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Abstract

A spectral/hp element code, incorporating a velocity-pressure formulation, is used
to simulate free surface flows. Non-linear pressure and velocity boundary conditions
are applied on the moving free surface, the tracking of which is facilitated by the
implementation of an Arbitrary Lagrangian Eulerian (ALE) formulation. The de-
rived algorithm is validated by comparing the numerical results evaluated here with
an analytical method which predicts the damping of a freely sloshing, viscous fluid
for a range of Reynolds number: 3 ≤ Re ≤ 3 × 105 where Re = (gd)1/2 d/ν and
g, d and ν are gravity, depth of fluid and kinematic viscosity respectively. The free
surface wall contact point is investigated and a number of approximations to over-
come the contradiction of a moving contact point and the wall no-slip condition are
presented. The numerical procedure which utilises these approximations is tested
against a linear, analytical method which predicts viscous diffusion in the vicinity
of the containing walls for a freely sloshing fluid. It is found that the numerical
results using the various formulated boundary conditions converge as the Reynolds
number increases.

1 Introduction

A major application of numerical solutions of free surface flows is the evalu-
ation of wave forces on offshore structures, where the accurate prediction of the
loads placed on and subsequent motion of marine installations are of paramount
importance when considering the structural parameters of the body. Traditionally
the majority of work in this area has been based on potential theory which treats the
flow as inviscid and irrotational. Though linear theory can accurately predict these
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forces for small wave amplitudes, for naturally occurring sea conditions fully non-
linear calculations are essential. Boundary element methods have been extensively
used to computationally simulate such free surface flows (Celebi et al., 1998; Fer-
rant, 1996), though recent understanding of the computational efficiency of these
algorithms has shown that the finite element method is a competitive numerical
technique when a large number of degrees of freedom is used to discretise the fluid
domain (Cai et al., 1998; Wu & Eatock Taylor, 1994). The finite element method has
therefore become popular when simulating unsteady, inviscid free surface flows (Cai
et al., 1998; Wu et al., 1998; Robertson & Sherwin, 1999) and in many cases has been
extended to the solution of viscous free surface flows (Warburton & Karniadakis,
1997; Ramaswamy & Kawahara, 1987; Ramaswamy, 1989; Huerta & Wing Kam,
1988; Robertson, 2000).

Generally viscous effects and free surface diffraction effects are not both impor-
tant in the same problem for a practical offshore structure. Though, the addition of
viscous effects is necessary for the flow scenarios below:

• Viscous damping of wave excited oscillations of offshore structures,
• Flow past a body at high Keulegan-Carpenter number where free surface effects

are locally important,
• Wave generation of submerged and floating bodies where a mean flow component

causes seperation,
• Damping of sloshing waves in a container.

A contentious aspect of the numerical evaluation of viscous free surface flows is
the nature of the free surface contact point on a wall. Though the no-slip condition is
a basic premise of fluid dynamics, the motion of a free surface contradicts this condi-
tion. It can be seen experimentally that the contact point of the free surface, whilst
theoretically adhering to a no-slip condition, is in relative motion along the adjoin-
ing wall. The contact point is not identifiable with a fluid particle. Various models
are available to overcome this contradiction, either of an analytical nature (Dussan,
1976; Miles, 1991) or based on empirical data (Ting & Perlin, 1995; Hocking, 1987;
Young & Davis, 1987). In most cases the recommended boundary conditions are
not suitable for implementation within a numerical code. The schemes based on
empirical data are generally extremely complicated and are dependent on the eval-
uation of small scale quantities such as contact angle and surface tension variation.
These effects are largely unimportant when considering most marine and offshore
problems. In addition, the schemes are dependent on the type of material at the
contact walls and specific experimental data has to be evaluated before a relevant
boundary condition can be formulated. Therefore these schemes are not applicable
to a generalised free surface numerical code.

The most widely used computational model is the no-shear force or friction free
condition (Huerta & Wing Kam, 1988), which is referred to in this work as the slip
condition. This boundary condition does not promote the generation of vorticity at
free surface contact walls, where it is theorised that much of the dissipation of the
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energy of the fluid occurs (Keulegan, 1959; Miles, 1967). Therefore this boundary
condition does not give satisfactory results for many free surface flows where viscous
dissipation is important.

The nature of the free surface, in terms of its shape and velocity, is also affected
by the boundary conditions placed on the contact walls (Dussan, 1976). Therefore
models which allow the free surface contact point to be in motion whilst also pro-
ducing appreciable boundary layers on free surface contact walls are necessary to
allow the full investigation of the free surface flow of a contained body of fluid or
the flow past a surface piercing structure. To this end contact wall boundary condi-
tions are formulated which adhere to the proviso of a moving contact point, whilst
also promoting the generation of boundary layers at the contact wall. The theorised
boundary conditions are seen as an engineering solution to the described problem
and not a highly accurate physical model of the flow characteristics at the wall/free
surface contact point.

