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Abstract

The Gulf of Mexico is an ecologically and economically important marine ecosystem that is

affected by a variety of natural and anthropogenic pressures. These complex and interacting

pressures, together with the dynamic environment of the Gulf, present challenges for the

effective management of its resources. The recent adoption of Bayesian networks to ecol-

ogy allows for the discovery and quantification of complex interactions from data after mak-

ing only a few assumptions about observations of the system. In this study, we apply

Bayesian network models, with different levels of structural complexity and a varying num-

ber of hidden variables to account for uncertainty when modeling ecosystem dynamics.

From these models, we predict focal ecosystem components within the Gulf of Mexico. The

predictive ability of the models varied with their structure. The model that performed best

was parameterized through data-driven learning techniques and accounted for multiple eco-

system components’ associations and their interactions with human and natural pressures

over time. Then, we altered sea surface temperature in the best performing model to explore

the response of different ecosystem components to increased temperature. The magnitude

and even direction of predicted responses varied by ecosystem components due to hetero-

geneity in driving factors and their spatial overlap. Our findings suggest that due to varying

components’ sensitivity to drivers, changes in temperature will potentially lead to trade-offs

in terms of population productivity. We were able to discover meaningful interactions

between ecosystem components and their environment and show how sensitive these rela-

tionships are to climate perturbations, which increases our understanding of the potential

future response of the system to increasing temperature. Our findings demonstrate that

accounting for additional sources of variation, by incorporating multiple interactions and

pressures in the model layout, has the potential for gaining deeper insights into the structure

and dynamics of ecosystems.
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Introduction

The Gulf of Mexico (GoM) is an ecologically and economically productive ecosystem, generat-

ing over 2.6 million metric tons of commercial fishery landings in 2016 and supporting nearly

half the recreational fishing catch in the entire United States [1]. The ecosystem is exposed to a

number of pressures including: coastal development, oil spills, hurricanes and major hypoxia

formation on the continental shelf of Louisiana and Texas. Many of the primary human activi-

ties that affect coastal and marine environments occur in the GoM: extraction of living

resources, transport and shipping, fossil fuel energy, coastal and land-based infrastructure and

industry [2]. These activities result in a number of pressures being placed upon the GoM eco-

system that are both exogenic unmanaged pressures and endogenic managed pressures. These

pressures occur against a background of more chronic stressors related to climate change,

which include gradual changes in temperature and ocean acidification. The delineation of

pressures into exogenic and endogenic requires resource managers and scientists to define

those that are manageable within the system from those pressures that cannot be managed, but

whose consequences must be accounted for, such as temperature changes due to climate

change [2]. Analyses and models have shown that the GoM is already experiencing increasing

sea surface temperatures and that these increases are expected to continue and intensify

throughout the 21st century [3]; however, the changes are relatively muted in comparison to

other parts of the globe [4]. In other oceanic regions, the effects of long-term, temperature-

driven changes on fish populations and fisheries are already apparent and well-documented.

For example, in the Northwest Atlantic, there have been significant poleward shifts in major

commercial species and their associated landings [5]. In the GoM, a northern land mass pre-

vents species from making poleward shifts, and thus, species must either move deeper, die out,

or adapt when temperatures increase beyond their tolerance levels. Indeed, shifts in depth dis-

tributions and the tropicalization of fish communities have already been documented in the

GoM [6–7]. However, effects from increasing temperatures are not as well documented or

understood in the GoM as in other marine ecosystems. The lack of documented effects from

climate change results in the GoM receiving less attention for understanding ecosystem and

fishery responses to climate change. Moreover, the unique geography of the GoM, its high bio-

logical diversity, and the range of complex and interacting pressures make it challenging to

predict the overall impact of climate change on the ecosystem. These all highlight the need to

begin building a knowledge base for predicting how the GoM will respond to the impending

effects of climate change. In situations, where all of the pertinent mechanistic relationships

between drivers and responses cannot possibly be understood, it is valuable to employ data-

driven approaches. Significant progress has been made in developing ecological models that

use traditional statistical approaches to understand the relationships between a number of

interacting variables [8], and more recently, the number of all-inclusive models from physics

through to higher level species is increasing [9].

However, when these models are parameterized using data, it is usually assumed that the

ecosystems are in a steady state. Thus, the underlying relationships that give rise to the data are

assumed to not be changing. This assumption is incorrect in many cases, as it is known that

ecosystem structure and function can change even over relatively short time scales [10]. Fur-

ther, it is possible that such changes are driven by unobserved variables, i.e. ecosystem vari-

ables that we do not have data on, and being able to account for such signals is difficult but

crucial for the protection and sustainable use of ecosystems. Indeed, it is recommended that

forecasting models develop richer non-mechanistic appreciation of ecological interactions and

predict beyond the range of observed values in combination with scenarios to express uncer-

tainties and test policies [11]. Predicting species response to ecosystem changes is challenging
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because of the natural variation in observations and uncertainty in potential associations.

However, machine learning techniques have been proposed to be an appropriate approach

with desired properties to address uncertainty in ecosystem prediction [12]. Recently, Bayesian

networks (BNs) have become a popular method in the area of biology that is capable of infer-

ring network structures, while capturing nonlinear, dynamic and arbitrary combinatorial rela-

tionships [13]. It has been shown that such probabilistic methods can provide estimates of the

uncertainty associated with predictions and recover complex, spatially varying interactions

from collected field data [14]. The way BNs manage uncertainties is through developing alter-

native model structures and accounting for these uncertainties in the distribution of probabili-

ties across the BN nodes and their states [15]. Given a graphical structure, BNs naturally

perform prediction using inference that allows us to ask “what if?” type questions of the data.

For example, one could ask, what is the probability of seeing a change in zooplankton, given

that we have observed a change in the distribution of temperature and/or primary productiv-

ity? Formerly, BNs have been applied to reveal gene regulatory networks using gene microar-

ray data [16]. Other BN uses include weather prediction, medical diagnosis and image

processing [17–19]. BNs have proven quite useful to predict outcomes for situations where we

do not fully understand or have data on the underlying mechanisms. Due to the flexibility in

application and lack of dependence on a priori assumptions about mechanistic relationships,

BNs are becoming increasingly popular for modeling uncertain and complex domains such as

ecosystems and environmental management [20–22]. In an environmental study context, BNs

represent probabilistic dependencies among species and ecosystem factors that influence the

variables likelihood in an intuitive, graphic form [23]. Therefore, expertise can utilize a quanti-

tative indication of the range of possible scenarios consistent with the data to give strategic

advice on potential ecosystem response. The use of BN methodology facilitates the communi-

cation of modeling results and the representation of a variety of perspectives as a means of

modeling likelihoods of natural and anthropogenic effects [24]. In this study, we apply BN

approaches to examine the potential responses of different ecosystem components (i.e. vari-

ables in the analysis that represent either physical processes thought to be important drivers of

the ecology, or biological components; specifically, estimates of abundance or population pro-

ductivity) to increases in temperature within the GoM marine ecosystem. Resource manage-

ment in the GoM requires an understanding of how key species will respond to likely

temperature increases to enable effective future management of the species and to prepare fish-

ermen and their communities for likely ecosystem changes. First, we evaluate the predictive

capabilities of a variety of dynamic BNs which reflect the different hypothesis of the GoM sys-

tem and consider varying levels of complexity. In these models, we incorporate a number of

hidden variables to account for uncertainty and any unmeasured effects. This includes a novel

approach for modeling the Gulf ecosystem dynamics by accounting for multiple physical and

biological associations and their changes over time. We examine the models’ accuracy in terms

of their ability to reproduce observations of ecosystem components of interest. Then, the best

performing model is applied to investigate how the GoM ecosystem will respond to increasing

temperature, specifically examining whether ecosystem components are likely to be negatively

or positively affected by temperature increases. Through the developed temperature scenarios,

we explore the components trends in response to climate variation. Thus, we aim to gain fur-

ther understanding of the underlying ecological mechanisms and the consequences on the dif-

ferent ecosystem components once some of these mechanisms are perturbed, which is

essential in terms of providing advice on potential response of the ecosystem to the full suite of

pressures. Here, by testing short-term predictability and variability on this marine ecosystem,

we further build confidence in our ability to examine potential long-term impacts of
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environmental change that could inform strategies for coping with and adapting to climate

change and variability.

