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Examining the relevance of ‘animal personality’ involves linking consistent

among- and within-individual behavioural variation to fitness in the wild.

Studies aiming to do this typically assay personality in captivity and rely on

the assumption that measures of traits in the laboratory reflect their expression

in nature. We examined this rarely tested assumption by comparing labora-

tory and field measurements of the behaviour of wild field crickets (Gryllus
campestris) by continuously monitoring individual behaviour in nature, and

repeatedly capturing the same individuals and measuring their behaviour in

captivity. We focused on three traits that are frequently examined in personal-

ity studies: shyness, activity and exploration. All of them showed repeatability

in the laboratory. Laboratory activity and exploration predicted the expression

of their equivalent behaviours in the wild, but shyness did not. Traits in the

wild were predictably influenced by environmental factors such as tempera-

ture and sunlight, but only activity showed appreciable within-individual

repeatability. This suggests that some behaviours typically studied as person-

ality traits can be accurately assayed in captivity, but the expression of others

may be highly context-specific. Our results highlight the importance of

validating the relevance of laboratory behavioural assays to analogous traits

measured in the wild.
1. Introduction
Individuals of the same species in the same population can show consistent

among-individual differences in behaviour across time and contexts [1,2]. These

apparent constraints on behavioural flexibility, termed ‘personality’, have been

shown to be pervasive throughout animal taxa [3], with a range of evolutionary

and ecological consequences for individuals and populations [4,5]. The study of

consistent among-individual differences in behaviour provides an avenue for

understanding apparently non-adaptive behaviour (e.g. pre-copulatory sexual

cannibalism [6]) as well as some of the persistent variation around adaptive

peaks of behaviour [7]. The study of animal personality has undergone a recent

and rapid expansion, bringing difficulties associated with young disciplines,

with many different definitions and techniques for answering related questions

[8]. Nevertheless, it is widely recognized that studying animal personality in

the wild is vital [9,10]. Studies of personality in nature allow for assessment of rel-

evant effects on fitness [11], and have the potential to identify laboratory artefacts

due to artificial responses to unnatural stimuli [10] and to differences in the

expression of behaviour in wild and laboratory contexts [12].

It remains difficult to monitor the behavioural variation of individual ani-

mals in the wild, due to the workload required to capture, tag, release, and

then reliably track and monitor individuals in their natural habitat (but see

[13–18]). Rather than directly assay animals in the wild, many studies (but
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see [13,14,19,20]) capture wild animals, conduct standardized

behavioural assays in captivity, and then release them and

monitor life histories and fitness traits [21–30]. This is poten-

tially problematic if personality assays in the laboratory do

not reflect behaviour in the wild, or if single/short-term

assays in a novel environment do not accurately reflect an indi-

vidual’s behavioural type for the trait of interest [31,32] (see

[33,34] for further discussion). What we think is a measure of

exploratory behaviour in the laboratory could actually be

more analogous to susceptibility to anxiety in the wild; for

example, an individual moving among many sections of an

arena/box/tank as an anxious response to a novel environ-

ment [8]. This could lead to incorrect conclusions in relation

to predictions of particular hypotheses (e.g. the existence of a

relationship between fitness and exploratory behaviour in

certain environments) [29]. Furthermore, the artificial stimulus

presented in captivity might fall outside the range of stimuli

normally experienced by the individual, giving it questionable

relevance for understanding adaptive behaviour [10,12].

Despite this, few studies have related captive measures of

personality to wild measures of the same personality traits

in the same individuals. Herborn et al. [13] confirmed

that in blue tits (Cyanistes caeruleus), captive measures of

personality (neophobia and exploratory tendency) reflected

analogous measures in the wild. North American red squirrels

(Tamiasciurus hudsonicus), which scored highly for a compo-

site measure representing activity and exploration, were

subsequently trapped at more different locations in the field

than those with low scores [35]. Contrastingly, Siberian

chipmunks (Tamias sibiricus) that scored highly on an activity–

exploration composite measure were trapped more often than

less active/exploratory individuals, but not at a greater diversity

of traps, suggesting they were less trap-shy and/or more active,

but were not exploring the environment more [36]. Also with

slightly conflicting results, van Overveld & Matthysen [37]

found that fast-exploring great tits (Parus major) did not increase

their home range more than slow-exploring individuals did

when food availability changed, but did increase the distance

they travelled to visit feeders. However, the latter result could

be confounded by dispersal status, as immigrants both travelled

further and had higher exploration scores than locally born

individuals [37]. Others have looked for concordance among

different traits (e.g. willingness to approach a mirror in captive

tests and sociability in the wild [38–40], or shyness in captivity

and activity in the wild [41]).