The governing equations of viscous flow are solved by utilising the ALE for-
mulation which allows the mesh points to move with a velocity different to that of
the velocity of the fluid, whilst adhering to some constraints for free surface flow.
This procedure alleviates the production of highly deformed elements which would
affect the stability of the computations. The first application of the ALE formula-
tion was used in conjunction with a finite difference scheme (Hirt et al., 1974) and
has since been extensively utilised for free surface problems using the finite element
method (Huerta & Wing Kam, 1988; Ramaswamy & Kawahara, 1987). Ho (Ho,
1995) developed an ALE approach to simulate free surface flow using a spectral
element discretisation based on conforming quadrilaterals and this formulation has
been extended by Warburton and Karniadakis (Warburton & Karniadakis, 1997) to
hybrid discretisations incorporating triangular and tetrahedral elements (Sherwin &
Karniadakis, 1995a,b), where the vorticity generation induced by a cylinder close
to a free surface is investigated. This spectral/hp element formulation ensures fast
convergence rates, minimal diffusion and dispersion errors on deformed elements
(Warburton & Karniadakis, 1997) and also allows the fluid domain to be discretised
using an unstructured mesh (Sherwin, 1995). Therefore complex geometries such
as surface piercing cylinders and submerged bodies can be incorporated into the
computational domain. The benefits of the ALE and spectral/hp element formula-
tions have therefore been utilised in this work to generate solutions to unsteady free
surface flows with viscosity.

In order to study the various flow effects of viscous fluids with a free surface,
the problem of a free surface wave undergoing free oscillations is investigated. Free
oscillations occur when the free surface of a fluid has an initial prescribed defor-
mation or pressure distribution and is allowed to oscillate with gravity as the only
external force. The fluid motion generated by these conditions is commonly known
as sloshing. Sloshing has the benefit of allowing the investigation of important prob-
lems in free surface fluid dynamics, such as nonlinearities, generation of boundary
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layers at the free surface and walls and the complex issue of the determination of the
nature of the free surface contact point, to take place in a controlled environment
and without the need for inflow and outflow boundary conditions.

Sloshing has many areas of engineering application. The motion of any floating
vessel on the open sea is affected by the motion of the sea itself. If the wave induced
oscillations of the vessel are of the same resonant frequency as any fluid containment
system within it, the forces and moments resulting from the fluid motion will affect
the dynamic behaviour of the entire vessel and also place large structural loads on
the surrounding walls. Oil cargo ships and liquid natural gas carriers often have tank
dimensions such that the high resonant sloshing frequencies are in the same range
as the induced ship motions (Solaas, 1995), leading to violent sloshing motions and
large impact loads. Conversely, water tanks with internal sloshing have been fitted
to ships as motion damping devices.

Advances in space flight are dependent upon the understanding of the forces
and moments produced by a sloshing liquid in a microgravity environment where
viscous and free surface effects dominate the flow. Similarly sloshing effects on the
dynamic stability of light aircraft have to be considered.

Sloshing also has applications on a larger scale, for example the fluid motion
within a harbour or lake can be affected by tidal oscillations and earthquake dis-
turbances. These motions become increasingly important when a dam is used to
contain a large body of water which becomes excited due to earthquake activity
or landslides. Not only are the impact loads on the dam important, but also the
possibility of the fluid over-spilling.

This paper is comprised of four sections, the first of which is this introduction.
Section 2 formulates the governing equations for a viscous fluid with a free surface,
including non-linear free surface boundary conditions. Also included in this section is
the boundary condition schemes which approximate a no-slip surface at the contact
walls. This is followed by section 3 which contains the validated numerical results for
sloshing of an unbounded viscous fluid and a comparison of bounded sloshing for the
various applied wall boundary conditions. The final section contains the conclusions.

2 Governing equations for a viscous fluid with a free surface

The tank and fluid configuration can be seen in Fig. 1, where the fluid is con-
sidered to be contained within a rigid tank of length l and depth d, the side walls are
vertical and the floor is horizontal. A fixed frame of reference is defined as Oxz where
z points vertically upwards. The undisturbed free surface of the fluid is described by
z = 0 and the deformation of the free surface is denoted by ζ where z = ζ (x; t) and
t represents time. The flow of a viscous, incompressible fluid under the influence of
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gravity is therefore governed by the continuity equation,

∇ · u = 0 , (1)

where u has components u = (ux (x, z; t) , uz (x, z; t)), and by the ALE Navier-Stokes
equation,