Methods

Data

Because the method is computationally intensive, and also to reduce the risk of introducing

spurious relationships in our predictions, we included only the drivers for which defensible

linkages to the biological dynamics could be made. The ecosystem components (or variables)

examined in this study were selected by carefully balancing considerations regarding manage-

ment linkages, data availability, statistical robustness, and representation in spatial and tempo-

ral dimensions, following up on the 2017 Ecosystem Status Report Update for the Gulf of

Mexico [25]. The major categories of ecosystem components included in the analysis were cli-

mate drivers, physiochemical ecosystem pressures, lower trophic levels, recruitment deviation

estimates for economically important species and population estimate for a piscivorous bird

(Table 1). We include an index of the Atlantic Multidecadal Oscillation (AMO), which is influ-

ential in structuring dynamics at both ecosystem- wide and species-specific scales [26–27].

Like other modes of variability (e.g. El Nin˜o Southern Oscillation), the AMO has impacts on

a large geographic scale via—atmospheric teleconnections, and has been hypothesized to have

an influence on a range of North Atlantic fisheries and ecosystems [28–29]. Thus, multiple

lines of evidence suggest that the AMO may be the underlying driving force for many observed

changes within the Gulf of Mexico ecosystem [30–31]. We did not include a separate ecosys-

tem component for hurricanes, because they are a pulse disturbance system and this study is

focused upon broad-geographic scale long-term presses on the Gulf of Mexico ecosystem.

For the climate drivers, we used yearly averages from the monthly unsmoothed AMO index

(Fig 1A) and yearly sea surface temperature (SST) values, calculated for select regions within

the GoM. The mean offshore SST was found to be one of the most significant indicators in

terms of the mid-1990s ecosystem reorganization, and is available at fine spatial and temporal

scales likely most relevant at the scale of marine organisms [26]. A principal components anal-

ysis (derived from [25]) was used to analyze spatial patterns in SST variability across time, and

formed the basis of defining three subregions (Fig 1B, 1C, 1D and 1E). This ensures that areas

of coinciding increases and decreases in temperature are not averaged together into a flat time

series.

To examine economically important species responses in the model, we incorporated

recruitment anomalies from their stock assessment models. We do not have measured recruit-

ment values, so we have to use a model product (stock assessment output). Recruitment anom-

alies (i.e., the variance in recruitment strength estimated in the model not explained by the size

of the spawning stock biomass) were used because they most closely represent overall stock

productivity, which we expected would be the most directly measurable impact from climate.

Certainly, climate drivers could affect other population processes such as growth or mortality,

but estimates of these parameters are not available at the population level. Other available fish-

eries data such as catch data or abundance indices are not as feasible for use in our analysis;

landings are heavily influenced by external management factors, and abundance indices typi-

cally contain high levels of observation error and are highly selective toward certain age classes

within the population. Finally, it was most logical to expect that the effects of climate drivers

on recruitment strength would be immediate (e.g., current temperature and hypoxia condi-

tions would affect the current year of incoming recruits), any lagged effects were thought to be

of minimal importance and this simplified the detection of relationships. The net primary pro-

ductivity (NPP) is a parameter that serves as an index to the biological state of the GoM.

Ecosystem components and their responses to climate variability
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Table 1. Summary of data.

CATEGORY ECOSYSTEM

COMPONENT

EXPLANATION SOURCE

Climate AMO Atlantic Multidecadal Oscillation NOAA’s Earth System Research Laboratory

Climate SST TX Sea surface temperature of the southern Texas shelf Adapted from [25].

Climate SST LA Sea surface temperature along the Louisiana shelf Adapted from [25].

Climate SST FL Sea surface temperature from the west Florida shelf Adapted from [25].

Physiochemical TN Total nitrogen for the Mississippi-Atchafalaya river basin US Geological Survey. Available: https://cida.usgs.

gov/quality/rivers/coastal

Physiochemical TP Total phosphorus for the Mississippi-Atchafalaya river basin US Geological Survey. Available: https://cida.usgs.

gov/quality/rivers/coastal

Physiochemical Summer LA DO Bottom water dissolved oxygen concentration for the Louisiana coastal

shelf in summer (5-110m depth)

Southeast Area Monitoring and Assessment

Program (SEAMAP) trawl and hydrographic

survey

Physiochemical Summer TX DO Bottom water dissolved oxygen concentration for the Texas coastal shelf in

summer (5-110m depth)

SEAMAP

Physiochemical Fall LA DO Bottom water dissolved oxygen concentration for the Louisiana coastal

shelf in fall (5-110m depth)

SEAMAP

Physiochemical Fall TX DO Bottom water dissolved oxygen concentration for the Texas coastal shelf in

fall (5-110m depth

SEAMAP

Primary

production

NPP Net primary production for the northern Gulf area above 25˚ N latitude Moderate Resolution Imaging Spectrometer

(MODIS) observations. Adapted from [25].

Population

estimate

Spring

zooplankton

Zooplankton biovolume (ml m-3) calculated for spring survey (open ocean

from the shelf break to the extent of the U.S. Exclusive Economic Zone)

SEAMAP. Adapted from [25].

Population

estimate

Fall zooplankton Zooplankton biovolume (ml m-3) calculated for fall survey (from

nearshore to outer continental shelf)

SEAMAP. Adapted from [25].

Stock

productivity

Pink shrimp Recruitment deviation Stock Assessment

Stock

productivity

Brown shrimp Recruitment deviation Stock Assessment

Stock

productivity

White shrimp Recruitment deviation Stock Assessment

Stock

productivity

Menhaden Recruitment deviation SEDAR 27A 2015 Stock Assessment

Stock

productivity

Cobia Recruitment deviation SEDA 28 2013 Stock Assessment

Stock

productivity

Gag grouper Recruitment deviation SEDAR 33 2016 Stock Assessment

Stock

productivity

Red grouper Recruitment deviation SEDAR 42 2015 Stock Assessment

Stock

productivity

Red snapper Recruitment deviation SEDAR 31 2014 Stock Assessment

Stock

productivity

Spanish mackerel Recruitment deviation SEDAR 28 2013 Stock Assessment

Stock

productivity

Greater

amberjack

Recruitment deviation SEDAR 33 2016 Stock Assessment

Stock

productivity

King mackerel Recruitment deviation SEDAR 38 2014 Stock Assessment

Stock

productivity

Gray triggerfish Recruitment deviation SEDAR 43 2015 Stock Assessment

Stock

productivity

Vermillion

snapper

Recruitment deviation SEDAR 45 2016 Stock Assessment

Stock

productivity

Tilefish Recruitment deviation SEDAR 25 2016 Stock Assessment

Population

estimate

Brown pelican Index of abundance for pelican in the coastal GoM Cornell Lab of Ornithology’s eBird. Adapted from

[25].

https://doi.org/10.1371/journal.pone.0209257.t001
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Primary production can be altered due to changes in the physical and chemical environment,

and thus these dynamics can influence fisheries production [32]. Zooplankton is a fundamen-

tal link in the marine food web with a crucial role as both predator and prey to a wide range of

trophic levels. Therefore, any changes in the zooplankton community are reflected throughout

the marine ecosystem due to this strong linkage [33]. The brown pelican data were the only

bird data included because this species occupies higher trophic levels, responds quickly to

environmental change and its residency is not restricted to specific areas of the GoM [34]. For

additional details on the data and their sources, readers can also refer to [25].

For all ecosystem components, annual averages for the time period 1984–2015 were

obtained. Prior to the analysis, the data for each variable were standardized to a mean of 0 and

standard deviation 1 to improve the models’ parameter learning by making the means equal

and ranges similar.