A further deficiency is that the majority of studies compar-

ing individual behaviour between laboratory and wild

contexts have been conducted on mammals and birds. In the

one study on invertebrates, Briffa et al. [42] measured the

same individual European hermit crabs (Pagurus bernhardus)

for startle response in the wild and across four laboratory

observations. They found significant concordance across

these five tests, but did not directly test for repeatability

across wild and laboratory settings [42]. Invertebrate personal-

ity especially has attracted a large amount of interest [43,44]

and, for behaviours other than courtship, has been shown to

be more repeatable than vertebrate behaviour [3]. However,

studies on among-individual variation in invertebrate behav-

iour are almost completely restricted to captivity (but see

[19,45]). Their small size, and the difficulty in tagging soft-

bodied animals or those that regularly moult, contribute to

this. Bell et al.’s meta-analysis [3] found wild behaviour to be

more repeatable than laboratory behaviour. Therefore, one
might expect wild invertebrate behaviour to be highly repeata-

ble, as found in wild beadlet anemones (Actinia equina) [19],

although more studies are required to confirm this as a general

rule. Ultimately, we need to relate studies in the laboratory to

studies in the wild in order to understand the behaviour of ani-

mals in their natural environment [46]. What we are lacking

are direct and repeated measures of the same trait in both

the wild and the laboratory in a range of taxonomic groups.

To this end, we repeatedly measured shyness (here defined

as aversion to risk [47]), activity (general movement about an

environment) and exploration (willingness to explore new

areas of an environment [2]) in the wild in a population of

field crickets (Gryllus campestris). During the same period, we

repeatedly captured the same individuals and measured

these three traits in captivity before releasing them. We also

investigated what biotic (e.g. age and sex) and abiotic

(e.g. weather and temperature) factors influenced wild behav-

iour. Finally, we quantified the importance of an individual’s

microhabitat at the point of measurement for its shyness.

This allows us to determine whether an individual’s habitat

choice could influence its observed personality [19,48].
2. Material and methods
(a) Data collection
Data were collected from April to July 2013 at a field site

in northwest Spain, where we study a wild population of

G. campestris as part of the long-running WildCrickets project

(see [46] and www.wildcrickets.org for further details). In this

species, nymphs and adults spend most of their lives in or

around burrows that they individually dig in the ground and

defend from other conspecifics. At our study site, eggs hatch

from May to July and nymphs remain active until October–

November, when they start diapause as late instars. They

become active again between late January and March, when they

start to forage and undergo one or two more nymphal moultings

before they moult into adults in April–May. Once they become

sexually mature, the males will sing to attract females, and both

sexes will start moving frequently among burrows in search of

mates. Males and females will share a burrow, but within sexes

there are fights for possession of burrows and no co-habiting

[49]. We caught adult crickets between 2 and 4 days after they

emerged (3.76+2.81, mean+ s.d.), and fixed a vinyl tag with cya-

noacrylate glue with a unique alpha-numeric code. This method is

the outcome of many years of testing; only 1–4% of crickets per

year need to be re-tagged due to losing their original tag. We

used a trap designed by Luke Meadows (https://crickettrapping.

wordpress.com/). This is very effective at catching any cricket

that attempts to emerge from the burrow, reducing the effect of

trap-shy or trap-happy individuals [50,51]. Each cricket burrow is

also individually identified with a unique three digit number. We

placed 120 motion sensitive cameras at random among those bur-

rows with an active cricket. These allow us to record behaviour in

the natural setting and responses to stimuli. Crickets regularly

move among burrows, giving a degree of independence between

burrow ID and cricket ID.

