
85

Documenta Praehistorica XL (2013)

Lactase persistence and milk consumption in Europe>
an interdisciplinary approach involving

genetics and archaeology

Michela Leonardi
AG Palaeogenetik, Institute of Anthropology, Johannes Gutenberg University, Mainz, D

Human Evolutionary Ecology Group, Department of Anthropology, University College London, London, UK
m.leonardi@ucl.ac.uk

Introduction

Mammals have the ability to digest lactose – the
main sugar contained in milk – only until weaning
is over. After that, there is a significant reduction in
the production of lactase, the enzyme that allows
the absorption of lactose. In humans, however, at
least four genetic mutations have been associated
with the production of lactase into adulthood (lac-
tase persistence). The frequency of lactase persistent
individuals varies significantly between and within
continents, and in some cases even between neigh-
bouring regions. In Europe the distribution of lac-
tase persistent individuals follows a cline showing
lower frequencies in the south, and higher frequen-
cies, reaching as much as 98%, in the north.

The study of ancient DNA shows that the lactase per-
sistence associated variant was absent or present in
very low frequencies in most regions before and du-

ring the Neolithic (Burger et al. 2007; Lacan et al.
2011; Malmström et al. 2009; Plantinga et al. 2012).
This result suggests that, before the beginning of
animal husbandry, the European population was not
able to drink milk during adulthood without suffe-
ring from very unpleasant and sometimes deleteri-
ous symptoms. After the domestication of cattle,
sheep and goats, milk became available as a source
of nutrition for adults, and the frequency of the lac-
tase persistence-associated mutation increased rapid-
ly in the population, reaching the present-day rates.

The origin and spread of lactase persistence is a very
complex process that, to be understood well, must be
considered within its archaeological, genetic and so-
cial context (Gerbault et al. 2011; Leonardi et al.
2012).
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Genetics

The digestion of milk
Lactose is a disaccharide sugar that can be found in
different percentages in the milk of almost all mam-
mals apart from the platypus and some marine mam-
mals (Reich, Arnould 2007). Lactose cannot be di-
gested in its disaccharide form; to be assimilated, it
has to be hydrolysed and separated into two mono-
saccharide sugars (glucose and galactose). This is per-
formed in the mammal intestine with the enzyme
lactase (lactase phlorizin hydrolase or LCT). The pro-
duction of lactase in the small intestine is usually
either already high at birth (e.g., in humans; Wang
et al. 1994), or peaks a few days later (e.g., in ro-
dents; Troelsen 2005), and remains at more or less
the same level until weaning is over, when it de-
creases significantly.

When this happens, the undigested lactose reaches
the colon, where it is fermented by colonic bacteria.
The glucose is then fermented involving the produ-
ction of short chain fatty acids and gases, entailing
osmotic effects. The result of this process is the ap-
pearance of very unpleasant symptoms such as bloa-
ting, chronic flatulence, diarrhoea and abdominal
cramps (Ingram et al. 2009a). The severity of sym-
ptoms can vary between individuals showing the
same levels of lactase production (Vonk et al. 2003),
since colonic adaptation can lead to a better capa-
city to ferment lactose and a reduction in the produ-
ction of hydrogen by the colonic microbiota (Szila-
gyi et al. 2002).

In about 35% of adults worldwide, lactase is produ-
ced throughout their life, allowing them to drink
milk at any age without experiencing any of the
above-mentioned ill effects (Ingram et al. 2009a).

The genetics of lactase persistence
Lactase persistence is inherited as a dominant Men-
delian trait (Ferguson, Maxwell 1967; Sahi et al.
1973; Sahi, Launiala 1977). A single gene located
in chromosome 2, called LTC, codes for lactase. With-
in the neighbouring MCM6 gene, a region (intron
13) seems to have an enhancer action on the LCT
gene (Fang et al. 2012; Jensen et al. 2011; Lewin-
sky et al. 2005; Olds et al. 2011; Olds, Sibley 2003;
Troelsen et al. 2003). Several different single nucleo-
tide polymorphisms (SNPs) in this region show a
strong association with lactase persistence, and their
distribution is geographically structured. The first
mutation found to be linked to this trait is a cytosine
to thymine transition 13 910 nucleotides upstream

of the transcription initiation site of the lactase gene
(–13910 C/T) (Enattah et al. 2002). The derived va-
riant at this locus (–13910*T) is associated with la-
ctase persistence throughout Europe (Anagnostou
et al. 2009; Ingram et al. 2009a; Itan et al. 2010;
Manco et al. 2013; Nagy et al. 2009; Sun et al.
2007; Torniainen et al. 2009), Central Asia (Heyer
et al. 2011) and India (Gallego Romero et al. 2012).