Bayesian networks

A BN describes the joint distribution (which is a way of assigning probabilities to every possi-

ble outcome over a set of variables, X1 . . .XN) by exploiting conditional independence rela-

tionships [35]. These relationships are represented by a directed acyclic graph (DAG). The

conditional probability distribution associated with each variable X encodes the probability of

observing its values given the values of its parents, and can be described by a continuous or a

Fig 1. The Atlantic Multidecadal Oscillation index and sea surface temperature values. (A) Annual averages of the

Atlantic Multidecadal Oscillation index. The vertical line indicates the beginning of the warm phase in 1995. (B)

Annual averages of sea surface temperatures over the Texas shelf (SST TX), (C) Louisiana shelf (SST LA) and (D) west

Florida shelf (SST FL). (E) Map of the SST regions, from left to right: SST TX, SST LA and SST FL.

https://doi.org/10.1371/journal.pone.0209257.g001
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discrete distribution. The DAG consists of nodes (or variables) and edges (or links) between

the nodes. “Parent” nodes are those from which arrows originate and “child” nodes are those

to which arrows are pointing. Edges between nodes represent dependence relationships. Here,

the observed variable nodes in the network are Gaussian nodes, so we assume continuous dis-

tribution with meanmu and covariance Sigma [36]. Suppose the continuous-valued node is Y,

its continuous parents (if any) are X, and its discrete () parents (if any) are Q. The distribution

on Y is defined as follows:

YjX ¼ x;Q ¼ i � Nðmuð:; iÞ þWð:; :; iÞ�x; Sigmað:; :; iÞÞ ð1Þ

where N(mu, Sigma) denotes a Normal distribution with mean mu and covariance Sigma
and W is a |Y |�|X|�|Q| regression (weight) matrix [36]. Let |X|, |Y| and |Q| denote the

sizes (X and Y are scalars, Q is binary) of X, Y and Q respectively. If there are no discrete

parents, |Q| = 1; if there is more than one, then |Q| = a vector of the sizes of each discrete

parent. If there are no continuous parents, |X| = 0; if there is more than one, then |X| = the

sum of their sizes. Then mu is a |Y|�|Q| vector, Sigma is a |Y|�|Y|�|Q| positive semi-definite

matrix, and W is a |Y|�|X|�|Q| regression (weight) matrix. For more information, please

refer to [36]. Each node in the DAG is characterized by a state which can change depend-

ing on the state of other nodes and information about those states propagated through the

DAG. By using this kind of inference, one can change the state or introduce new data or

evidence (change a state or confront the DAG with new data) into the network, apply

inference and inspect the posterior distribution (which represents the distributions of the

variables given in the observed evidence). Given a graphical structure, BNs naturally per-

form prediction using inference. Modeling time series is achieved by using an extension

of the BN known as the Dynamic Bayesian Network (DBN), where nodes represent vari-

ables at particular time slices [37]. DBNs are graphical models of stochastic processes that

allow for complex interdependencies between the acting variables [37]. In this study,

DBNs allow us to integrate heterogeneous data, specify conditional relationships between

those data and make robust predictions of the temporal dynamics of the ecosystem com-

ponents and their interactions with natural and anthropogenic stressors. DBNs can model

the dynamics of a dataset through the use of a hidden variable (HV) that is a variable for

which there are missing or unobserved data. When using dynamic state-space models, we

can assume that there is an underlying hidden state that generates the observed data and

that this hidden state evolves in time as a function of our inputs [37]. A dynamic model

represents the behavior of a system over time; however, many systems, including ecosys-

tems, contain non-stationary dynamics. Hidden variables allow us to model these non-

stationary system dynamics [38–40]. They are used to represent a change in the interac-

tions of the observed ecosystem components over time. When the model is parameterized

with data as in this case, the value of the hidden variable is set to maximize the fit of the

model to the data (e.g. the log- likelihood). If the patterns of the observed ecosystem com-

ponents change in the time series, e.g. the slope of a correlation between two components

changes, the value of the hidden variables linked to these components changes. A hidden

variable can be linked to one, multiple, or all, of the observed ecosystem components in

the model. Then, the hidden variable value depends on all of the observed ecosystem com-

ponents it is linked to, and a change in the pattern of the hidden variable indicates a

change in the system interactions. This is highly useful in ecological analyses where non-

stationary dynamics are common and complex ecological interactions change with time

due to changing pressures e.g. global climate change [14]; [41].

Ecosystem components and their responses to climate variability
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Experiments

Model comparison

We conduct all experiments using the Bayes Net Toolbox in MATLAB [36]. A series of BN

models were built with different levels of structural complexity and uncertainty to model the

GoM ecosystem dynamics. Comparing different model structures tests hypotheses regarding

the relative role of ecosystem interactions and autoregressive links in the GoM ecosystem.

Thus, allowing us to gain an understanding of the ecological complexity and the importance of

mechanisms shaping the ecosystem structure. The simplest model was an autoregressive Hid-

den Markov model (ARHMM). This model assumes a fixed structure and incorporates a single

hidden variable which is modeled as a discrete node (Fig 2A). This hidden variable can infer

some underlying state of the series when applied through an autoregressive link that can cap-

ture relationships of a higher order [37]. The autoregressive structure admits the existence of

dependency amongst time series observations while the hidden Markov process could capture

the probability characteristics of the transitions amongst the underlying states [37]. Thus

meaning, the current observation Xt not only depends on the last observation Xt-1 but also on

the current hidden stateHt.
For the more complex models, a hill-climb technique with random restarts and over a slid-

ing window was applied to learn the dependency relationships among the different ecosystem

components and the learned hidden variable from the ARHMM. To minimize the inclusion of

insignificant predictors, only those dependency relationships that were of highest confidence,

learned from the hill-climb, were included (see Supporting Information for more details on

the hill-climb). The learned dependency relationships were used to build the modeling net-

work structures for the parent-child relationships used in the two models described below

Fig 2. ARHMM, ARDBN and DDDBN models. (A) An autoregressive hidden Markov model (ARHMM), whereH denotes an unmeasured hidden variable. X1 . . .XN
denote the measured ecosystem components from Table 1. (B) General structural form of the autoregressive DBN (ARDBN). Note, the autoregressive link is kept and an

additional parent node is enforced to different children’s nodes. (C) General structural form of the data-driven DBN (DDDBN). Note, the autoregressive link is removed

(except for the two hidden variables) and an additional parent node is enforced with the number of parents varying between the different children’s nodes. These are

graphical representations to visualize the differences between the model variants. The actual links between the different X nodes are presented in Fig 3. Note, the

network linkages and parameters do not change throughout time, the models are time-invariant.

https://doi.org/10.1371/journal.pone.0209257.g002

Ecosystem components and their responses to climate variability

PLOS ONE | https://doi.org/10.1371/journal.pone.0209257 January 23, 2019 8 / 23

https://doi.org/10.1371/journal.pone.0209257.g002
https://doi.org/10.1371/journal.pone.0209257


(Fig 2B and 2C). The moderate complexity model kept the autoregressive link from the

ARHMM, utilized two hidden variables and added a single parent node to each child node in

the network structure to account for the interactive effect from a single other ecosystem compo-

nent. This model structure hypothesizes that predictions are optimized by including one addi-

tional parameter while still allowing the ecosystem components to be predicted from their

previous state. We refer to this model as an autoregressive dynamic BN: ARDBN (Fig 2B). The

selection of the additional parameter added to the ARDBN for each ecosystem component was

based on the level of confidence from the hill-climb technique (Fig 3). By incorporating two

hidden variables into the model, we might be able to define a structure, much closer to the

“true” structure of the system we are modelling [37]. By introducing hidden variables into the

models, simpler models can be learned that are less prone to over-fitting and more efficient for

inference. For example, the apparent complexity of a predicted variable can be explained imag-

ining it as a result of two simple processes, the “true” underlying state, which may evolve deter-

ministically, and our measurement of the state, which is often noisy [37]. We can then “explain

away” unexpected outliers in the observations, as opposed to strange fluctuations in “reality”.