(b) Wild shyness
Between 8 May 2013 and 29 June 2013, on days when the weather

was suitable for the crickets to be active (more than 148C and not

raining; around 90% of days during the 2013 field season), we

carried out a disturbance trial by walking among the cameras

in the field. When walking towards a cricket, the experimenter

simulates an approaching predator and triggers the cricket’s
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flight response into its burrow. As we passed each camera,

we waved a paint brush briefly in front of it. This allows us to

re-watch the video, and associate a cricket entering its burrow

with the disturbance caused by ourselves rather than from

another source. We scored shyness in the wild by measuring

the time in seconds between the end of the disturbance (the

brush last appearing on-screen) and the cricket re-emerging

from its burrow. If there was a male–female pair at a burrow

(5% of instances), we recorded this fact, but a shyness score

was only assigned to the cricket emerging from the burrow first.

(c) Wild activity and exploration
For our measures of activity, we recorded the total number of times

a cricket left the area under observation by the camera over a

burrow each day or part of a day it was under observation. Crickets

are counted as leaving a burrow if they move out of view of the

camera and do not return within 5 min. Therefore, the measure

of activity is the number of these leaving events (‘leaves’) per

day. The measure of exploration is the number of unique burrows

a cricket is observed at per day (or part of a day) when it was under

observation. Therefore, all behaviours in the wild were measured

relatively continuously across the field season.

(d) Laboratory behaviours
We recorded our initial measures of behaviour in the laboratory

on crickets we caught for tagging, but prior to the tagging

procedure. Once released after tagging, we re-caught crickets

every 10–20 days from the first test until the cricket was no

longer observed, to repeat the behavioural assays. This is a

long enough gap to prevent habituation [52]. Therefore, the

laboratory measures were collected regularly alongside the con-

tinuously collected wild measures. Our laboratory measure of

shyness was the time to emerge from a refuge, an assay that

has been used extensively in captive crickets [53–56], including

by ourselves in this species (see [52] for further details). In a

temperature-controlled room (19+0.648C; mean+ s.d.), we

recorded the number of seconds for a cricket to emerge from a

plastic tube, after the lid had been removed. This was achieved

by the use of fixed cameras connected to a computer running

ICATCHER software (iCode Systems; http://www.icode.co.uk/

icatcher/). Activity was scored as the rate of movement

around a 290 � 201 � 212 mm plastic box, once the cricket had

emerged from the tube. For exploration, we counted the

number of unique virtual tripwires (set to measure activity, poss-

ible scores range from 0 to 8) the cricket crossed in the first

minute after it emerged from the tube. See [52] for further details

of the laboratory assays.

Before tests, crickets were held in standardized 150 ml plastic

containers for at least 15 min while they were weighed. Tests ran

for 30 min, after which the crickets were returned to their plastic

collection containers. They were held in isolation in the same

150 ml plastic container for 30 min, and then the assay was

repeated. For those not emerging from the tube within 30 min,

the observation for all behaviours was recorded as missing (i.e.

‘n.a.’). If the cricket emerged from the tube in both tests on a par-

ticular day, only the first score was used. Less than 5% of crickets

that left the refuge did so in the final 5 min of the trial, so extend-

ing the trial would not have allowed us to include many of the

excluded individuals. Furthermore, giving these individuals an

arbitrarily low/high score (e.g. zero activity or 30 min for shy-

ness) would have created a large spike in the frequency of

low/high values, making the distributions unamenable to ana-

lyses as otherwise they followed Poisson distributions. Finally,

if an individual did not emerge from the tube in two trials and

we gave it exactly the same score in each trial, this would artifi-

cially boost the calculated repeatability of behaviour as the

cricket would appear perfectly consistent, and so increase the
potential for type 1 statistical errors. Following the two tests,

we returned crickets to the burrows they were captured from,

which we kept blocked while the cricket was out of the field

(typically 90–180 min) to prevent the burrow being occupied

by another individual.