However, in Africa –13 910 C/T alone does not ex-
plain the observed pattern of lactase persistence di-
stribution, and several other SNPs within the same
genetic region appear to be associated with the abi-
lity to digest large quantities of raw milk by adults.
The same is true of the Middle East and in Tibet (Al-
Abri et al. 2012; Enattah et al. 2008; Imtiaz et al.
2007; Ingram et al. 2007; Ingram et al. 2009b;
Peng et al. 2012; Tishkof et al. 2007). For this rea-
son, several independent origins for lactase persis-
tence have been proposed (Enattah et al. 2008; In-
gram et al. 2007; Peng et al. 2012; Tishkoff et al.
2007).

Lactase persistence in modern worldwide po-
pulations

The frequency of lactase persistent individuals va-
ries significantly between geographical regions (Itan
et al. 2010). In Eastern Asia and in Native American
populations a small percentage of the population is
persistent (Itan et al. 2010). In Africa, the distribu-
tion is irregular, with frequencies that can reach as
much as 92% in pastoralist populations, but can fall
as low as 0.02% in non-pastoralist human groups
(for a table listing the frequencies in a great num-
ber of global populations see http://www.ucl.ac.uk/
mace-lab/resources/ glad, partially published in Itan
et al. 2010). A similar pattern can be observed in the
Arabian Peninsula and in Jordan, with relevant dif-
ferences between Bedouin and non-Bedouin neigh-
bouring groups (Al-Abri et al. 2012; Ingram et al.
2009a). In the Indian subcontinent, however, a cli-
nal pattern can be detected, declining from north-
west to south-east (Gallego Romero et al. 2012; In-
gram et al. 2009a; Itan et al. 2010).

Also in Europe, a similar cline with frequencies in-
creasing from south to north can be observed. In the
northern part of the continent almost all the sampled
individuals are lactase persistent, with frequencies
ranging between 96% and 83% in Finland, Denmark,
Ireland and the United Kingdom; in the Mediterra-
nean area, the opposite trend can be observed (Itan
et al. 2010; Manco et al. 2013).
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Archaeology

Before exploring the origin and spread of lactase
persistence in Europe in more detail, it is necessary
to consider the cultural and archaeological context
related to the beginning of milk consumption in Eu-
rope; this will be summarised in the next two sec-
tions.

The Mesolithic-Neolithic transition in Europe
The so-called Neolithic revolution marks the transi-
tion between a lifestyle based on hunting and gathe-
ring to one based on food production through culti-
vation and animal management and exploitation.
The transition from the Palaeolithic-Mesolithic to the
Neolithic entailed many different changes, not only
related to material culture (e.g., the acquisition of
pottery) and knowledge of new skills (e.g., those re-
lated to animal and plant domestication) but also to
the social structure of the human groups (e.g., seden-
tism and a different redestribution of wealth).

The first Neolithic cultures seem to have developed
around the Fertile Crescent some 12 000 years ago,
and then to have spread to neighbouring regions, in-
cluding Europe, during the following few thousand
years (Flannery 1973). Two opposite models have
been proposed to reconstruct the way in which Neo-
lithic cultures developed and spread in Europe.

The demic diffusion model suggests that the
Neolithic culture and lifestyle spread from the Near
East into Europe through the migration of farmers/
agriculturalists (and possibly domesticates) with no
substantial admixture with local hunter-gatherer po-
pulations (Ammerman, Cavalli-Sforza 1984). On
the other hand, the cultural diffusion model
theorises a step-by-step process whereby local Meso-
lithic groups learnt new skills from neighbouring
Neolithic populations, without a replacement of
people (Zvelebil, Zvelebil 1988.574–583). The more
recent studies suggest that a more complex interme-
diate model involving a succession of migration pha-
ses interleaved by local admixture could be a better
representation of what actually happened (Whittle,
Cummings 2007). Genetic data have been used in
order to differentiate between the two hypotheses,
but the subject is still debated (Barbujani 2012;
Thomas et al. 2013).