One hidden variable (acting as a parent node) was linked to AMO (HV AMO) and another

to all the SST indices (HV SST). This was performed to capture any changes in the variance of

different ecosystem components and to reflect temporal changes in the underlying environ-

mental processes within the system. The choice of AMO and SST was due to the fact that these

Fig 3. Dependency relationships. The dependency relationships between all the measured ecosystem components

and two unmeasured hidden variables (HV AMO and HV SST), learned from the hill- climb, and which were used to

construct the DDDBN model. Only the bold links (regardless of color) were used to build the ARDBN. Colors were

used to assist visualization of the network. Red colored nodes and arrows denote direct influence by SST. Nodes

highlighted in yellow are indirectly influenced by SST. Green colored node and arrows denote direct influence by

AMO. The strength of each identified link (i.e. the level of confidence) is also reported.

https://doi.org/10.1371/journal.pone.0209257.g003
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climate variables influence regional ecological responses [26] and thus, increase the uncer-

tainty in terms of understanding the effects of climate change against a background of multiple

interacting pressures. Note, additional dependency relationships apply between the two hid-

den variables and the rest of the measured observed ecosystem components in the ARDBN

model structure. The learned hidden variable from the ARHMM was incorporated into the

data matrix during the hill-climb experiment and any learned relationships were allocated

between the two hidden variables in the ARDBN structure. The most complex DBN model

was built to include the same two hidden variables from the ARDBN model but removed the

autoregressive link and added up to two additional parent nodes for each component, so that

the level of complexity in terms of modeling the environmental dynamics was higher and likely

more reflective of reality. This model hypothesizes that the “true” generating structure of the

ecosystem dynamics relies more upon ecosystem interactions than upon an autoregressive

link. The hidden variables, climate and physiochemical drivers, were the only components of

the model that maintained an autoregressive link to account for their changes over time. The

number of parents to each node varied among the ecosystem components (Fig 2C) but the

maximum number of parents was limited to three to avoid over-fitting. This model structure

is purely based on data-driven dependency relationships, determined from the hill-climbing

procedure, and is thus referred to as the data-driven dynamic BN (DDDBN). By using multiple

parent nodes, ecosystem dynamics can be predicted through multiple environmental associa-

tions and their changes over time. Moreover, this model can explore predictions of the ecosys-

tem response to changes in climate, while including other interactive effects.

Generating predictions and modeling hidden variables

Given a graphical structure, BNs naturally perform prediction using inference. The network

structure varied with the model frameworks but the method of predicting the variables was

universal. Given the probability distribution over X[t] where X = X1 . . .Xn are the n variables

observed along time t, to predict the future state of each variable, we inferred the state at time t
by using the observed evidence (or available data) from t-1. Non-parametric bootstrap (re-

sampling with replacement from the training set) was applied 250 times for each modeling

approach to obtain statistical validation in the predictions and estimates of the standard devia-

tion [35]. Rather than repeatedly obtaining independent data sets from the population, we

instead obtain distinct data sets by repeatedly sampling observations from the original data set

with replacement. The bootstrapping technique allows obtaining an unknown characteristic of

an unspecified distribution by drawing subsets from the observed data iteratively and comput-

ing a statistic (standard errors and confidence intervals) for each subset [35]. Bootstrapping

lets us obtain approximate distribution of our values and hence to asses bias of our estimate

[35]. The data were divided to give the same number of samples for training and a varying

number of test pairs. To get the training indices, sampling with replacement (i.e. non-

parametric bootstrap) was performed and to get the test indices, those values that are not sam-

pled were used for validation. The process of bootstrapping was performed as follows. First,

divide the data to perform training (learning the Bayesian network and applying Expectation

Maximization (EM) algorithm [42] for model parameterization), followed by the testing part

(model validation). Then, repeat the process for 250 times to be able to identify statistical vali-

dation (calculate prediction accuracy) in the model predictions. Model performance, in terms

of sum of squared error (SSE), was assessed for each model:

P
ðpredicted � actualÞ2 ð2Þ
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Predictions from the three model variants (ARHMM, ARDBN and DDDBN) were calcu-

lated through 2015 and were compared on a year-to-year basis to the measured data. We

model the hidden variables based on the values of the observed ecosystem components. We

want to compute P(Ht|Xt, Xt−1), whereHt represents the hidden variable and Xt represents all

observed ecosystem components at times t. We use the predicted variable states from time t to

infer the hidden state at time t. The hidden variables were parameterized using the EM algo-

rithm in a maximum likelihood sense [42]. In this case, the log-likelihood is:

LðyÞ ¼ logPðXjyÞ ¼ log
X

j

PðX;HjyÞ ð3Þ

where ∑H is the sum over the set of hidden variables H, required to obtain the marginal proba-

bility of the data [43]. Here, the EM algorithm is applied which alternates iteratively between

two steps. In the first step of the EM, the hidden variable is inferred using the predicted ecosys-

tem components, whilst in the second step the estimated likelihood function is maximized.

When the algorithm converges to a local maximum, the parameters (θ) are estimated.

SST scenarios

The best performing BN, determined from the model comparison, was used to predict how

GoM ecosystem components might respond to changes in SST. Specifically, we examined how

different ecosystem components respond to increases in SST, accounting for the heteroge-

neous nature of other driving factors and their changes over time. First, we predict the ecosys-

tem components using historical observations. Then, we designed three SST scenarios to

represent the potential impact of climate change. The scenarios investigated were a: 1.0˚C,

1.5˚C and 3.0˚C increase in temperature across all three SST regions. We chose these tempera-

tures to cover a range of potential short and long-term magnitudes of climate change. We

manipulate the SST data by increasing it, according to the three scenarios. All other measured

ecosystem components remain unchanged. Potential future changes in AMO were not

included, because the AMO index is calculated from de-trended SST data [30] and thus it is

uncertain how increasing SST may affect AMO. Increasing SST, especially in the summer will

likely lower DO by both decreasing the solubility of oxygen and increasing stratification. How-

ever, the magnitude of these changes in DO under the three different SST scenarios is uncer-

tain and thus we did not explicitly include changes in DO in the SST scenarios. Thus, the data

input for testing each scenario model was the increased SST data alone. The training part of

the model learning was unchanged and done on the original measured data and two unmea-

sured hidden variables. Thus, we keep the historically driven interactions between the ecosys-

tem components and examine their modeled trends under potential changes in SST. The SST

scenario models were statistically validated through the same bootstrapping technique

described above to obtain a measure of uncertainty.

Results

Model comparison

The three model structures: ARHMM, ARDBN and DDDBN displayed variability in their pre-

dictive accuracy (Table 2). The majority of the measured ecosystem components (11 out of 18)

were best predicted by the DDDBN (see � symbol in Table 2). The remaining components

(white shrimp, red grouper, amberjack, Vermillion snapper, tilefish and pelican), were best

predicted by the ARDBN and only one variable (red snapper) was most accurately predicted

by the ARHMM.
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In all cases, where the DDDBN did not perform best, it had a similar SSE to the best per-

forming model variant. Interestingly, all of the lower level trophic ecosystem components

(except for white shrimp) were most accurately predicted by the DDDBN. There were several

upper trophic level fish species (e.g. cobia) that were predicted with relatively equal accuracy

across all models. In addition, some ecosystem components were predicted more accurately

compared to others across all model types (e.g. gray triggerfish). There were also some rela-

tively high SSEs, e.g. menhaden and tilefish from the ARHMM. We examined the time-series

of predicted variable values to determine if they were reproducing the inter-annual variability

and long-term patterns observed in the data. We only show some examples but the time-series

for all ecosystem components are available in the Supporting information (examples were

selected for the main text based on their dependency relationships with SST). Note, we choose

to use the two axes plots to best represent the temporal dynamics of the predicted ecosystem

components. The DDDBN model had the most accurate predictions for the spring zooplank-

ton, followed by the ARDBN (Fig 4A and 4B). We notice some of the higher magnitude obser-

vations, which both models failed to reproduce. Still, the DDDBN model was able to capture

the zooplankton dynamics throughout time (Fig 5A), specifically reproducing the positive

deviations in the early 2000s and the variations in more recent years, which reflects SST

changes during this time period (Fig 1B). To recall, in the model, spring zooplankton is param-

eterized to be driven by SST off the coast of Texas and dissolved oxygen in the fall in waters off

Louisiana and Texas (Fig 3).

For the fall zooplankton, the DDDBN model projected most accurate predictions, followed

by the ARDBN (Fig 4C and 4D). Similarly, both models failed to capture some of the outliers,

although we can see that the DDDBN model reproduced the temporal dynamics for this eco-

system component (Fig 5B). Specifically, the model reflected well the variations until the late

1990s and the decrease in early 2000s. Predictions from the DDDBN were sensitive to the

Table 2. Sum of squared error (SSE) of ecosystem components predictions generated by ARHMM, ARDBN and

DDDBN.