∂u

∂t

∣

∣

∣

∣

∣

w

+ ((u − w) · ∇)u=−
∇p

ρ
+ ν∇2u + G , (2)

where p (x, z; t) is the pressure, G = (0,−g), g is the force of gravity per unit mass,
ν is the kinematic viscosity, ρ the density and w = (wx (x, z; t) , wz (x, z; t)). The

notation
∣

∣

∣

w
denotes that the derivative is evaluated on the moving frame of reference

of velocity w. This is the standard Arbitrary Lagrangian Eulerian formulation used
by many investigators to simulate free surface flow in stationary tanks (Warburton
& Karniadakis, 1997; Ramaswamy & Kawahara, 1987; Ramaswamy, 1989; Huerta
& Wing Kam, 1988; Robertson, 2000). The conditions placed on the boundary of
the fluid will be discussed in section 2.1. For convenience the notation to denote the
velocity of the frame of reference on which the time derivative is evaluated will be
relaxed in subsequent discussions.

The computational code, NεκT αr -ALE (Beskok & Warburton, 2001; War-
burton & Karniadakis, 1997), solves the governing incompressible ALE equations by
spatially discretising the domain using spectral/hp elements (Karniadakis & Sher-
win, 1997). Using this method the expansion basis comprises a set of shape functions
of increasing polynomial order, P . The main advantage of this method is an expo-
nential decrease in the error as P linearly increases for smooth functions.

A high order splitting method is implemented to temporally discretise the gov-
erning equations. The splitting scheme used has been extensively documented and
tested (Karniadakis et al., 1991) and more recently mathematically investigated by
Guermond and Shen (Guermond & Shen, 2003). A brief overview is given here.

The ALE governing equations (1) and (2) are temporally discretised and split
into three sub-steps,

û −

Je−1
∑

q=0

αqu
n−q = ∆t





Je−1
∑

q=0

βqN
(

un−q,wn−q
)

+ Fn+1



 , (3)

ˆ̂u − û

∆t
=−

1

ρ
∇p̄n+1 , (4)

γ0u
n+1 − ˆ̂u

∆t
= νL

(

un+1
)

, (5)

where the superscript index n refers to the relevant value being at time level tn =
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n∆t, Je is the order of the time integration and γ0 and αi are the stiffly stable
time integration coefficients (Karniadakis et al., 1991). N represnts the nonlinear
convection terms in the ALE Navier Stokes equations and L represents the linear,
diffusive terms.

The time integration coefficients βq can be evaluated by utilising Taylor expan-
sions to extrapolate an arbitrary function at time level (n + 1) ∆t, f n+1, in terms of
fn−q for 0 ≤ q < Je. The values of the time integration coefficients, γ0, αq and βq

are given in table 1 up to the third order.

The intermediate values of velocity are represented as û and ˆ̂u, where ˆ̂u is
assumed to be incompressible such that,

∇ · ˆ̂u = 0 (6)

and by taking the divergence of (4) to form a Poisson equation, p̄ is evaluated such
that,

∇
2p̄n+1 = ρ∇.

(

û

∆t

)

, (7)

coupled with suitable boundary conditions. The pressure term p̄n+1 = pn+1 ensures
that un+1 is incompressible. Although the continuity equation is imposed directly
on the intermediate solution ˆ̂u , the divergence free condition of the final solution
un+1 is enforced through the pressure Poisson equation and consistent boundary
conditions.

After un+1 has been obtained wn+1 is evaluated, where w is the velocity of the
mesh points represented by Xw = Xw (x, z; t) and

dXw

dt
= w . (8)

The mesh velocity is arbitrary everywhere except on the free surface and can be
evaluated from a Laplacian equation

∇
2w = 0 , (9)

as is done here following Ho (Ho, 1995). More recent work (Lohner & Yang, 1996)
has advocated using a variable coefficient within the Laplacian matrix to enhance
smoothing and prevent sudden distortions. Though this was found to be unnecessary
when simulating the flow scenarios in this paper. The free surface boundary condition
on w is evaluated using the kinematic boundary condition and will be derived in
section 2.1. The next step then begins by evaluating the mesh point locations using
the stiffly stable time integration coefficients used previously (see Table 1);

γ0X
n+1

w =
Je−1
∑

q=0

αqX
n−q
w + ∆t

Je−1
∑

q=0

βqw
n−q . (10)
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2.1 Boundary conditions

In the following sections the pressure and velocity boundary conditions are
formulated for wall boundaries and the free surface. The wall boundaries are de-
composed into walls in contact with the free surface, contact walls, and those walls
which are fully submerged and therefore not in contact with the free surface. The
fully submerged walls can subsequently be treated in a normal fashion by adhering
to the no-slip boundary condition. As discussed above alternative, pseudo-noslip
boundary conditions must be formulated for the free surface contact walls.