The pattern of modern non-recombinant diversity in
Europe has in some cases been interpreted as sup-
porting the demic diffusion model (Balaresque et
al. 2010; Barbujani, Bertorelle 2001; Battaglia et

al. 2009; Dupanloup et al. 2004; Simoni et al.
2000a; 2000b; Torroni et al. 2001) and in others as
supporting a major Palaeolithic ancestry for extant
lineages (Pala et al. 2012; Richards et al. 2000;
Scozzari et al. 2001; Semino et al. 2000).

On the other hand, it must be acknowledged that a
rough description of the data can lead to misinter-
pretation when different hypotheses are not statis-
tically tested through explicit simulations (Barbu-
jani 2000; Barbujani et al. 1998; Francois et al.
2010; Novembre, Stephens 2008; Pinhasi et al.
2012; Simoni et al. 2000b). Simulation studies on
this subject have also led to contradictory results
(Barbujani et al. 1995; Belle et al. 2006; Chikhi et
al. 1998; Chikhi et al. 2002; Currat, Excoffier 2005).

The main problem related to this kind of analysis is
that, probably at this stage, even computer simula-
tions are not able to take into account the many dif-
ferent variables that play a role in shaping the gene-
tic patterns of populations (Pinhasi et al. 2012). A
very recent article has highlighted some of these dif-
ficulties and tends to support a complex model of
cultural diffusion affected by range contractions (Are-
nas et al. 2013).

Ancient DNA can make an important contribution to
the solution of this problem (Pinhasi et al. 2012). Se-
veral studies have analysed mitochondrial DNA from
late hunter-gatherers and/or Early Neolithic samples
from different European regions (Hervella et al.
2012): from central Europe (Bramanti et al. 2009),
France (even if from a limited number of samples;
Deguilloux et al. 2011), Iberia (Sanchez-Quinto et
al. 2012) and Scandinavia (Malmstrom et al. 2009;
Skoglund et al. 2012). These studies suggest a local
discontinuity with modern European populations.
Data from Hungary (Guba et al. 2011) suggest the
same pattern, but the chronological attribution of
some samples has been questioned (Banffy et al.
2012). In Denmark, on the contrary, continuity with
the pre-Neolithic population has been proposed (Mel-
chior et al. 2010).

The role of milk consumption in the Neolithic
revolution
Before the Neolithic, milk was available only during
the first years of life (i.e. breastfeeding); only after
the beginning of animal domestication did it become
a possible source of nourishment for adults. Lactase
persistence, even if already present in some indivi-
duals, would have been of no utility until the begin-
ning of the human management of cattle, sheep and
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goats. The earliest evidence of milk related animal
domestication appear in the Euphrates valley be-
tween 10 700 and 10 500 BP, and this is followed
by a distribution to Eastern and Central Europe du-
ring the following millennia (Vigne 2011; Zeder
2008). Domesticated goats and sheep were brought
to Europe from the Near East, but for cattle a sep-
arate domestication process in Europe would have
been possible, although recent simulation studies
support a single domestication process in the Mid-
dle East (Bollongino et al. 2012).

During the last few decades, there has been a dra-
matic change in opinion about the importance of
milk consumption at the beginning of the Neolithic.
The ‘Secondary Product Revolution’ model has hypo-
thesised that animals were domesticated to exploit
so-called primary products, materials made available
with the death of the animal (meat, bone, horn,
leather etc.), and only subsequently was attention
directed towards products that can be collected while
the animal is alive (wool, milk, labour etc.) (Sher-
ratt 1981).

However, recent interdisciplinary studies have de-
monstrated that milk was used from the beginning
of animal domestication. Through an analysis of the
age and sex ratio in archaeological assemblages of
animal bones (i.e. kill-off profiles) from the Early
Neolithic, it has been possible to show that the ex-
ploitation of cattle, sheep and goats was aimed at
the production of milk, and not only meat, in both
Mediterranean Europe and the Middle East (Vigne,
Helmer 2007; Vigne 2008).