Variable ARHMM ARDBN DDDBN

NPP 11.82 11.34 10.74�

Spring Z 22.20 21.14 18.70�

Fall Z 21.18 22.53 20.17�

Pink shrimp 17.62 16.64 15.42�

Brown shrimp 20.66 20.92 19.85�

White shrimp 24.89 23.02� 25.03

Menhaden 31.29 14.32 11.21�

Cobia 20.48 19.28 19.05�

Gag grouper 13.66 13.02 11.51�

Red grouper 23.65 23.16� 24.90

Red snapper 16.98� 19.54 19.20

Spanish mackerel 21.02 21.91 20.94�

Greater amberjack 23.23 18.71� 20.97

King mackerel 21.71 17.23 16.13�

Gray triggerfish 8.55 5.79 4.83�

Vermillion snapper 21.26 16.99� 17.47

Tilefish 36.34 22.22� 23.66

Brown pelican 22.03 20.06� 23.34

� symbol indicates most accurate predictions among the three models for each individual ecosystem component.

https://doi.org/10.1371/journal.pone.0209257.t002
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input data, but overall the model was able to capture temporal trends of the different ecosys-

tem components, e.g. increase in brown shrimp (Fig 5D) and decline in King mackerel (Fig

5F). The model was able to recreate the dynamics of the ecosystem components in time but in

some cases it failed to reproduce individual year effects (e.g. year 1987 for spring zooplankton

and King mackerel), which could be due to some noise in the data, sampling variation or a

mechanism not included in the model. The red snapper was characterized with some variabil-

ity throughout time (Fig 5E), but the model was able to recreate the temporal dynamics, except

for some individual years. Similarly, the white shrimp was characterized with some variation

throughout time but the model was able to capture the increase in early 2000s (Fig 5C).

SST scenarios

We increased SST for input into the DDDBN model to examine potential GoM ecosystem

responses to increasing temperature scenarios (1.0˚C, 1.5˚C and 3.0˚C). We compared the

projected outputs among the SST scenarios by examining the response of different ecosystem

components. We explored the effect of temperature increase on ecosystem components that

are either directly influenced by SST or indirectly influenced by SST through a single interme-

diary component, according to the network structure, shown in Fig 3 (that is 11 out of the

total 18 ecosystem components, which are shown in Fig 6). The results show some variability

in the projected response of the examined ecosystem components to increasing SST. The most

pronounced effect was a decrease in all lower trophic level ecosystem components, especially

zooplankton and brown shrimp (Fig 6). The effect was not as pronounced and more variable

Fig 4. ARDBN and DDDBN model predictions. (A, C) Generated model predictions for the spring and fall

zooplankton by the ARDBN and (B, D) DDDBN model respectively. Note the negative scale is due to standardization.

https://doi.org/10.1371/journal.pone.0209257.g004
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Fig 5. DDDBN model predictions. Generated predictions by the DDDBN model for spring zooplankton (A), fall

zooplankton (B), white shrimp (C), brown shrimp (D), red snapper (E) and King mackerel (F). The series marked with

stars denote the predictions as opposed to the observed standardized data denoted by circles. 95% confidence intervals

(highlighted in gray color) report bootstrap predictions’ mean and standard deviation. Note the negative scale is due to

standardization.

https://doi.org/10.1371/journal.pone.0209257.g005

Fig 6. Change in population output. Mean difference of change between the estimated population outputs of the

DDDBN model and SST scenarios: increase of 1.0˚C (blue), 1.5˚C (purple) and 3.0˚C (red).

https://doi.org/10.1371/journal.pone.0209257.g006
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in direction for the higher trophic level fish species. The largest effect in upper trophic levels

was on King mackerel.

We show the DDDBN model and scenario model outputs throughout time for selected eco-

system components from Fig 6, based on the magnitude of response. The spring zooplankton

biovolume, following the 1.0˚C and 1.5˚C increased SST scenarios, was predicted to be rela-

tively stable prior to 2000 and lower than the DDDBN model after 2000 (Fig 7A). A much

stronger decline with increased variability was modeled throughout the study period under

the 3.0˚C increased SST scenario. Contrarily, fall zooplankton biovolume was reduced for the

entire study period under all increased temperature scenarios, but inter-annual variability was

similar to the DDDBN model. The decline was more pronounced and variability increased for

the scenarios with larger SST increases (Fig 7B). Similarly, white (Fig 7C) and brown shrimp

(Fig 7D) populations decreased under all increased SST scenarios with greater decreases pre-

dicted in the scenarios with greater increases in temperature. Brown shrimp decreased more

than white shrimp in all SST scenarios. This might be the result of a direct SST effect on the

brown shrimp but intermediary SST effect on the white shrimp through changes in the fall

zooplankton dynamics. All SST scenario outputs appeared to show similar inter-annual vari-

ability and patterns to one another for both white and brown shrimp, but all showed increased

variability compared to the baseline output and the variability increased with increasing SST.

There was not a significant change on the red snapper dynamics (Fig 7E), following the

increased SST scenarios and the inter-annual variability remained constant. King mackerel

increased under all SST scenarios with the increases greater as SST increased and the highest

Fig 7. SST scenarios. Generated predictions by the DDDBN model (star symbol) versus the 1.0˚C (blue line), 1.5˚C

(purple line) and 3.0˚C (red line) SST scenarios. Note, the negative scale is due to standardization.

https://doi.org/10.1371/journal.pone.0209257.g007
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variability under the larger SST increase but a similar inter-annual pattern in all three scenar-

ios (Fig 7F).

Discussion

The different model structures considered in this study allow for a comparison of the impor-

tance of internal ecosystem component dynamics versus external drivers or connections

between components, and allow for an assessment of how model complexity affects model per-

formance. The ARHMM is a relatively simple modeling approach that undertakes a fixed

structure, which is not able to account for any ecosystem interactions and predicts the compo-

nent based only on its prior value and relationship to a hidden variable (Fig 2A). The

ARHMM was the worst performing structure and was only best able to predict a single ecosys-

tem component; even for that component, its improvement was slight and unlikely significant

compared to the other two model structures (Table 2). The ARDBN performed better than the

ARHMM due to the inclusion of a single ecosystem interaction on the predicted ecosystem

component. There were some similarities in the performance between the ARHMM and

ARDBN, which is likely due to the autoregressive link being present in both models. The

ARDBN outperformed the DDDBN for some ecosystem components, although, these

improvements over the DDDBN were usually slight. The dynamics of ecosystem components

better predicted by the ARDBN suggest a dependence on their prior condition. Alternatively,

other factors, such as habitat availability, which we did not include in the model, might be

driving their temporal variations to a greater extent than other ecosystem effects. The

improved performance in the ARDBN model for some of the ecosystem components (most

notably tilefish, greater amberjack and Vermillion snapper recruitment) suggests higher influ-

ence of the prior status and a single ecosystem interaction (e.g. AMO for tilefish and Vermil-

lion snapper, and dissolved oxygen for greater amberjack; Fig 3) compared to multiple

ecosystem interactions for these ecosystem components. The best performing model, the

DDDBN, accounted for up to three ecosystem interactions, two hidden variables and their

changes over time, but it did not have an autoregressive link. This suggests the need to include

ecosystem effects and distributional heterogeneity, when building predictive models of diverse

and heavily exploited ecosystems, such as the Gulf of Mexico. One of the biggest differences

between this dynamic Bayesian network modeling approach and other more traditional

approaches is the incorporation of two hidden variables. Hidden variables capture changes in

ecosystem variance that might not be represented within the model structure. Indeed, the

accurate performance of the DDDBN and ARDBN models was likely due, at least in part, to

the inclusion of the two hidden variables that reduced the likelihood of introducing spurious

interactions into the analysis and allowed for more plausible network structures. The compara-

tive evaluation of different structures, in terms of modeling the Gulf dynamics, showed that

predictive performance of the ecosystem components was improved when multiple interac-

tions within their environment were included, compared to prediction based more upon the

previous state of the ecosystem com- ponent.Specifically, the DDDBN model suggests the

importance of accounting for the effects of temperature and AMO on the dynamics of higher

trophic level species. Also, the importance of factors like dissolved oxygen concentration on

some of the economically important species (e.g. menhaden) suggests the environment plays a

significant role in fishery dynamics; perhaps an even greater role than management actions for

some fishery species [44]. For example, gray triggerfish has almost consistently decreased in

abundance over the past decades, despite implementing a rebuilding plan with regulations to

reduce fishing pressure [25]. In the DDDBN model, gray triggerfish recruitment is influenced

by the dynamics of the HV AMO, pink shrimp and oxygen concentration, the latter two
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having a generally decreasing trend in recent years (S2 Fig). The combination of these physical

and biological associations might be controlling, to some extent, the population dynamics of

gray triggerfish. Most importantly, our study highlights AMO as a proxy for a number of com-

plex processes that simultaneously affect the biology of the Gulf ecosystem. Also, our results

emphasize the importance of hypoxia in terms of influencing fisheries productivity and tro-

phic structure of the system [26]; [45]. Similarly, it has been shown for other systems that

more complex models result in better predictive performance [46]. For the North Sea, similar

data-driven techniques have been applied to model fish biomass and a more complex model-

ing structure was found to perform better in terms of predicting species dynamics across space

and time [14]. In general, studies have suggested that non-linear modeling approaches (i.e.