2.1.1 Wall boundary conditions

Pressure boundary condition

The pressure boundary condition on the walls for the high order splitting scheme
is obtained by taking the contributions of the temporally discretised Navier-Stokes
equation (2) in the normal direction and using vector calculus identities to enforce
divergence (Orszag et al., 1986; Karniadakis et al., 1991). The pressure boundary
condition is therefore,

1

ρ

∂p̄

∂n
=n ·



−
∂u

∂t

n+1

+
Je−1
∑

q=0

βqN
(

un−q,wn−q
)

+ν
Je−1
∑

q=0

βq

(

−∇× (∇× u)n−q
)

+ Fn+1



 . (11)

Velocity Boundary Condition on Fully Submerged Walls

The velocity boundary condition on walls not in contact with the free surface, gen-
erally the floor wall, is the no-slip condition and therefore for a fixed tank:

ux = 0 , (12)

uz = 0 . (13)

Velocity Boundary Condition on Free Surface Contact Walls

The velocity boundary condition specified on walls in contact with the free sur-
face is not well posed due to the contradiction of the moving free surface and a
no-slip condition on the bounding wall. Four alternative free surface contact wall
boundary conditions have been adopted in the current work. They are then tested
in the following sections for various flow scenarios and their effect on the fluid flow
examined.
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‘Slip’ wall boundary condition

The contact wall boundary problem has been overcome by many authors (Huerta
& Wing Kam, 1988; Warburton & Karniadakis, 1997) by adopting a slip boundary
condition on the free surface contact walls such that the non-permeability condition
is maintained, whilst the tangential velocity is allowed to take a non-zero value by
implementing a Neumann boundary condition at the wall. The resulting boundary
conditions for the vertical side walls are,

ux = 0 , (14)

∂uz

∂x
= 0 . (15)

These conditions relate to a zero shear force premise at the walls and therefore no
production of vorticity at these walls.

‘Semi-slip’ wall boundary condition

The semi-slip boundary condition is formulated by following the ideas of Dussan
(Dussan, 1976), who analytically studied the lowering of an infinitely long, inclined
flat plate into a fluid. At the contact point, that is the point at which the free surface
meets the plate, the fluid is allowed to slip and the no-slip boundary condition is
approached with increasing distance from the contact point. The resulting fluid
boundary conditions on the flat plate are,

u · n=Vf · n , (16)

u · s= Un (r)Vf · s , (17)

where Vf is the velocity of the flat plate and n and s the unit normal and tangent
to the plate respectively, r is the distance along the flat-plate from the contact point
and

Un (r) =
rn

1 + rn
, (18)

where 0 < n < ∞ and therefore limr→∞ Un = 1, resulting in the no-slip condition
being reached at infinity.

In a similar manner a semi-slip condition is computationally implemented on
the contact walls, denoted by S ′, with Ω′ representing the remainder of the boundary
and interior, by regulating the velocity of the fluid depending on the distance from
the contact point. This is achieved by modifying the values of the intermediate
velocity, û where û = (ûx, ûz), at the vertical contact walls according to the arbitrary
expression,
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û†
z = H (ûz) = ûz

(

z + d

ζw + d

)2

on S ′ , (19)

= ûz on Ω′ , (20)

where ζw = z(± l
2
, t) is the displacement of the contact point on the wall. This

function acts as a projection from a slip condition at the side walls to a semi-noslip
condition. The three semi-discrete sub-steps (3-5) used to propagate the values of u

and p̄ are therefore modified to,

û −

Je−1
∑

q=0

αqu
n−q = ∆t





Je−1
∑

q=0

βN
(

un−q,wn−q
)

+ Fn+1



 , (21)







û†
x

û†
z





=







ûx

H (ûz)





 (22)

ˆ̂u − û†

∆t
=−

1

ρ
∇p̄n+1 , (23)

γ0u
n+1 − ˆ̂u

∆t
= νL

(

un+1
)

, (24)

and the pressure is evaluated by

∇
2p̄n+1 = ρ∇.

(

û†

∆t

)

. (25)

The contact wall boundary conditions placed on the evaluation of u in equation (24)
are the slip boundary conditions (14-15).

‘Semi-noslip’ wall boundary conditions

Another alternative is to place no-slip boundary conditions on some fraction of
the wall and slip conditions on the remainder, with the slip conditions occupying
the upper portion of the wall. An example is shown in Fig. 2 where the darker
elements indicate a no-slip boundary condition on the wall and the lighter elements
a slip boundary. The designated fraction of slip elements against no-slip elements is
arbitrary and therefore user defined.

