variatoare within 2%. Based on these observations and

13



considering computational feasibility, the resyftesented in the remainder of this paper are with a
resolution ofd/A =16 and kinematic viscosities of= 0.04 or 0.06.

By applying fully periodic boundary conditions, \wd#empt to represent an unconfined flow and so
mimic what is happening in a fluidized system aweym walls or other obstructions. In principle,
particles and fluid interact with themselves over periodic boundaries so that we need sufficidatiye
domains for representative simulations. In Figlgdgqualitative) and 4 (quantitative) we comparautss
obtained with different domain sizes. From Figdreve conclude that Reynolds numbers based on the
average slip velocity (Re) are quite insensitivetfee system size. In the range/d = 6 — 12 differences
are less than 3% with slightly increasing slip edies for larger domains; the strongest sensytiigtfor
the largest {/d = 4) cylinders.

The Reynolds numbers associated with the fluctgatarticle velocities clearly depend on domain

size. Where for the smallest cylinders consider&d &1) we might see convergence when extending
the domain fromnx/d =9 to 12, this is not the case for the longer cylnsdehere differences of up to

15% are observed.

For reasons of computational affordability, thispga will mainly present results obtained in
domains with nx/d =9 for which average slip velocities have largely wenged, and fluctuating
velocities — admittedly — have not. Impressionsiofulations in such domains are given in Figurerb f
the four cylinder aspect ratios. In the cases shiovthe figure, and also in other cases, the thistion of
particles is more or less homogeneous over the mhomsdume. We have not observed the voidage wave
instabilities that have been reported — experinligraa well as computationally — in liquid fluididéeds
with uniformly sized spherical particlé$?®
Average flow quantities at constant Ga
A series of simulations have been conducted toyshiidered settling as a function of solids volume
fraction and cylinder aspect ratio at a constanil€é@anumber of Ga=864. In experimental terms this

means that we fluidize cylinders of the same dianmtvith different lengths and in different quantities

14



made of the same solid material in the same lifgeting the same gravitational acceleration. Uniler

earth’s gravity and witld=1 mm cylinders, Ga=864 would be achieved in aidigwith kinematic
viscosity of v ~ 3.4-10° nf/ «. The density ratio was = 2.0.

Results for average settling velocities are preskim Figure 6 in a double-logarithmic form that
anticipates a Richardson & Zaki relatir’ to describe hindered settliniRe= Re, ( 1—<¢>)N. As can
be seen, this relation represents the results amdl allows — through least-squares fitting — for
determination of the parameteRe _ andN. Clearly Re_ increases with increasingd , simply because
the particles get larger. There also is a condistend ofN with ¢/d with N reducing from 4.34 to 3.32
if ¢/d increases from 0.5 to 4.0.

It is hypothesized that the variation in the expuméwith ¢/d as observed in Figure 6 is related to

the way the patrticles orient themselves and/orlekiels with which their velocities fluctuate. Westi
note, however, that for spherical particles it vedeady asserted by Richardson & Z8kihat the

exponeniN depends on the Reynolds number:

N=4.45Re** fork Re< 50 (14)
Substituting values oRe_ as derived from the fits in Figure 6 in Eq. 14ulesin lower values folN
than the ones we obtain for the cylinders (in Fegb). The extent to whidN varies withRe_ according

to Eq. 14, however, is of a comparable level asvériations irN found in Figure 6.
The distributions of the angles of the cylinders’ center lines with the vertica¢ aiven in Figure
7 for all the simulations represented in Figur&®r. a randomly oriented collection of cylinderss #nd

points of cylinders would be uniformly distributegier a sphere with radiu§2 so thaty is distributed
according tosing (0<¢p <7/2); ¢ =0 is vertical orientationjp = 7/2 horizontal. The cylinders with
¢/d =1 closely follow this sing behavior for all solids volume fractions. Only fone highest

(<¢>:0.48) there is a slight preference for horizontal oions. Particles with//d = 0.5 are disks.
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Beyond a certain Reynolds numb&¢g~ 7), single disks tend to orient themselves withrticenter line

vertically*! This then explains the angle distribution (@r) =0.10 that is skewed towards low values of
v . It hasRe= 8.7, as well as sufficient space between the partidesient themselves as single disks
would. Increasing<qb> reduces the Reynolds number as well as the mariegv&ace for the particles

which leads to a gradual increase in preferenctafger angles.