classification trees and neural networks) are better able to capture and model complex pat-

terns, found in ecological data [47]. The DDDBN model represents a flexible framework of

medium complexity between single-stock assessments and multi-species mechanistic models,

such as Ecopath with Ecosim and Atlantis. Moreover, the DDDBN model struc-ture does not

rely upon an assumption of steady state, which is unlikely to be met in ecosystems. This allows

the model structure to use changes in temporal distributions and structure to inform the

model and its predictions. By extending our DDDBN to model temperature scenarios, we

allow for probable climate change impacts to be predicted. Ecosystem components varied in

their sensitivity and directional response to increasing temperature. The variability to changes

in temperature is potentially the result of ecosystem components-specific effects and interac-

tions within their environment. In addition, differences in the predicted temperature

responses could be explained by the specific thermal tolerance of the ecosystem component, its

prey, its predators, or the multiple interacting stressors within its habitat. Despite this variabil-

ity, we see some universal response across trophic levels that could provide insights about eco-

logical stability and resilience in a changing climate. Changes in temperature had large

impacts on zooplankton and shrimp dynamics and all reduced their values with increasing

temperature. Spring zooplankton biovolume showed less prominent decrease with increasing

temperature over the 30- year study period; whereas, fall zooplankton biovolume was system-

atically lower under all increased temperature scenarios with the higher increases in tempera-

ture predicting greater decreases in fall zooplankton biovolume. The projected dynamics of

the spring zooplankton (calculated from the open ocean survey) are influenced by temperature

changes but perhaps even more strongly controlled by the AMO current warm phase (Fig 1A),

which potentially led to the projected sta-bility in the scenario trends compared to the

DDDBN output (Fig 7A). The AMO has been invoked as the explanatory factor for a number

of biological phenomena in the Atlantic Ocean and GoM [29]; [48]. In addition, AMO has

some indirect influence on the extent and magnitude of hypoxia, thus impacting concentra-

tions of zooplankton in the nearshore waters [26]. The fall zooplankton survey covers stations

located on the continental shelf, where it has been shown that oxygen concentrations can affect

the structure of biological communities, having positive effects on some living marine

resources and negative on others [49]. There is some evidence about the tolerance of low oxy-

gen concentrations between the co-dominant zooplankton species in the GoM: Acartia spp.

and Centropages spp., with the latter being more abundant in low oxygen waters [49]. Variabil-

ity of the zooplankton community with environmental conditions has implications for the

quality of the food environment for larval and planktivorous fish [49]. White shrimp and

brown shrimp recruitment had consistent reductions for all temperature scenarios with reduc-

tions larger when temperatures were increased more. Brown shrimp reductions were more

pronounced, compared to the white shrimp, for all temperature scenarios (Fig 6). Laboratory

studies have suggested that brown shrimp might be more sensitive to temperature changes

and survival of juvenile shrimp within coastal waters of Texas (here, brown shrimp was
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influenced by Texas SST) decreases with high temperatures, supporting the dramatic decreases

predicted in our model for brown shrimp [50–51]. The white shrimp showed similar responses

to 1.0˚C and 1.5˚C temperature increases, but larger decreases in the 3.0˚C increase SST sce-

nario. In the model, white shrimp was not directly influenced by temperature, but was driven

by changes in fall zooplankton biovolume that is influenced by Florida shelf SST. The brown

and white shrimp results are consistent with the observed temperature changes within the dif-

ferent shelf areas (Texas and Florida SST) and their trends in the last 5 years (Fig 1, increasing

for Texas and more or less stable for Florida). These results suggest that ecosystem responses

to any future changes in temperature will be influenced by the spatial habitat. Spatial variations

in temperature potentially lead to spatial variability in productivity, which subsequently causes

further forcing on higher level trophic species and mixture of responses at spatial scales. These

decreases in shrimp and zooplankton will have implications for the availability of the food

environment for upper trophic level species, including finfish of high economic importance

[49]. The response to increasing SST was more variable and less intense for upper trophic lev-

els; although, King mackerel showed the largest increase of any ecosystem component in all

three temperature scenarios (Fig 6). This response might be a result of habitat preferences of

the King mackerel and its high temperature tolerance [52]. A study of mackerel landings

reported higher catches with increasing warmer temperatures, specifically during La Nina win-

ters [53]. In addition, the mackerel was driven by the dynamics of NPP, which was predicted

to be relatively stable with some increase from early 2000 (S1 Fig), potentially explaining the

positive response in this fish species. For some higher level trophic species, such as cobia, we

were not able to see any definitive changes in response to increased SST. Cobia dynamics were

influenced by AMO, so similarly, such results could be explained with the current AMO warm

phase, masking the full effect from temperature change. It has been shown that AMO has

influenced North Atlantic fisheries since the early 1900s [29] and is correlated with commu-

nity- wide fishery responses in seven northwestern Atlantic ecosystems [28]. Similarly, we

were not able to detect significant impact on the red snapper, following increases in tempera-

ture. According to [54], changes in coastal wetland habitats due to sea level rise and changes in

rainfall and freshwater flow patterns may be among the most important drivers of climate

change impact on species like the red snapper. Generally, red snapper are widely distributed

although they have a high affinity for certain habitat types at various stages in their develop-

ment [55]; thus, we would not necessarily expect their population dynamics to be specifically

sensitive to temperature. In our model, the red snapper was influenced by the dynamics of dis-

solved oxygen, which might play a more significant role for this species population dynamics,

compared to SST. These results suggest that some ecosystem components will be negatively

impacted, others such as the King mackerel may benefit from the effects of climate change or

may be more resilient to changes in their environment such as the red snapper, showing little

impact from increasing temperatures. This finding is consistent with other ecological predic-

tions of climate change effects on marine ecosystems, using a variety of methods [56–58]. Our

study highlights that to assess potential “winners and losers” in a changing environment, fac-

tors like trophic associations and interactions with physical factors, affected by climate change,

must be taken into consideration to evaluate the population dynamics and processes in a com-

prehensive manner. In addition, our study is a useful, independent comparison to mechanistic

approaches designed to derive the same predictions in the GoM, such as the Climate Vulnera-

bility Analysis [56]. There were some high SSEs (Table 2) and some outliers from the observed

data (Fig 4), that the DDDBN model did not capture well. In addition, there was some similar-

ity in accuracy from the different models that might be attributed to the similar effects of

changing climate on many species [58]. In particular, stock assessment estimates are subject to

multiple sources of uncertainty, which can be categorized into three types: observation,
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structural and estimation, according to [59]. In some cases, process error is considered to be a

special case of structural uncertainty, however that is being accounted for here by using state-

space models that simultaneously estimate the variances, associated with observation and pro-

cess errors, using maximum likelihood [60]. Estimation uncertainty can be characterized by

calculating Hessian- based confidence intervals or as we have done here by bootstrapping or in

a Bayesian context as probability intervals from the posterior distribution of estimates. Our

comparative evaluation of multiple model structures that reflect different hypotheses of the