(e) Data analysis
We conducted all analyses in R v. 3.1.2 [57]. For shyness in the

wild, we removed any disturbances where the cricket was already

inside the burrow long before the brush appeared on screen. Crick-

ets did not emerge from the tube in the laboratory in 41% of trials,

in which case the trial was recorded as a missing observation.

( f ) Relating wild and laboratory behaviours
We constructed separate generalized linear mixed models for

each behaviour in the R package MCMCglmm [58]. These

models have each laboratory behaviour score as a fixed effect,

and that individual’s next measured score for that behaviour in

the wild as the response variable, following Herborn et al. [13].

A significant, positive effect of the laboratory behaviour on the

wild behaviour indicates the two assays correspond to the

same trait. We only used one wild behaviour measure for each

laboratory score, so if two wild measures were recorded after a

laboratory measure, only the first one was used. Furthermore,

we never used a laboratory measure on the same day as a wild

measure. We also included the number of days between the lab-

oratory and the wild scores as a fixed effect, as well as the

interaction between this interval and the laboratory behaviour

score. We were interested in whether the interaction was signifi-

cant (as our analyses were in a Bayesian framework, here

‘significant’ is used as a synonym for important) as this would

show whether the ability of the laboratory measure to predict

the wild measure depended on the timespan between them.

For activity and exploration, we also included the number of

minutes that crickets were under observation for the scored

day as a fixed effect. We used a Poisson error structure, with

additive errors and a log-link function for all models. We also

included random effects of individual identity and, for wild shy-

ness, burrow number. This also allows us to control for multiple

measures per individual and per burrow. Adjusted repeatability

(RAd) for behaviours in the laboratory was calculated using all

the data for the laboratory assays in three separate GLMMs,

with laboratory behaviour as the response, age, temperature

and sex as fixed effects, and individual identity as a random

effect. The RAd measure is (having corrected for additional vari-

ables) the proportion of total variance that is reproducible among

repeated measures of a certain group, and is also referred to as

the intra-class correlation coefficient, in this instance the

group/class being a single individual [59]. We calculated RAd

of the wild behaviours using all data collected with multiple

environmental covariates as the fixed effects (described in the

electronic supplementary material). For the number of samples,

number of unique individuals and the mean, standard deviation

and range of number of tests per individual for each analysis, see

electronic supplementary material, table S1.

We also implemented a bivariate approach, where behaviours

in each context are two responses, and we tested for significant

covariance. This gave equivalent results to the above method,

but due to additional complexities, we do not discuss it any further

(see the electronic supplementary material for more details). The

methods for the statistical analysis of the behaviours in the wild

are also available in the electronic supplementary material.

(g) Interpreting results
Each of the effects is modelled as a distribution of the likely influ-

ence of that effect, defined by a mode (PDM) and its lower and

http://www.icode.co.uk/icatcher/
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upper 95% credible intervals (LCRI and UCRI, respectively). Fixed

effects are judged significant if the estimates of the CRIs do not

cross zero, while MCMCglmm also provides the pMCMC score,

useful to assess ‘significance’ in analogy with studies using a fre-

quentist framework. Random effects are measures of variance

and so (except in unusual circumstances [60]) are always above

zero. Therefore, their importance is judged by comparison with

the residual variance and by calculating RAd scores with CRIs esti-

mates of their own. RAd scores can be compared between models to

see if traits are more or less repeatable than others. Model selection

cannot be based on information criteria as the deviance infor-

mation criterion calculated by MCMCglmm is not ‘focused’

appropriately for non-Gaussian data [61], nor can models be com-

pared with F or likelihood ratio tests as the effects do not have

effect sizes. Instead, we constructed the model with all terms of

interest and interpreted the effect of each variable in the maximal

model (following convention, e.g. [62]).
0 500 1000 1500
lab shyness (s)

Figure 1. Laboratory shyness and log of wild shyness (logged to aid view-
ing). The line is from a simple linear model of wild shyness and laboratory
shyness, the grey area indicates the standard errors around the estimate.
There was no relationship between shyness in the laboratory and shyness
in the wild (PDM+ 95% CRIs ¼ 24.37 � 1025+26.08 �
102427.36 � 1024).
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Figure 2. Laboratory activity and wild activity. The line is from a simple
linear model of wild activity and laboratory activity, the grey area indicates
the standard errors around the estimate. There was a significant, positive
relationship between activity in the laboratory and activity in the wild
(PDM+ 95% CRIs ¼ 5.98+ 3.9928.89).
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3. Results
(a) Repeatability of laboratory behaviours
In the model with laboratory shyness as the response, the