Moreover, the analysis of organic residues in pottery
allows us to recognise whether ceramics were used
to ferment milk (Dudd, Evershed 1998). Through
this method it has been possible to demonstrate that
milk exploitation and cheese production started from
the beginning of the Neolithic both in the Middle East
and in Europe (Copley et al. 2005; Craig et al. 2005;
Craig et al. 2005; Evershed 2008; Salque et al. 2013).

The origins of lactase persistence in Europe

The mutation associated with lactase persistence in
Europe (–13 910*T) is relatively recent. Estimates
based on the method of long-range haplotype conser-
vation suggest its origin between 2188 and 20 650
years ago (Bersaglieri et al. 2004) while an analy-
sis of the variation in closely linked micro-satellites
has dated it to a period between 7450 and 12 300
years ago (Coelho et al. 2005). It is interesting to

consider that the dates estimated for the origin of
one of the African variants (14 010*C) are similar,
even if slightly more recent (Tishkoff et al. 2007).

Given the scenario presented, one of the most inte-
resting questions that has been addressed during the
last decade is whether the –13 910*T variant was
already present in Europe in significant frequencies
at the beginning of the Neolithic (e.g., due to ran-
dom mutation and the effects of genetic drift) or if
the spread of the mutation associated with lactase
persistence was purely the result of selection acting
after the beginning of animal domestication, when
milk became available as a nutritional source
throughout the entire life of the individuals. The
advent and further development of technologies al-
lowing the sequencing of DNA extracted from ar-
chaeological specimens has helped answer this que-
stion.

The first study to address this issue was performed
on a set of samples from Central Europe (Germany,
Hungary, Lithuania and Poland) dating from the Me-
solithic (one individual) to the Early Neolithic period
(eight individuals) (Burger et al. 2007). All of them
were homozygotes for the ancestral allele, and there-
fore unable to digest fresh milk as adults. The au-
thors performed statistical analyses that showed
that the frequencies of the derived alleles must have
been very low, if not nil, in order to have such a pat-
tern in the sample.

More recently, several studies have been carried out
in different regions of Europe clarifying this asser-
tion (Burger, Thomas 2011; Linderholm 2011). In
France, the mentioned SNP has been typed in 26
skeletons dated to the end of the Neolithic, before
the beginning of the Bell-Beaker Culture, and all of
these were homozygotes for the C variant (Lacan et
al. 2011). In southern Scandinavia only one out of
ten Middle Neolithic hunter-gatherers carried the de-
rived allele, and was heterozygote (Malmström et al.
2009).

In contrast, in northern Spain, out of 26 Middle Neo-
lithic individuals, seven (five of them homozygotes)
carried the T allele (Plantinga et al. 2012). The au-
thors tend to explain this difference in frequencies,
compared to the other European samples, as the ef-
fect of genetic drift rather than the result of natural
selection.

Additionally, some more recent samples, from the
Middle Ages, have been analysed. A single individual
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from Germany was lactase persistent, being hetero-
zygous (Burger et al. 2007), and out of 23 samples
from Hungary only three carried the derived haplo-
type (Nagy et al. 2011). It has nevertheless to be
born in mind that for periods such as the Middle
Ages high levels of gene flow and important migra-
tions occurred in Europe, and this must be conside-
red when interpreting such data (Nagy et al. 2011;
Reich, Arnould 2007).

Selection on lactase persistence

The above-mentioned data support a massive incre-
ase of LP frequency from virtually 0 to close to 100%
in Northern Europe in a few thousand years, which
is a very short period when considering the evolu-
tion of our species. This evidence suggests strong na-
tural selection acting on this locus: the coefficient of
selection has been estimated as reaching almost 0.2
in Northern European populations (Bersaglieri et al.
2004). Such a strong indication of selection poses the
problem of understanding why drinking fresh milk
had such a significant selective advantage.

It is important to consider that the intake of small
quantities of fresh milk does not always cause un-
pleasant symptoms in non-persistent individuals, and
that when milk is processed or fermented, such as in
yogurt or cheese, the amount of lactose decreases
and the consumption of these products does not
cause symptoms to non-persistent individuals (Ham-
mer et al. 1998). Moreover, as already discussed, gut
flora adaptation can in some cases allow individuals
to avoid the symptoms of lactose malabsorption (Szi-
lagy et al. 2002).