‘Robin’ wall boundary conditions

A similar method to the semi-noslip wall condition is the Robin boundary condition,
where the no-slip boundary condition is enforced at some distance from the free-
surface, whilst the slip condition is enforced on the free surface. In practice the
Robin boundary condition is specified within the top element. Within the length
of the boundary between the slip and no-slip condition the velocity is allowed to
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“smoothly” vary in order to minimise instabilities. The condition within this slip-
distance, ls, is:

ux = 0 , (26)

α
∂uz

∂x
+ βuz = 0 , (27)

where α = α(z) and β = β(z). α and β can take any reasonable form, in the present
work they are represented as polynomials:

α =

(

z − zs

zf − zs

)n

, (28)

β = 1 − α , (29)

where zs represents the vertical height of the start of the slip length, zf represents
the free surface height and therefore ls = zf −zs. The value of n can take any positive
value; a large value would equate to the dominance of the no-slip contribution to the
Robin boundary condition. The variation of α and β is shown in Fig. 3 for n = 2,
which is the value used for all computations reported here. This choice of n results
in both dα/dz and dβ/dz being zero, thus ensuring a smooth transition from the
no-slip condition to the mixed Robin condition.

Once again the designated fraction of slip elements against Robin elements is
arbitrary and therefore user defined. The size of the slip elements will effect the
computational results, though it will be shown the results converge as the element
size is decreased.

2.1.2 Free surface boundary conditions

The pressure and velocity boundary conditions on the free surface are both
formulated from the dynamic constraint of continuity of normal momentum flux
across the free surface, whilst assuming negligible momentum on the air side and
neglecting surface tension. The component of the stress tensor in the outward normal
direction is therefore,

σijnj = 0 , (30)

by substituting in the expression for the stress tensor the free surface dynamic
condition becomes

−pni + µ

(

∂ui

∂xj
+

∂uj

∂xi

)

nj = 0 , (31)

for zero atmospheric pressure. By resolving this condition in the direction normal
and tangential to the free surface we can formulate pressure and velocity boundary
conditions at the free surface.
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Free Surface Pressure Boundary Condition

The normal component of the dynamic free surface boundary condition (31) gives a
Dirichlet boundary condition for the pressure,

−pnini + µ

(

∂ui

∂xj
+

∂uj

∂xi

)

njni = 0. (32)

This condition enforces the balance between the externally applied stresses and
the internal stresses. In two dimensions where n = (nx, nz) and u = (ux, uz) and
neglecting surface tension

−p + 2µ

(

∂ux

∂x
n2

x +

(

∂ux

∂z
+

∂uz

∂x

)

nxnz +
∂uz

∂z
n2

z

)

= 0 . (33)

Commonly this is rewritten by dividing through by n2
z and representing the pressure

boundary condition in terms of the velocity and free surface gradients,

−p +
2µ

1 +
(

∂ζ
∂x

)2





∂ux

∂x

(

∂ζ

∂x

)2

−

(

∂ux

∂z

∂uz

∂x

)

∂ζ

∂x
+

∂uz

∂z



 = 0 , (34)

where ∂ζ
∂x

= −nx

nz

.

Free Surface Velocity Boundary Condition

The tangential component of equation (31) gives a Neumann boundary condition for
the free surface. The tangential contribution to the dynamic free surface boundary
condition is

µ

(

∂ui

∂xj
+

∂uj

∂xi

)

njsi = 0 , (35)

where s is the unit tangent vector. By substituting s = (nz,−nx) the condition
becomes,

2
∂ux

∂x
nxnz +

(

∂ux

∂z
+

∂uz

∂x

)

n2

z −

(

∂uz

∂x
+

∂ux

∂z

)

n2

x − 2
∂uz

∂z
nznx = 0 . (36)

The necessary Neumann boundary conditions for the velocity are not immediately
obvious, though by rearranging equation (36) and using the continuity equation (1)
two Neumann boundary conditions for the velocity can be formulated as,
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∂ux

∂n
=−

∂ux

∂x
nx −

∂ux

∂z

∂ζ

∂x
nx −

∂uz

∂x

(

∂ζ

∂x
nx + nz

)

+ 2
∂uz

∂z
nx , (37)

∂uz

∂n
=

∂ux

∂x

(

2
∂ζ

∂x

1

nz
− nz

)

+
∂ux

∂z
nx





(

∂ζ

∂x

)2

− 1





+
∂uz

∂x

(

∂ζ

∂x

)2

nx − 2
∂uz

∂z

∂ζ

∂x
nx . (38)

Kinematic Boundary Condition

The kinematic boundary condition in its most general form is

u · n = w · n , (39)

which simply states there is no normal flow of fluid over the free surface interface. We
are not constrained however to move the mesh velocity w with the same tangential
velocity as the fluid and so can arbitrarily fix one component of w. To limit the
distortion of elements and promote a stable solution we choose to specify wx = 0
and so in two dimensions equation (39) can be written as,

uxnx + uznz = wznz . (40)

Dividing through by nz and recognising that ∂ζ
∂x

= −nx

nz

we arrive at

uz = wz + ux
∂ζ

∂x
. (41)

wz can be used as a Dirichlet boundary condition when evaluating the velocity w

in the interior of the fluid using equation (9). The choice of the Dirichlet boundary
conditions for wz on the side and floor walls is arbitrary and can be linearly evaluated
from the velocity of the free surface at the wall. For example at the wall x = − l

2
,

wz

(

− l
2
, z; t

)

=
z + d

ζw + d
wz

(

− l
2
, ζw; t

)

, (42)

where ζw = ζ
(

± l
2
; t
)

.