GoM ecosystem complexity is one way of dealing with structural uncertainty. Of particular

importance is the use of multiple lines of evidence to support conclusions, considering alterna-

tive hypothesis, and accounting for uncertainty [59]. The data preparation and analysis, specif-

ically standardization and non-parametric bootstrap, increase confidence in these results and

the modeling structure applied. Most importantly, we account for the observation uncertainty

by introducing hidden variables into the models, which allow for simpler models to be learned

that are less prone to over- fitting and more efficient for inference. In most domains, the

observed variables represent only some characteristics of a system, which can have a negative

effect on the learning procedure. In this work, the hidden variable was chosen to most easily

reflect the complex interdependencies between and among ecosystem components and their

environment and account for any spurious relationships that might degrade the precision and

accuracy of the results. One aspect of the underlying model structure that could be further

improved would be to include socio-economic variables, for example commercial fishery land-

ings, that would allow the model to provide information to managers that includes predicting

socioeconomic impacts. The model could also be expanded to include other ecosystem com-

ponents, such as protected species and microbial data to address issues like biodiversity and

survival and support management strategies for protected species population recovery. In

addition, the model could be developed on a more localized scale to investigate impacts from

hypoxia and eutrophication. Marine populations are being threatened by both natural and

anthropogenic sources and in order to understand issues between sustainability and manage-

ment, populations cannot be addressed in isolation, but in relation to their interactions and

associations with external factors. Data-driven techniques allowed us to strengthen our knowl-

edge on the mechanisms involved in shaping the functional ecological network within the

GoM, making them less prone to error, by not introducing assumptions about a complex sys-

tem. The DDDBN modeling approach that accounted for multiple ecosystem interactions and

their changes over time further highlighted the importance of distributional heterogeneity and

ecosystem components-specific effects, when building predictive models of such diverse and

exploited ecosystems. We explored potential ecosystem changes in response to increasing tem-

perature in the GoM by applying temperature scenarios to the DDDBN model. The applied

methods here have extended our knowledge into the complexity of the region and its ecologi-

cal structure and resilience that will potentially help addressing applied questions in the field

of fisheries management. Future work will involve extending the applied network model fur-

ther into the future to explore the effect of alternative management strategies on specific eco-

nomically important species and using summer versus winter SST values to address seasonal

differences in spawning. In addition, projections from climate models (e.g. [60]) could be used

in combination with the DDDBN model to investigate downscaling outputs.
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S1 Table. Model bias.

(TIF)

S1 Fig. DDDBN model predictions. Generated predictions by the DDDBN model. The series

marked with stars denote the predictions as opposed to the observed data denoted by circles.

95% confidence intervals report bootstrap prediction’s mean and standard deviation.

(TIF)

S2 Fig. Pink shrimp and oxygen concentration. (A) Pink shrimp recruitment deviation. (B)

Bottom water dissolved oxygen concentration for the Texas coastal shelf in fall.

(TIF)

S1 File. Data. Data used in this study.

(XLSX)
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4. Morley JW, Selden RL, Latour RJ, Frölicher TL, Seagraves RJ, Pinsky ML. Projecting shifts in thermal

habitat for 686 species on the North American continental shelf. PloS one. 2018; 13(5): e0196127.

https://doi.org/10.1371/journal.pone.0196127 PMID: 29768423

5. Pinsky ML and Fogarty M. Lagged social-ecological responses to climate and range shifts in fisheries.

Climatic change. 2012; 115(3–4): 883–891.

Ecosystem components and their responses to climate variability

PLOS ONE | https://doi.org/10.1371/journal.pone.0209257 January 23, 2019 20 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209257.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209257.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209257.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209257.s005
https://doi.org/10.1371/journal.pone.0196127
http://www.ncbi.nlm.nih.gov/pubmed/29768423
https://doi.org/10.1371/journal.pone.0209257


6. Fodrie F, Heck KL, Powers SP, Graham WM and Robinson KL. Climate-related, decadal-scale assem-

blage changes of seagrass- associated fishes in the northern Gulf of Mexico. Global Change Biology.

2010; 16(1): 48–59.

7. Krivtsov V. Investigations of indirect relationships in ecology and environ- mental sciences: a review

and the implications for comparative theoretical ecosystem analysis. Ecological Modelling. 2004; 174

(1): 37–54.

8. Drinkwater K, Beaugrand G, Kaeriyama M, Kim S, Ottersen G, Perry IR, Po¨rtner H, Polovina JJ and

Takasuka A. On the processes linking climate to ecosystem changes. Journal of Marine Systems.

2010; 79(3): 374–388.

9. Scheffer M, Carpenter S, Foley JA, Folke C and Walker B. Catastrophic shifts in ecosystems. Nature.

2001; 413(6856): 591. https://doi.org/10.1038/35098000 PMID: 11595939

10. Schindler DE and Hilborn R. Prediction, precaution, and policy under global change. Science. 2015;

347(6225): 953–954. https://doi.org/10.1126/science.1261824 PMID: 25722401

11. Uusitalo L. Advantages and challenges of Bayesian networks in envi- ronmental modelling. Ecological

modelling. 2007; 203(3): 312–318.

12. Heckerman D, Geiger D and Chickering DM. Learning Bayesian networks: The combination of knowl-

edge and statistical data. Machine learning. 1995; 20(3): 197–243.

13. Trifonova N, Kenny A, Maxwell D, Duplisea D, Fernandes J and Tucker A. Spatio-temporal Bayesian

network models with latent variables for revealing trophic dynamics and functional networks in fisheries

ecology. Ecological Informatics. 2015; 30: 142–158.

14. Chen SH and Pollino CA. Good practice in Bayesian network modelling. Environmental Modelling &

Software. 2012; 37: 134–145.

15. Friedman N, Linial M, Nachman I and Pe’er D. Using Bayesian networks to analyze expression data.

Journal of Computational biology. 2000; 7(3–4): 601–620. https://doi.org/10.1089/

106652700750050961 PMID: 11108481

16. Cofino AS, Cano R, Sordo C and Gutierrez JM. Bayesian networks for probabilistic weather prediction.

In Proceedings of the 15th European conference on Artificial Intelligence. 2002; 695–699. IOS Press.

17. Nikovski D. Constructing Bayesian networks for medical diagnosis from incomplete and partially correct

statistics. IEEE Transactions on Knowledge and Data Engineering. 2000; 12(4): 509–516.

18. Pang B, Zhang D, Li N and Wang K. Computerized tongue diagnosis based on Bayesian networks.

IEEE Transactions on biomedical engineering. 2004; 51(10): 1803–1810. https://doi.org/10.1109/

TBME.2004.831534 PMID: 15490827

19. Uusitalo L, Kuikka S, Kauppila P, So¨derkultalahti P and Ba¨ck S. Assessing the roles of environmental

factors in coastal fish production in the northern Baltic Sea: A Bayesian network application. Integrated

environmental assessment and management. 2012; 8(3): 445–455. https://doi.org/10.1002/ieam.180

PMID: 21309077

20. Hamilton S, Pollino CA and Jakeman AJ. Habitat suitability modelling of rare species using Bayesian

networks: Model evaluation under limited data. Ecological Modelling. 2015; 299: 64–78.

21. Franco C, Hepburn LA, Smith DJ, Nimrod S and Tucker A. A Bayesian belief network to assess rate of

changes in coral reef ecosystems. Environmental Modelling & Software. 2016; 80: 132–142.

22. Jensen FV. Bayesian networks and decision graphs. Series for statistics for engineering and informa-

tion science, 2001.

23. Levontin P, Kulmala S, Haapasaari P and Kuikka S. Integration of biological, economic, and sociological

knowledge by Bayesian belief networks: the interdisciplinary evaluation of potential management plans

for Baltic salmon. ICES Journal of Marine Science. 2011; 68(3): 632–638.

24. Karnauskas M, et al. Ecosystem status report update for the Gulf of Mexico. NOAA Technical Memo-

randum NMFS-SEFSC. 2017; 706:56.

25. Karnauskas M, Schirripa MJ, Craig JK, Cook GS, Kelble CR, Agar JJ, Black BA, Enfield DB, Lindo-Ati-

chati D, Muhling BA, et al. Evidence of climate-driven ecosystem reorganization in the Gulf of Mexico.

Global change biology. 2015; 21(7): 2554–2568. https://doi.org/10.1111/gcb.12894 PMID: 25778777

26. Sanchez-Rubio G and Perry H. Climate-related meteorological and hydrological regimes and their influ-

ence on recruitment of gulf menhaden (Brevoortia patronus) in the northern Gulf of Mexico. Fishery Bul-

letin. 2015; 113(4).

27. Shackell NL, Bundy A, Nye JA and Link JS. Common large-scale responses to climate and fishing

across northwest Atlantic ecosystems. ICES Journal of Marine Science. 2012; 69(2): 151–162.

28. Edwards M, Beaugrand G, Helaoue¨t P, Alheit J and Coombs S. Marine ecosystem response to the

Atlantic Multidecadal Oscillation. PLoS One. 2013; 8(2): e57212. https://doi.org/10.1371/journal.pone.