PDM of the among-individual variance was 0.30 (LCRI ¼

0.18, UCRI ¼ 0.47), the PDM of the residual variance was 0.90

(LCRI ¼ 0.76, UCRI¼ 1.0) and the RAd estimated to be 0.25

(LCRI ¼ 0.16, UCRI ¼ 0.36). For laboratory activity, the PDM

of among-individual variance was 2.09 (LCRI¼ 1.29, UCRI¼

3.20), the PDM of the residual variance was 4.63 (LCRI ¼ 3.80,

UCRI ¼ 5.48) and the RAd was estimated as 0.32 (LCRI ¼ 0.21,

UCRI ¼ 0.42). Laboratory exploration was similarly repeatable

to the other traits; the PDM of the among-individual variance

was 0.69 (LCRI ¼ 0.41, UCRI¼ 1.13), the PDM of the residual

variance was 1.01 (LCRI ¼ 0.72, UCRI¼ 1.32) and RAd was esti-

mated to be 0.29 (LCRI¼ 0.19, UCRI¼ 0.41). These scores are

similar to the repeatability scores of traits in Bell et al.’s
meta-analysis (mean: 0.37) [3], indicating that they represent

individual-specific behaviours.

(b) Relationships between laboratory and wild
behaviours

Laboratory shyness scores did not influence the wild shyness

scores (figure 1; PDM¼ 24.37 � 1025, LCRI ¼ 26.08� 1024,

UCRI ¼ 7.36� 1024, pMCMC ¼ 0.87). The interaction between

laboratory shyness and the timespan between the laboratory

and wild shyness scores was not important (PDM¼ 1.31 �
1025, LCRI¼ 21.40 � 1024, UCRI¼ 1.49 � 1024, pMCMC ¼

0.90). The timespan between the laboratory and wild shyness

scores did not influence the wild shyness score (PDM ¼

22.82� 1022, LCRI¼ 29.10� 1022, UCRI¼ 1.29 � 1021,

pMCMC ¼ 0.82).

Laboratory activity level was positively related to

level of activity in the wild (figure 2; PDM ¼ 5.98, LCRI¼

3.99, UCRI¼ 8.89, pMCMC , 0.01). The CRIs for inter-

action between the laboratory score and the time between

the measures marginally overlapped zero (interaction:

PDM ¼ 20.99, LCRI ¼ 22.18, UCRI¼ 0.09, pMCMC ¼ 0.08),

while the gap between measures negatively influenced wild

activity level (PDM ¼ 20.08, LCRI¼ 20.17, UCRI ¼ 21.79 �
1023, pMCMC¼ 0.04). The number of minutes a cricket

was observed outside its burrow negatively influenced its

activity score (PDM¼ 23.00� 1024, LCRI ¼ 27.06� 1024,

UCRI ¼ 21.65� 1025, pMCMC¼ 0.04).
Exploration in the laboratory tended to positively predict

exploration in the wild, although this was not significant at

the 95% level (figure 3; PDM¼ 0.08, LCRI¼ 20.01, UCRI¼

0.15, pMCMC¼ 0.07). The interaction between laboratory

score and time between measures, and time between mea-

sures alone, were not important (interaction: PDM¼ 20.02,

LCRI¼ 20.07, UCRI ¼ 0.01, pMCMC ¼ 0.26; time:

PDM ¼ 20.05, LCRI ¼ 20.13, UCRI¼ 0.01, pMCMC ¼ 0.11).

The number of minutes a cricket was on-screen negatively

influenced its exploration score (PDM ¼ 24.50� 1024,

LCRI¼ 27.90 � 1024, UCRI¼ 22.10� 1024, pMCMC , 0.01).
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Factors predicting behaviours in the wild, as well as the

effect of microhabitat on the measurement of shyness, are pre-

sented in the electronic supplementary material, tables S2–S4,

with the sample sizes in the electronic supplementary material,

table S1.