3 Numerical Results

3.1 Validation of unbounded sloshing

Various analytical methods exist to determine the rate of decay rate of a gravity
bounded wave given some initial displacement (Landau & Lifschitz, 1959; Wu et al.,
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2001). In this section results evaluated using a method derived by Landau and
Lifshitz (Landau & Lifschitz, 1959) to theoretically predict damping rates for a
freely sloshing fluid are compared with those produced by the numerical algorithm.
Landau and Lifshitz (Landau & Lifschitz, 1959) obtain an exact solution to the
linear free surface governing equations for a fluid with infinite depth by utilising
diffusion length characteristics. The solution can be approximated to produce decay
rates and frequencies for high or low Reynolds number flow. Here the solution is
solved exactly and is therefore applicable for flow at all Reynolds number, though
the amplitude to wavelength ratio of the wave must be small to ensure linearity. The
Reynolds number is defined by

Re =
(gd)1/2 d

ν
, (43)

where (gd)1/2 is the characteristic velocity and d the characteristic length. All phys-
ical quantities are therefore non-dimensionalised by utilising this characteristic ve-
locity and length. The decay rate, α, is defined by,

a = a0e
−αt, (44)

where a is the amplitude of the wave, a0 is the initial amplitude and t represents
time.

To eliminate the necessity to consider the influence of the boundary condition
and the contact point of the free surface on the fixed vertical walls, a periodic domain
is utilised such that the values of the prime variables on the left hand side of the
domain are identical to those on the right hand side. This has the benefit of allowing
the decay rate due to the free surface boundary layer to be isolated and evaluated,
though there is a minimal contribution to the decay from the floor wall.

Before the comparison is given, the temporal and spatial convergence of the
solution must be proved in order for the results to be considered valid. This is done
by conducting the same experiment for various temporal and spatial discretisations.
The fluid is initially at rest within a periodic domain of size l = 2, with an initial
free surface displacement described by,

ζ (x; 0) = −a0 cos (kx) , (45)

where k = 2π/l and a0 = 0.005 thus ensuring a linear wave. The mesh used contains
100 quadrilateral elements and is shown in Fig. 4 at its initial displacement. The
elements are smaller at the surface and floor to capture the boundary layer ade-
quately, whilst relatively large elements occur in the body of the mesh due to the
small velocity gradient present in this area.

The Reynolds number of the test case is 110.736. Fig. 5(a) shows the time
history of the free surface at x = 1/2 for decreasing values of ∆τ . It can be seen
from the graph that convergence in time is satisfied as the results are nearly identical
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when using τ = 4.429×10−3 and τ = 2.215×10−3 . Fig. 5(b) shows the time history
of the free surface for increasing values of p, rapid convergence in p is achieved. For
values of P = 5, P = 7 and P = 9 the results are indistinguishable.

The comparison with the analytical results is for a case where the fluid is ini-
tially at rest within a periodic domain of size l = 0.2, with an initial free surface
displacement as described by equation (45) k = 2π/l and a0 = 0.0005. These param-
eters ensure a linear wave with minimal contribution to the damping of the motion
from the floor wall. The numerical grid comprises 100 quadrilateral elements and is
similar to that shown in Fig. 6, though the mesh used for this experiments has a
depth many times the width of the domain. The computations were performed using
a polynomial expansion basis of order 5. The numerical experiment was conducted
over a range of Reynolds number and the displacement time history of the waves are
shown in Fig. 7 for the point x = −l/2 with the analytical decay rate also shown.
The good comparison between the analytical and computational decay rates can be
seen in Table 2.

3.2 Comparison of contact wall boundary conditions

To be viable numerical schemes all the presented contact wall boundary con-
ditions must spatially and temporally converge. This convergence is proved in the
following sections.

3.2.1 Temporal and spatial convergence

Fig. 8 contains time-histories of the displacement of the free surface for a slosh-
ing fluid at x = −1/2 for each implemented boundary condition and varying tem-
poral increments. Again the fluid is initially at rest with a sinusoidally prescribed
deformation such that,

ζ (x; 0) = −a0 sin (kx) . (46)

The governing parameters of the flow are k = π/l, a0 = 0.02, l = 2 and Re = 3132
and an expansion basis of order 5 was used. The computational mesh is comprised
of 100 elements and can be seen in Fig. 6. The slip length ls used with the semi-
noslip and Robin boundary conditions is d/32. The time increment is decreased and
temporal convergence is shown both in the time-histories in Fig. 8 and also in the
error estimates in table 3. The error shown is the rms error, Erms where

Erms =

(

N
∑

i=1

(ue
i − ua

i )
2

N

)1/2

, (47)

and N denotes the number of sample points, ue and ua are the exact and approximate
solution respectively known at N discreet points. As no exact solution exists, the
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most accurate numerical solution is used in its place. For the temporal and spatial
convergence investigations ue is evaluated for ∆t = 5×10−4 and P = 7 respectively.