The evidence of cheese production during the Early
Neolithic mentioned above has a special meaning. It
has already been discussed that lactase persistence
was very rare or absent during the Neolithic, and this
would not allow human groups to drink fresh milk.
Processed milk, on the other hand, can be digested by
non-persistent individuals without unpleasant sym-
ptoms. The production of cheese at the beginning of
the Neolithic suggests that at that time human groups
may have already recognised the high nutritional be-
nefits available from milk, and, in order to digest it,
they processed it. It can be presumed, therefore, that
the reason lactase persistence spread and became so
common in Europe is not to be found in the simple
nutritional benefits of consuming fresh milk.

The observations above raise a question: why is la-
ctase persistence so strongly selected if non-persis-

tent individuals can consume milk by processing it,
thereby gaining many of milk’s nutritional benefits?
Several possible explanations have been proposed,
but it is still under debate as whether any is convin-
cing enough to justify levels of positive selection as
high as those observed. As previously discussed, high
frequencies of lactase persistence tend to correlate
with a traditionally pastoralist lifestyle or with high
consumption of fresh milk, even if this is not always
the case (Ingram et al. 2009b). This evidence could
be the result of two quite different scenarios.

The reverse-cause argument (McCracken 1971):
after its first appearance, a mutation associated to la-
ctase persistence could have grown in frequency
within one or several small human groups only be-
cause of genetic drift. Milk drinking could then have
been adopted since the group would have been able
to tolerate it.

Gene culture co-evolution (McCracken 1971.
497–517, Simoons 1970.695–710): lactase persis-
tence could have been positively selected in dairy-
ing populations, which had access to fresh milk
throughout life.

As already noted in the previous section, ancient
DNA data support the second hypothesis. During the
Neolithic, when dairying practices were already es-
tablished, lactase persistence appears to be virtually
absent, or present in very low frequencies in Europe.
It is also important to consider that the random in-
dependent origin and then the increase of the fre-
quencies of different lactase persistence-associated
alleles due to the random fluctuation (genetic drift)
in different regions would be a very complex and
unlikely scenario, for which no possible explanation
is available at the moment.

The calcium assimilation hypothesis (Flatz,
Rotthauwe 1973): exposure to sunlight allows hu-
man skin to produce vitamin D, which is an element
of great importance for the absorption of calcium in
the bones. When vitamin D, taken in through a diet
rich in fish or produced thanks to exposure to the
sun, is not sufficient, bone development can be se-
riously compromised. In addition to other nutrients,
milk contains small amounts of vitamin D and large
amounts of calcium. The frequency of lactase persi-
stence in Europe correlates with latitude and sun-
light, and this evidence suggests a cause-effect rela-
tionship between the two. In Northern Europe, it is
possible to observe a transition from a diet rich in
fish and marine organisms (rich in vitamin D) during
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the Mesolithic to one based mainly on cereals (poor
in vitamin D) in the Late Neolithic (Eriksson et al.
2008; Lidén, Eriksson 2007; Lidén et al. 2004). The
Meso-Neolithic transition has been shown by many
scholars to be associated with a deterioration in
health (Cohen 2008; Eriksson et al. 2008; Eshed et
al. 2010; Hershkovitz, Gopher 2008; Larsen 1995).
Drinking milk would have helped populations liv-
ing where sunlight is low to avoid rickets and simi-
lar problems related to such a nutritional change.

Adaptation to arid environments (Cook, al-Tor-
ki 1975.135–136): in a normal situation, raw milk
and cheese could provide the same nutritional bene-
fits, but in arid environments milk could be an un-
contaminated source of fluid, while lactose intoler-
ance related symptoms (mainly diarrhoea) could
lead to dehydration and, eventually, death. Neverthe-
less, this hypothesis is not easily applicable to Eu-
rope, where the climate is temperate.

A statistical test was performed to see whether lac-
tase persistence was more likely to be correlated
with dairying practice, calcium assimilation or adap-
tation to arid environments (Holden, Mace 1997.
605–628). The best correlation was obtained between
the ability to digest milk and pastoralism. This study
suggests, in accordance with the palaeogenetic data,
that pastoralism was more probably adopted before
lactase persistence arose or became frequent.

The spread of lactase persistence through Eu-
rope

The pattern of genetic diversity that can be observed
in a population is the result of many different biolo-
gical and social processes that contribute to shaping
it during its history: random mutation, natural se-
lection, genetic drift (and, consequently, demogra-
phy), social factors influencing mating choices (e.g.,
social structuring) etc.