“Long” cylinders (¢/d = 4) orient mostly vertically, at least {i;b> > 0.10. This also is qualitatively
visible in Figure 5 (right panel). For settling icers with higher aspect ratiog/(l >5) this has been
observed experimentally as wéllThe cylinders with¢/d =2 go through an interesting transition with
increasing(¢) : from a preference for horizontal center linetoat (¢), to more vertical at highi); it is

the opposite of the transition tliéd = 0.5 particles go through.

So far, average velocity has been discussed. Ravktocities fluctuate as a result of the random
nature of the suspension with — for individual [wdes — a constantly changing hydrodynamic
environment. Particle fluctuations and their sgahvith solids volume fraction and Reynolds number a
subject of fundamental reseafttand are practically relevant for transport proesss1 multiphase
systems as they relate to mixing and dispersiahérsolids as well as in the liquid phd3én fluidized
systems, particle velocity fluctuations are anigpit with vertical fluctuations stronger by approately
a factor of 2 compared to horizontal fluctuatidhs.

Figure 8 shows particle velocity distribution fulects confirming the anisotropy in our
suspensions: wider distributions fBrelocities compared tgy-velocities. We also see that the width of
the distributions very strongly depends on thedsololume fraction: the strong hindrance in dense
suspensions limits particle velocity fluctuationeés.

It is usual practiceto normalize particle velocity fluctuation root-amesquare values by the
average settling velocity. The way these relatigleity fluctuations depend on solids volume frawti

and cylinder aspect ratio is shown in Figure 9.ti¢al as well as horizontal component go through a
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maximum at(¢) ~ 0.3, irrespective of¢/d . Similar profiles have been reported experimeytad well as
computationally for spherical particles at fvas well as intermediateReynolds numbers. In addition, a
clear trend with respect té/d can be observed: the lower aspect ratios haveshigiative velocity

fluctuation levels.
Average flow quantities at constant Galileo number based on equivalent diameter

We thus observe significant differences in the badtaand structure of the suspension with aspeai ra

¢/d and overall solids volume fractio(rq5>. Since the Reynolds numbers changed/as changed, it is
worthwhile to clarify to what extent the differerscebserved can be ascribed/fa and/or to Re.

Aspect ratio and Reynolds number can be decouplestdling the flow systems differently. So far
we kept Ga= gd®/v? constant, motivated by considerations for expemiamevalidation (comparing
cylinders with the same diameter but different tes}y If instead, we keefa, = gd?/v? constant, we
are comparing cylinders of different length havthg same volume, that will show — at the sa(mﬁ -
comparable average settling speeds and thus Reynaldbers. We have s@ia, = 1.5 864= 129 and
performed a series of simulations varyidgd and <¢> in the same range as in the previous section,
keeping the density ratio constant at=2. In these simulationsGa, has been kept constant by
appropriately setting . For the chosen value @a, = 129¢, the systems witl{/d =1 in this section are

the same as the ones wiBa= 864 in the previous section.

The hindered settling behavior is shown in Figueltis remarkable to see that now the results for
the different cylinder aspect ratios almost cakgpi.e. the settling velocity Reynolds number ity
depends on the solids volume fraction, and hardly’/ . For further interpretation, the data are also
plotted on a linear Reynolds number scale in Fidixeleading to the same conclusion. The “univérsal

Richardson & Zaki exponent is to a good approxiorathe one that was found féfd =1 in Figure 6:

N ~ 3.9. Qualitatively, the orientation angle distributsomemain unaltered as compared to the set
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obtained forGa= 864 (Figure 7), see Figure 11 (where we omitted £fet=1 distributions as they are
the same as in Figure 7). The most striking difieeebetween the angle distributions in Figure 1d ian
Figure 7 is the more pronounced vertical alignmeithe cylinders with//d =4 at the higher solids

volume fractions in Figure 7, i.e. the alignmemglsily reduces when the Reynolds number gets smalle

Relative particle velocity fluctuation levels atgosvn in Figure 12. The overall trend is the same as
for the previous set of simulations: highest Ievats<¢> ~ 0.3 and vertical velocity fluctuations
approximately a factor of two larger than horizéntelocity fluctuations. Closer comparison between
Figure 9 Ga= 864) and Figure 12Ga, = 129¢) shows a weaker sensitivity of relative fluctuatievels
with respect to//d . Where in Figure 9 the clear trend is a decreddlictuation levels with increasing
¢/d, this is much less so in Figure 12, although dlsere the ¢/ =4d particles have the weakest

fluctuations.