To summarize, shyness in the laboratory and the wild

were not related, but activity was positively associated

between the two contexts, and exploration tended to be. All

traits showed an appreciable degree of repeatability in the

laboratory (RAd ¼ 0.25, 0.32 and 0.29 for shyness, activity

and exploration, respectively). Shyness was not at all repeata-

ble in the wild (RAd ¼ 0.06). Activity, and to a lesser degree

exploration, showed a modest degree of repeatability in the

wild (RAd ¼ 0.21 and 0.12, respectively). Based on whether

the 95% CRIs of the estimates of RAd overlapped or not,

repeatability of shyness and exploration were significantly

higher in the laboratory than the wild, and not different

between the laboratory and the wild for activity. All beha-

viours in the wild could be predicted by various biotic and

abiotic factors (see the electronic supplementary material).
4. Discussion
(a) Relating captive and wild behaviours
We found a relationship between individuals’ activity and

exploration in the laboratory and the wild, but no such

relationship for shyness. For shyness, this suggests that

either we have in fact measured two different and unrelated

traits, or that expression of this behaviour is highly context-

specific [63]. Shyness measured in the laboratory showed a

similar degree of repeatability as recorded in the literature

for many other personality traits [3]. The significantly lower

repeatability of shyness in the wild suggests that shyness
expression in the wild is context-specific. Therefore, the natu-

ral setting has a high ‘situational strength’ for crickets (i.e. it

has a strong influence on behaviour and so masks among-

individual differences) [64]. This is not a general rule for

poikilotherms; however, beadlet anemones (A. equina) show

a high repeatability of startle response in the wild [19].

Shyness in the laboratory may therefore reflect responses to

the stress of the artificial situation, rather than behavioural

tendencies on a bold–shy continuum. The stimulus for the

shyness test was necessarily different between the laboratory

and the wild, as we could not bring each cricket’s burrow

into the laboratory. Such compromises will be necessary for

many species when moving from the wild to the laboratory,

although in some cases stimuli can be replicated (e.g. [42]).

The fact that such a low RAd was observed in the wild and

a typical RAd for a behaviour observed in captivity indicates

that studying among-individual behavioural differences may

be more viable in tightly controlled conditions for some traits.

Unlike shyness, activity showed a relationship between

laboratory and wild measures, and equal repeatability in

both contexts. Activity could be viewed as a more fundamental

property of an animal’s behaviour, reflective of differences in

basal metabolic rate (BMR) [65] rather than more complex com-

binations of cost–benefit trade-offs. BMR commonly shows

large intra-specific variability [65], and for activity it is easy

to see how consistent differences in individual BMR could

lead to consistently different levels of activity across contexts.

It is interesting that our measures of activity in the two con-

texts were quite different (movement around a box in less

than 30 min, and movement to and from burrows over the

course of an entire day), yet still showed a strong relationship.

Clearly, assays designed to test the same fundamental trait in

different environments can achieve the same goal. There was

also a tendency for a larger gap between assays to decrease

the strength of the relationship. This suggests that within-

individual change in behaviour over time can reduce the ability

to detect relationships between contexts.

Exploration showed a weaker relationship between

laboratory and wild measures, with a significantly lower

repeatability in the wild than in the laboratory. Exploratory be-

haviour may be a more complex trait than activity, reflecting

trade-offs a cricket makes based on its current condition,

goals/requirements and the environmental conditions. This

may have weakened our ability to capture individual differ-

ences in the wild, while we were able to detect greater

individual differences in the laboratory. However, we still

found a positive relationship, despite our assays of exploration

being quite different. In particular, laboratory exploration was

measured over only 1 min, yet was still related to exploration in

the wild, which was measured over an entire day.