Spectral convergence is proved in a similar manner to temporal convergence.
As P is increased the time histories converge as shown in Fig. 9 and table 4.

In order for the contact wall boundary conditions with a user defined slip length
to be viable and reliable computational schemes the numerical results should con-
verge as the slip length is decreased. This convergence is illustrated by the displace-
ment time histories in Fig. 10 where the difference between the motion of the fluid
decreases as the slip length decreases. This decrease can also be seen in the error
estimates in table 5 where the most accurate solution, ue, is attributed to ls = d/64.

3.2.2 Comparison of analytical and numerical results for a fully bounded fluid

The decay rate of a sloshing fluid undergoing free surface standing wave mo-
tion has been evaluated numerically and compared with an analytical formulation
derived by Keulegan (Keulegan, 1959). The analytical derivation was undertaken
by presuming the energy dissipation due to the introduction of side and bottom
walls occurs within the vorticity layers generated at these walls. The velocity within
the main body of the fluid is evaluated using the well known potential formulation
(Lamb, 1975) and close to the wall by boundary layer techniques incorporating the
characteristic diffusion length. This analytical result was found to be in good agree-
ment with physical experiments performed by Keulegan (Keulegan, 1959) when the
Reynolds number is high, Re ≈ 1 × 106, and the main agent for diffusion is the
generation of vorticity at the side and floor walls.

Fig. 11 contains displacement time-histories of a free surface at x = −l/2
with intial conditions given by equation (46) and k = π/l, a0 = 0.02, l = 2,
312 ≤ Re ≤ 31321 and P = 5 using the various boundary conditions. The ana-
lytical decay rate of Keulegan (Keulegan, 1959) is also shown. When using the slip
boundary condition the decay rate is too shallow due to the exclusion of vorticity
generation at the side walls. Fig. 11 also illustrates that the results when the other
three boundary conditions are implemented encouragingly converge as the Reynolds
number increases.

Table 6 contains the numerical and analytical decay rates where a good com-
parison can be seen between the numerical and analytical results for the two highest
Reynolds numbers where the analytical formulation is valid.

3.2.3 Vorticity generation and contact point behaviour

Vorticity generation at the side walls is one of the most important functions
of the applied boundary conditions when considering the damping of an oscillating
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fluid or moving body within a fluid. Vorticity contours for a sloshing fluid are shown
in Fig. 12 where t = 9.40, k = π/l, l = 2 and Re = 3123. As expected vorticity is
generated at the side walls when using the semi-slip, semi-noslip and Robin boundary
conditions. The vorticity generated there is greater than that produced by the floor
wall due to the exponential increase in velocity with height. The velocity gradient
at the side walls leads to the free surface undergoing a relatively large deformation
at the wall contact point, shown in Fig. 13. The free surface at the wall is trailing
the main body of the fluid due to the implementation of the pseudo-noslip boundary
conditions. As no vorticity is generated at the side walls when using the slip condition
there is no deformation at the wall contact point.

4 Conclusion

The formulated viscous, free surface numerical code has been shown to be highly
accurate when compared to analytical decay rates for an unbounded sloshing wave.
Various contact wall boundary conditions have been presented and evaluated by
comparison to an analytical derivation to calculate the damping of a fully bounded
sloshing fluid. Where the analytical results are valid, the comparison with the present
numerical results has been found to be favourable. Important applied shear forces
identified by the semi-noslip boundary condition, are not captured by the slip bound-
ary condition. Therefore to accurately simulate industrial fluid structure interaction
scenarios a pseudo-noslip boundary condition, such as those presented here, is nec-
essary.
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Fig. 1. Definition of frame of reference and wall boundary conditions for contained free
surface system
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Fig. 2. Placement of slip/no-slip boundary conditions for a ‘no-slip’ wall boundary condi-
tion
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Fig. 4. Mesh used for small amplitude sloshing

20



τ

ζ/
a 0

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Temporal convergence for decreasing time-step: −−−−
−−−− ∆τ = 4.429 × 10−2, − − − − − ∆τ = 2.215 ×

10−2, · − · − · − ∆τ = 4.429 × 10−3, · · · · · · ∆τ =
2.215 × 10−3, − · · − · · − · · ∆τ = 4.429 × 10−4.

τ

ζ/
a 0

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Spatial convergence for increasing polynomial order :
−−−−−−−− p = 1, − − − − − p = 3, · − · − · − P =
5, · · · · · · P = 7, − · · − · · − · · P = 9.