In a final set of simulations we consider the roliethe Archimedes number (based on the
equivalent diameterd,): Ar,=(y-1)gds/v?*=(y—1)Ga,. Above, Ga,=129¢ and y=2 were
constant so thafr, is constant. We now keefir,constant atAr, =1296 and vary the density ratio in
such a way that the net weight of a single parfjpteportional tO(*y—l) gd?) is the same for all aspect
ratios; Ga, is thus not constant anymore. The results ofgbtsof simulations are compared to the ones
with Ga, = 129¢in Table 1 in terms of average settling velocigyRolds number and relative particle

velocity fluctuation levels. There is a close agneat between the two sets of simulations from wineh
conclude that — under the conditions investigatatie-density ratio has limited significance for gbe

average flow properties.

Conclusions
This paper reports on particle-resolved simulatiohdense suspensions of cylindrical solid parsiate

Newtonian liquid. Fully periodic, three-dimensiorddmains were used to study fluidization / hindered
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settling of cylinders that varied in length-oveedwteter aspect ratio from 0.5 to 4. We demonstrttad

it was feasible to choose the simulation parametach that grid-independent results for average and
fluctuating velocities could be obtained. Fluctngtvelocity levels increased with the size of tleeiqdic
computational domains to an extent that was diffiefer different aspect ratios. Therefore, resfits
these quantities are likely underestimated in theent study. Average velocities were to a good
approximation independent of domain size.

We observed significant differences in the way plagticles are oriented relative to the vertical
(gravity) direction. The orientations of cylindevgith aspect ratio 1 are randomly oriented, almost
irrespective of the solids volume fraction. Thedencylinders — specifically those with aspectaa&i—
orient themselves preferentially vertically. Foe thther aspect ratios a significant dependencyhen t
solids volume fraction of the distributions of aration angles is observed.

It is striking to see that the hindered settlingpdogor, i.e. the way the Reynolds number based on
average settling velocity and equivalent diametipends on the solids volume fraction, is almost
independent of the aspect ratio of the cylindershé Archimedes number based on the equivalent
diameter is kept constant. This despite the faat e orientation of the cylinders does dependspect
ratio. As for spherical particles, the Richardso@&ki exponentl) depends on the Reynolds number.

There is a clear need for experimental validatibmhe results presented here. Experiments are —
among more — needed to provide guidance for estabfj parameters related to short-range interastion
that in this paper have been treated in an ad-fmer without much regard for the details of lutien
flow in the narrow (in the simulations unresolvexace between particles. By performing sensitivity
analyses and comparing results with detailed (c&fra index matched) quantitative flow visualizaiso
the importance of modeling short range interactian be assessed and modeling can be improved.

The computational demands of the simulations ptesehere are still fairly modest. All results

presented are based on sequential simulationsyiregjof the order of 3 Gbyte of memory and runnsg
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to 10 days for equilibration and collection of dé&ta statistical analysis. Parallelization of th@rgputer

code for simulating larger domains with more p#&8ds an important step to take in future work.
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Figure captions
Figure 1. Collision detection between particl@sandB that have marker points 1 and 2 and associated

outward normals on their surface. An algorithm lsepck of the proximity of marker points on ditet

particles and determines — below a certain threshotheir normal and tangential spacing &nd 6,

respectively) Along with the relative velocity dfet marker points, this determines the contributibthe
contact force o\ andB as a result of the proximity of 1 and 2 (Eqs.IDand 12).