Ultimately, these results indicate the need to be careful

when relating personality traits measured in the laboratory

to traits in the wild, as a relationship might exist for some

traits but not others. Researchers need to either validate

their measurements by comparison with an analogous be-

haviour in the wild, or make every effort to ensure they are

not in fact measuring something else (e.g. a stress response).
(b) Predictors of wild shyness
The factors predicting shyness in the wild were time of day,

sex and a weather–age interaction. Time of day was weakly

and positively related to the delay before a cricket re-



rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20150708

6
emerged from its burrow. Field crickets move less among

burrows at night, probably as a result of the decreased

ambient temperature [66], and possibly because of the

threat of shrew and hedgehog predation. Therefore, as

dusk approaches the advantage of ceasing daily activity

and retreating into a safe refuge increases. Male crickets

re-emerged from their burrows more quickly than female

crickets. Males need to be outside of the burrow to sing in

order to attract mates, which, depending on male size,

increases reproductive success [46]. The correlation between

number of mates and number of offspring in wild G. cam-
pestris is higher in males than females [46]. Therefore,

males may benefit more from leaving a burrow to sing

and potentially attract new mates than a female does in

leaving the burrow to find new mating partners. Finally,

there was a significant age–weather interaction, with older

crickets re-emerging in sunny weather less quickly than

expected. When young, adult crickets need to bask often to

accelerate their development to sexual maturity (typically,

3–6 days post-emergence [67]). However, once sexual maturity

is reached, the energy from the sun might accelerate the aging

process, making individuals less willing to be exposed. In

cloudy weather, this factor is removed, so young individuals

have less need to emerge from the burrow.

The low estimate of RAd for wild shyness score indicates

that shyness of wild crickets is dictated by external conditions

(some of which we identify here) rather than by the identity of

the individual. This contrasts with the beadlet anemone

(A. equina), which showed a high level of RAd for a startle

response [19]. However, Briffa & Greenaway [19] pointed out

that unmeasured aspects of the microhabitat (e.g. position in

the pool or exposure to currents and predators) could be impor-

tant for sedentary species such as anemones. Indeed, in the

laboratory, where these factors are absent, A. equina show inter-

mediate levels of RAd [68]. Briffa & Greenaway [19] also note

that repeatability of analogous behaviours can vary greatly

among invertebrate phyla, suggesting that we need further

work to understand why, in the field, crickets (G. campestris)
show low repeatability in willingness to take risks (this study),

hermit crabs (P. bernhardus) show intermediate consistency

[42] and anemones (A. equina) show high consistency [19].

This could be due to the mobility of the animals in question.

Mobile species that experience a range of conditions might

show low repeatability in the wild, while more sedentary species

with a stable microhabitat might show high repeatability. It has

also been suggested that among-individual behaviour variation

is non-adaptive, and instead arises from constraints in develop-

ment [69]. Whether taxon-specific developmental pathways

lead to these differences should be investigated.
(c) Microhabitat and shyness
Accounting for microhabitat only slightly reduced our estimate

of individual RAd for shyness in the wild (from 0.10 to 0.06; see

the electronic supplementary material), with the 95% CRIs of

these scores overlapping substantially. There was also little

variance in shyness attributed to among-burrow differences.

This suggests that either all burrows are very similar or that

the differences among them do not affect cricket behaviour.

The crickets dig the burrows themselves in the autumn and

spring [46], which allows them to choose a location and orien-

tation. They also move among burrows throughout the course

of the season, abandoning some and regularly using or digging
others [46,66]. This allows them to move if the burrow they are

using does not match their preferences, suggesting that differ-

ences among those burrows used by crickets do not have a

great effect on this measure of shyness.

(d) Predictors of wild activity and exploration
Crickets were more active and explored more when the sun