Fig. 5. Time history of free surface at x = −l/2 showing 5(a) temporal convergence and
5(b) spatial convergence

Z

X

Fig. 6. Mesh configuration for wall boundary condition numerical simulations
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Fig. 7. Time history of free surface at x = −l/2 for l = 0.2 with increasing Reynolds
number with predicted decay rate as dashed line.
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(c) Semi-noslip boundary condition
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(d) Robin boundary condition

Fig. 8. Time history of free surface displacement for all wall boundary conditions showing
temporal convergence: −−−−−−−−−−−−−−− ∆t = 1.57×10−2, −−−− ∆t = 7.83×10−3, −·−·−·−·

∆t = 3.13 × 10−3 and · · · · · · · ∆t = 1.56 × 10−3
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(d) Robin boundary condition

Fig. 9. Time history of free surface displacement for all wall boundary conditions showing
spectral convergence:−−−−−−−−−−− P = 1, −−−− P = 3, − ·− ·− ·−· P = 5 and · · · · ·· P = 7
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(b) Robin boundary condition

Fig. 10. Time history of free surface displacement for all wall boundary conditions showing
slip length convergence: −−−−−−−−−− ls = d/32, −−−− ls = d/48, − · − · − · − ls = d/64
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Fig. 11. Time history of free surface at x = −l/2:−−−− Analytical decay rate, −·−·−·−
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26



x

z

-1 -0.5 0 0.5 1-1

-0.8

-0.6

-0.4

-0.2

0

(a) Slip Boundary Condition

x
z

-1 -0.5 0 0.5 1-1

-0.8

-0.6

-0.4

-0.2

0

(b) Semi-slip Boundary Condi-
tion

x

z

-1 -0.5 0 0.5 1-1

-0.8

-0.6

-0.4

-0.2

0

(c) Semi-noslip Boundary Condi-
tion

x

z

-1 -0.5 0 0.5 1-1

-0.8

-0.6

-0.4

-0.2

0

(d) Robin Boundary Condition

Fig. 12. Vorticity contours at t = 9.40 for a fully bounded sloshing fluid
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Fig. 13. Free surface profile at t = 9.40 for a fully bounded sloshing fluid
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coefficient 1st Order 2nd Order 3rd Order

γ0 1 3/2 11/6

α0 1 2 3

α1 0 −1/2 −3/2

α2 0 0 −1/3

β0 1 2 3

β1 0 −1 −3

β2 0 0 1

Table 1
Time integration coefficients for a high-order splitting scheme to solve the Navier-Stokes
equations

Test Case Re αp αc αc/αp

A 3.50178 5.57409 × 10−2 5.59406 × 10−2 1.00358

B 35.0178 5.65876 × 10−1 5.62732 × 10−1 0.994444

C 350.178 2.38943 2.41594 1.01109

D 3501.78 4.72041 × 10−1 4.54660 × 10−1 0.96318

E 35017.8 5.92026 × 10−2 6.15687 × 10−2 1.03997

F 350178 5.72630 × 10−3 7.67816 × 10−3 1.34086

Table 2
Test cases A to F for sloshing with k = 2π/l, a0 = 0.0005 and l = 0.2 giving a comparison
between the predicted decay constant, αp and the computed decay constant, αc
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Time increment

∆t = 1.57 × 10−2 ∆t = 7.83 × 10−3 ∆t = 3.13 × 10−3

Slip 0.00143657 0.000619007 0.000151621

Semi-slip 0.00209782 0.00115888 0.000438266
B.C.

Semi-noslip 0.00136618 0.000589279 0.000140615

Robin 0.0013824 0.000601962 0.000103919

Table 3
Time increment error for all boundary condition schemes

Order of Expansion Basis

P = 1 P = 3 P = 5

Slip 0.00061962 1.50046 × 10−6 1.91429 × 10−7

Semi-slip 0.00310734 0.000724009 0.000243374
B.C.

Semi-noslip 0.00164267 5.50922 × 10−5 2.49173 × 10−5

Robin 0.00314926 0.000161948 9.75539e-05

Table 4
Spectral error for all boundary condition schemes
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Slip length

d/32 d/48

Semi-noslip 0.000585786 0.000259526
B.C.

Robin 0.0005974 000269809

Table 5
Slip length error convergence for all boundary condition schemes

Re Analytical
Slip

Analytical
Semi-slip
Analytical

Semi-noslip
Analytical

Robin
Analytical

312 0.021887 0.886 1.53 1.93 2.046

3123 0.0084967 0.182 0.914 0.977 0.973

31231 0.0023462 0.255 1.019 0.930 0.931

Table 6
Analytical and computationally derived decay rates where computational rates are ex-
pressed as a ratio over the analytical value.
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