Figure 2. Effect of spatial resolution. Top: average slipeegdy Reynolds number Re as a function of

spatial resolution in terms of/A. Bottom: Reynolds numbers associated to the fatstg velocity
Re, . of the particles in verticalz and horizontalXy) direction. Two types of cylinders/ &d and
¢=2d) and three kinematic viscosities (in lattice units) as indicated. System siag/d = 6.0;

Ga=864; overall solids volume fractids) = 0.29; density ratioy = 2.0.
Figure 3. Instantaneous realizations far=2d, Ga=864, (¢)=0.29, v=0.04 (lattice units), and

d/A=16. From left to right the system size is such tidd = 6, 9, 12 respectively. The fourth (far right)

panel is the same realization as the third panehbw with the particles in front of the fluid veliity
contour plane made invisible.
Figure 4. System size effects. Top: average slip-velocityriéds number Re as a function of system

size nx/d . Bottom: Reynolds numbers associated to the faiatg velocity Re, . of the particles in
vertical ) and horizontalXy) direction. Three types of cylinderé £d, ¢/ =2d, ¢ =4d) as indicated.
Ga=864,(¢)=0.29, d/A =16, »=0.04 (lattice units).

Figure 5. Impressions of systems with Ga:8d45,>:0.29, nx/d =9, d/A =16, »=0.04 (lattice units)
and (from left to right)¢/d =0.5, 1, 2, 4.

Figure 6. Hindered settling. Slip velocity Reynolds numbesraafunction of1—<¢> for various //d as

indicated. The straight lines are least squarssaficording toRe= Re, ( 1—<¢>)N. Ga=864,nx/d =9,

d/A =16, »=0.04 (lattice units).
Figure 7. Distributions of the angles between cylinder centerlines and the vertical dbr20 cases
represented in Figure 6 on hindered settling. Treevd black curve in each panel $n¢ which is

representative for a random orientation distributio
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Figure 8. Particle velocity distribution functions. Tog/d =2; bottom: ¢/d =4. The left panels show a

comparison between horizontady and vertical ) velocities at<¢>=0.29. The right panels show a

comparison between vertical particle velocity dmttions for various<¢>.

I

Figure 9. Particle velocity fluctuation levels|,, =

(upa —<upa>)2 normalized by the average settling

as a function of solids volume fraction for allsea considered in Figure 6

velocity u,, :‘<uz>—<up2>
(on hindered settling). Red symbols indicate vatt{g) velocity fluctuations, black symbols horizontal

(xy) fluctuations.

Figure 10. Hindered settling. Slip velocity Reynolds numbsraafunction ofl—(¢) for various¢/d as
indicated. Different from Figure 6, now all simutats have the same Galilei number based on the
equivalent diameterGa,=1296. Top and bottom panel have the same datdagadthmic and linear Re
scale respectivelynx/d =9, d/A =16, »=0.04 (lattice units) fof¢) < 0.40 and»=0.06 for () > 0.40.
Figure 11. Distributions of the angleg between cylinder centerlines and the verticaldibr20 cases
represented in Figure 10 on hindered settling #flahave Ga,=1296. The drawn black curve in each

panel issing which is representative for a random orientatistridhution.

-

2
o = (upu —<upa>) normalized by the average settling

Figure 12. Patrticle velocity fluctuation levels

as a function of solids volume fraction for alkea considered in Figure 10

velocity u,, :‘<uz>—<upz>
with Ga,=1296. Red symbols indicate vertica) {elocity fluctuations, black symbols horizontay)

fluctuations.
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Figures

Figure 1. Collision detection between particl@sandB that have marker points 1 and 2 and associated
outward normals on their surface. An algorithm leegpck of the proximity of marker points on ditet
particles and determines — below a certain threshotheir normal and tangential spacing &nd 6,

respectively) Along with the relative velocity dfet marker points, this determines the contributibthe
contact force o\ andB as a result of the proximity of 1 and 2 (Eqs.IDand 12).
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Figure 2. Effect of spatial resolution. Top: average slipeegy Reynolds number Re as a function of
spatial resolution in terms of/A. Bottom: Reynolds numbers associated to the fatiotg velocity