0057212 PMID: 23460832

Ecosystem components and their responses to climate variability

PLOS ONE | https://doi.org/10.1371/journal.pone.0209257 January 23, 2019 21 / 23

https://doi.org/10.1038/35098000
http://www.ncbi.nlm.nih.gov/pubmed/11595939
https://doi.org/10.1126/science.1261824
http://www.ncbi.nlm.nih.gov/pubmed/25722401
https://doi.org/10.1089/106652700750050961
https://doi.org/10.1089/106652700750050961
http://www.ncbi.nlm.nih.gov/pubmed/11108481
https://doi.org/10.1109/TBME.2004.831534
https://doi.org/10.1109/TBME.2004.831534
http://www.ncbi.nlm.nih.gov/pubmed/15490827
https://doi.org/10.1002/ieam.180
http://www.ncbi.nlm.nih.gov/pubmed/21309077
https://doi.org/10.1111/gcb.12894
http://www.ncbi.nlm.nih.gov/pubmed/25778777
https://doi.org/10.1371/journal.pone.0057212
https://doi.org/10.1371/journal.pone.0057212
http://www.ncbi.nlm.nih.gov/pubmed/23460832
https://doi.org/10.1371/journal.pone.0209257


29. Enfield DB, Mestas-Nun˜ez AM and Trimble PJ. The Atlantic Multidecadal Oscillation and its relation to

rainfall and river flows in the continental US. Geophysical Research Letters. 2001; 28(10): 2077–2080.

30. Tam JC, Link JS, Large SI, Andrews K, Friedland KD, Gove J, Hazen E, Holsman K, Karnauskas M,

Samhouri JF, et al. Comparing apples to oranges: common trends and thresholds in anthropogenic and

environmental pressures across multiple marine ecosystems. Frontiers in Marine Science. 2017; 4:

282.

31. Blanchard JL, Jennings S, Holmes R, Harle J, Merino G, Allen JI, Holt J, Dulvy NK and Barange M.

Potential consequences of climate change for primary production and fish production in large marine

ecosystems. Phil. Trans. R. Soc. B. 2012; 367(1605): 2979–2989. https://doi.org/10.1098/rstb.2012.

0231 PMID: 23007086

32. Keister JE, Bonnet D, Chiba S, Johnson CL, Mackas DL and Escribano R. Zooplankton population con-

nections, community dynamics, and climate variability. 2012; 347–350.

33. Ogden JC, Baldwin JB, Bass OL, Browder JA, Cook MI, Frederick PC, Frezza PE, Galvez RA, Hodgson

AB, Meyer KD, et al. Waterbirds as indicators of ecosystem health in the coastal marine habitats of

southern Florida: 1.Selection and justification for a suite of indicator species. Ecological indicators.

2014; 44: 148–163.

34. Friedman N, Getoor L, Koller D and Pfeffer A. Learning probabilistic relational models. In IJCAI. 1999;

99: 1300–1309.

35. Murphy K, et al. The Bays net toolbox for Matlab. Computing science and statistics. 2001; 33(2): 1024–

1034.

36. Murphy K and Russell S. Dynamic Bayesian networks: representation, inference and learning. 2002.

37. Tucker A and Liu X. A Bayesian network approach to explaining time series with changing structure.

Intelligent Data Analysis. 2004; 8(5): 469–480.

38. Robinson JW and Hartemink A. Learning non-stationary dynamic Bayesian networks. Journal of

Machine Learning Research. 2010; 11: 3647–3680.

39. Ceccon S, Garway-Heath D, Crabb D and Tucker A. The dynamic stage Bayesian network: identifying

and modelling key stages in a temporal process. In International Symposium on Intelligent Data Analy-

sis. 2011; 101–112.

40. Trifonova N, Maxwell D, Pinnegar J, Kenny A and Tucker A. Predicting ecosystem responses to

changes in fisheries catch, temperature, and primary productivity with a dynamic Bayesian network

model. ICES Journal of Marine Science. 2017; 74(5): 1334–1343.

41. Bilmes JA, et al. A gentle tutorial of the EM algorithm and its application to parameter estimation for

Gaussian mixture and hidden Markov models. International Computer Science Institute. 1998; 4(510):

126.

42. Ghahramani Z and Jordan MI. Factorial hidden Markov models. In Advances in Neural Information Pro-

cessing Systems. 1996; 472–478.

43. Vert-pre KA, Amoroso RO, Jensen OP and Hilborn R. Frequency and intensity of productivity regime

shifts in marine fish stocks. Proceedings of the National Academy of Sciences. 2013; 110(5): 1779–

1784.

44. Craig JK, Crowder LB. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker

and brown shrimp on the Gulf of Mexico shelf. Marine Ecology Progress Series. 2005; 294: 79–94.

45. Faisal A, Dondelinger F, Husmeier D and Beale CM. Inferring species interaction networks from species

abundance data: A comparative evaluation of various statistical and machine learning methods. Eco-

logical Informatics. 2010; 5(6): 451–464.

46. Olden JD and Jackson DA. A comparison of statistical approaches for modelling fish species distribu-

tions. Freshwater biology. 2002; 47(10): 1976–1995.

47. Nye JA, Baker MR, Bell R, Kenny A, Kilbourne KH, Friedland KD, Martino E, Stachura MM, Van Houtan

KS, and Wood R. Ecosystem effects of the Atlantic Multidecadal Oscillation. Journal of Marine Systems.

2014; 133: 103–116.

48. Elliott DT, Pierson JJ and Roman MR. Relationship between environmental conditions and zooplankton

community structure during summer hypoxia in the northern Gulf of Mexico. Journal of plankton

research. 2012; 34(7): 602–613.

49. Li J and Clarke AJ. Sea surface temperature and the brown shrimp (Farfantepenaeus aztecus) popula-

tion on the Alabama, Mississippi, Louisiana and Texas continental shelves. Estuarine, Coastal and

Shelf Science. 2005; 64(2): 261–266.

50. Zein-Eldin ZP and Renaud ML. Inshore environmental effects on brown shrimp, Penaeus aztecus, and

white shrimp, P. setiferus, populations in coastal waters, particularly of Texas. Marine Fisheries Review.

1986; 48(3): 9–19.

Ecosystem components and their responses to climate variability

PLOS ONE | https://doi.org/10.1371/journal.pone.0209257 January 23, 2019 22 / 23

https://doi.org/10.1098/rstb.2012.0231
https://doi.org/10.1098/rstb.2012.0231
http://www.ncbi.nlm.nih.gov/pubmed/23007086
https://doi.org/10.1371/journal.pone.0209257


51. Johnson AG, Fable WA Jr, Grimes CB, Trent L and Perez JV. Evidence for distinct stocks of King mack-

erel Scomberomorus cavalla, in the Gulf of Mexico. Fishery Bulletin. 1994; 92(1): 91–10.

52. Barile P. Analysis of environmental factors affecting King mackerel landings along the east coast of

Florida. SEDAR38-DW-07. 2013.

53. Cheung WL, Lam V, Sarmiento JL, Kearney K, Watson R and Pauly D. Projecting global marine biodi-

versity impacts under climate change scenarios. Fish and fisheries. 2009; 10(3): 235–251.

54. Powers SP, Drymon JM, Hightower CL, Spearman T, Bosarge GS, Jefferson A. Distribution and age

composition of red snapper across the inner continental shelf of the north-central Gulf of Mexico. Trans-

actions of the American Fisheries Society.2018. https://doi.org/10.1002/tafs.10051

55. Hare JA, Morrison WE, Nelson MW, Stachura MM, Teeters EJ, Griffis RB, Alexander M, Scott JD,

Alade L, Bell RJ, et al. A vulnerability assessment of fish and invertebrates to climate change on the

northeast US continental shelf. PloS one. 2016; 11(2): e0146756. https://doi.org/10.1371/journal.pone.

0146756 PMID: 26839967

56. Barange M, Merino G, Blanchard JL, Scholtens J, Harle J, Allison EH, Allen JI, Holt J and Jennings S.

Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nature

Climate Change. 2014; 4: 211–216.

57. Fernandes JA, Cheung W, Jennings S, Butenschön M, Mora L, Frölicher TL, Barange M and Grant A.
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