was stronger, and less when it was raining. Crickets were

unsurprisingly more active when it was warmer, but not

more exploratory. Therefore, although temperature drives

more general movement about the environment, it does not

cause crickets to visit new areas. This also demonstrates the

importance of direct sunlight, rather than simply ambient

temperature, in influencing cricket behaviour. Females were

more active than males. In this species, males typically sing

at burrows to attract mates while females move among

them, which may drive this difference in activity. The sexes

were equally exploratory, however, so the higher activity

shown by females was to repeatedly visit the same burrows,

rather than to employ their additional activity to visit mul-

tiple different burrows and males in the same day. Females

of this species benefit from mating multiply [46], but might

visit males across different days rather than within the

same day. Crickets were more active and exploratory when

older. An increase in these traits with age was also found

in the laboratory assays [52]. A lower residual reproductive

value at old age may increase risk-taking behaviour, and so

increase the willingness of a cricket to move around its

environment to find mates [70,71]. Furthermore, older crick-

ets were more active and exploratory when it was raining

than younger crickets, perhaps as older crickets are more

willing to take the risks involved in these conditions. Alterna-

tively, older crickets might have a more robust physiology

or be more highly chitinized, allowing them to move about

the environment despite the rain. Males increased activity

levels more when older, so the difference in activity between

males and females was lower in older crickets. This might

reflect the diminishing return for females in continually

acquiring new mates, whereas for males the return is near-

linear [72]. Males also increased their exploration more as

they aged than females did, although this interaction was

very weak. Crickets that were on-screen for longer, unsurpris-

ingly, recorded higher activity levels, but did not record

higher exploration levels. This probably results from the

fact that a cricket can potentially move between neighbouring

burrows in a few seconds, so visiting many burrows does not

require being on-screen for a long period of time. Older crick-

ets were less active than expected when it was sunny, and

also less exploratory. This complements the finding that

older crickets are slower to emerge from the burrow when

it is sunny, perhaps as a response to the accelerating effects

of sunshine on senescence processes. Finally, crickets were

more active and exploratory later in the field season. This

could be a response to the limited window in which to

acquire mates, as at the end of the season in July there are

very few other crickets alive. Individuals who are alive at

later dates might need to be more active and exploratory to

find mates.

(e) Personality in the laboratory and wild traits
Previous work has found relationships between cricket person-

ality in captivity and sexual signalling [55], immune response
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[53] and predation pressure [54]. Furthermore, work on labora-

tory personality measures in our study population has revealed

relationships with aging [52]. This, along with relationships

between laboratory and wild assays in two out of three of the

traits we measured here, suggests that personality measured in

the laboratory is not irrelevant to adaptation in the wild. For shy-

ness at least, the laboratory can be said to have ‘low situational

strength’, allowing among-individual differences to be detected

[64]. However, it seems odd that an environment as unnatural

as the laboratory would have such a low impact on cricket behav-

iour. Indeed, the trait we measured in the laboratory might not be

the trait we thought it was at all. Crucially, to determine whether

shyness (and activity and exploration) observed in the laboratory

is relevant or unrelated to selective forces in nature, it must be

compared with fitness-relevant traits of the same individuals

in the wild (e.g. social interactions and life history). Previous

work on various vertebrates has demonstrated relationships

between personality traits measured in captivity and fitness

[24,29], competitive ability [22], territoriality [25], social network

position [21] and rate of promiscuity [30], although no relation-

ship was found with environmental sensitivity [23] and only a

weak relationship with BMR [27].

Alongside the ability to detect among-individual differ-

ences in a controlled environment, an additional strength of

laboratory studies is the ability to conduct experimental

manipulations to test hypotheses. Such manipulations are

typically very difficult in the wild. However, in some sys-

tems, direct experimental manipulations in the wild are

feasible. For example, in the field crickets, we could alter

burrow characteristics such as grass cover to determine if

crickets respond to the characteristics of their microhabitat

with behavioural changes. The ability to perform a variety

of experimental manipulations with limited resources is

another advantage of studying invertebrates.
5. Conclusion
There were relationships between some behaviours we

measured in the laboratory and their analogues in the wild.

This cautions against assuming that ecologically relevant

measures of personality can easily be made by removing

animals from their natural context. Assays that appear super-

ficially similar may in fact measure different dimensions of

personality. Existing literature outlines a variety of relation-

ships between captive personality assays and natural and

sexual selection in wild vertebrates, while some types of

study systems and questions will necessarily require that ani-

mals be brought into captivity. Nevertheless, every effort

should be made to ensure that such assays are good proxies

for the particular trait of interest as expressed in the wild.
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18. Konecná M, Lhota S, Weiss A, Urbánek T, Adamová
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