Re . of the particles in verticalzY and horizontalXy) direction. Two types of cylinders/ &d and
¢=2d) and three kinematic viscositieg (in lattice units) as indicated. System simg/d =6.0;
Ga=864; overall solids volume fractic{tzb> =0.29; density ratioy = 2.0.
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Figure 3. Instantaneous realizations for=2d, Ga=864, (¢)=0.29, v=0.04 (lattice units), and

d/A=16. From left to right the system size is such thdld = 6, 9,12 respectively. The fourth (far right)
panel is the same realization as the third panehbw with the particles in front of the fluid veliity
contour plane made invisible.
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Figure 4. System size effects. Top: average slip-velocityri®éds number Re as a function of system
size nx/d . Bottom: Reynolds numbers associated to the fatitg velocity Re . of the particles in
vertical ) and horizontalXy) direction. Three types of cylinderé £d, ¢/ =2d, ¢ =4d) as indicated.
Ga=864,(¢)=0.29, d/A=16, »=0.04 (lattice units).
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Figure 5. Impressions of systems with Ga=8d4>,>:0.29, nx/d =9, d/A =16, »=0.04 (lattice units)
and (from left to right)¢/d =0.5, 1, 2, 4.
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Figure 6. Hindered settling. Slip velocity Reynolds numbesraafunction of1—<¢> for various//d as

indicated. The straight lines are least squarssaficording toRe= Re, ( 1—<¢>)N. Ga=864,nx/d =9,
d/A =16, »=0.04 (lattice units).
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Figure 7. Distributions of the angles between cylinder centerlines and the vertical dbr20 cases
represented in Figure 6 on hindered settling. Treavd black curve in each panel $sny which is
representative for a random orientation distributio
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Figure 8. Particle velocity distribution functions. Tog/d =2; bottom: ¢/d =4. The left panels show a
comparison between horizontady and vertical ) velocities at<¢>=0.29. The right panels show a

comparison between vertical particle velocity dmttions for various<¢>.
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oo (upa —<upa>) normalized by the average settling

Figure 9. Particle velocity fluctuation levels

velocity ug :‘<uz>—<up2> as a function of solids volume fraction for alsea considered in Figure 6

(on hindered settling). Red symbols indicate vatt{g) velocity fluctuations, black symbols horizontal
(xy) fluctuations.
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Figure 10. Hindered settling. Slip velocity Reynolds numbsraafunction of1—<¢> for various¢/d as

indicated. Different from Figure 6, now all simutats have the same Galilei humber based on the
equivalent diameterGa,=1296. Top and bottom panel have the same datdagaathmic and linear Re

scale respectivelynx/d =9, d/A =16, »=0.04 (lattice units) fof¢) < 0.40 and »=0.06 for (¢) > 0.40.
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Figure 11. Distributions of the angles between cylinder centerlines and the verticaldibr20 cases
represented in Figure 10 on hindered settling #flahave Ga,=1296. The drawn black curve in each
panel issing which is representative for a random orientatimstridhution.
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oo (upa —<upa>) normalized by the average settling

Figure 12. Patrticle velocity fluctuation levels

velocity u, :‘<uz>—<up2> as a function of solids volume fraction for alsea considered in Figure 10
with Ga,=1296. Red symbols indicate vertica) {elocity fluctuations, black symbols horizontal/

fluctuations.
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Tables

Table 1. Comparison of slip velocity Reynolds number (Rejl aelative particle velocity fluctuation
levels atAr, = (y—1)gd?/v* =1296 between simulations with (the default) densityaaio (blue font)

and a density ratio such that the net gravity fance single cylinder is the same irrespectivé/af (red

font).

Ar, ¢/d () Po/P Re u;xy/<upz> up, <Upz>
1296 0.5 0.20 2.0 9.36 0.376 0.612
3.0 9.33 0.368 0.583
0.29 2.0 5.76 0.429 0.696
3.0 5.76 0.422 0.670
0.40 2.0 2.86 0.448 0.664
3.0 2.86 0.458 0.678
2.0 0.20 2.0 9.32 0.334 0.555
1.5 9.24 0.333 0.539
0.29 2.0 5.78 0.334 0.651
15 5.74 0.364 0.622
0.40 2.0 2.88 0.399 0.622
15 2.89 0.405 0.612
4.0 0.20 2.0 8.59 0.294 0.568
1.25 8.53 0.294 0.543
0.29 2.0 5.32 0.308 0.596
1.25 5.41 0.325 0.634
0.40 2.0 2.78 0.300 0.586
1.25 2.88 0.310 0.663

38