Computer simulations are very powerful instruments
for testing various hypotheses through models with
different degrees of complexity. In this way, the most
important factors playing a role in shaping the di-
versity observed can be explored both in a computa-
tionally effective way, removing the confounding ef-
fect of minor elements, and within a realistic frame-
work integrating all the information that appears to
be relevant to the problem. Computer simulations
have been applied to investigate the evolution of LP
since the late 1980s (Aoki 1986). As already mentio-
ned, lactase persistence is not entirely correlated

with pastoralism and milk drinking, since some in-
dividuals (or human groups) are able to drink milk
without being lactase persistent. Aoki tried to test if
this could be the result of a process of gene-culture
co-evolution and, by using computer simulations, he
confirmed that this is the case. Moreover, his study
showed that the incomplete correlation could be
easily linked to the stochastic nature of the process.

Two recent studies have reached different results
when simulating the spread of lactase persistence in
Europe. As already discussed, it is still debated whe-
ther the beginning of the Neolithic in Europe was
linked to the migration of people from the Middle
East or to simple cultural transmission of skills and
techniques from agriculturalist populations to neigh-
bouring hunter-gatherers. The colonisation and ex-
pansion in Europe by farmer populations could have
had an important impact on the diffusion of the
lactase persistence-associated allele, since some de-
mographic processes could mimic the effects of se-
lection (Klopfstein et al. 2006). The impact of de-
mographic effects and differential selection based on
latitude have been taken into account in a recent
study simulating the spread of lactase persistence in
Europe (Gerbault et al. 2009). The authors tested
two different scenarios for the spread of the Neoli-
thic in Europe (the demic and cultural diffusion mo-
dels). On the basis of the dates for the beginning of
the Neolithic in each region, they simulated the evo-
lution of the frequencies of the lactase persistence
associated allele through time. Selection was incor-
porated in three different ways: constant throughout
the continent, increasing towards the north (to test
the calcium assimilation hypothesis) or higher in cen-
tral European Early Neolithic (Linearband Ceramic)
populations.

The results show that the present-day frequencies of
milk digesters in southern Europe could be due to
genetic drift linked to the arrival of Neolithic farmers
from the Near East, but selection is required to repro-
duce the modern frequencies observable in the north-
ern part of the continent. The authors then support
the demic diffusion model associated with the cal-
cium assimilation hypothesis.

Spatially explicit simulations were also applied to
the same subject (Itan et al. 2009). After creating a
geographical background as close to Europe as pos-
sible, they modelled the evolution of the lactase per-
sistence associated variant in three humans groups:
hunter-gatherers (already present in the continent
prior to the beginning of the simulations, 9000 years
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ago), dairying farmers, and non-dairying farmers.
Food producers were allowed to reach a higher po-
pulation density, and they spread from the Middle
East towards Europe. Gene flow between groups,
long-distance migrations and the cultural diffusion of
subsistence practice were also included in the mo-
del. Positive selection acted only on dairying farmers.
The best simulations were chosen on the basis of the
fit with the arrival time of agriculture and modern
frequencies of lactase persistence in 12 different lo-
cations. The method used to analyse the results al-
lowed the estimation of migration rates, selection
coefficients and time and geographical coordinates
for the beginning of selection on lactase persistence;
the best fit was reached when selection started in a
region between the Balkans and Central Europe,
from 6256 to 8683 years BP, and differential selec-
tion in Northern Europe was not necessary to reach
modern frequencies. The times and regions mentio-
ned are in great agreement with the development of
the Linearband Ceramic culture (Pavúk 2005).

An analysis of the differences between the two men-
tioned studies can be found in Leonardi et al. (2012).
The simulation model used in Gerbault et al. (2009)
is less complex than that used in Itan et al. (2009)
in several ways. The model from the former that can
be better compared with the latter is the so-called
LBK scenario, where selection is higher only for the
descendants of LBK groups. In this model, the fre-
quencies of lactase persistence in Northern European
populations do not reach present-day values, show-
ing that higher levels of selection only in LBK-relat-
ed populations is not enough to reconstruct in a sa-
tisfactory way the modern distribution of lactase
persistence in Europe. Since gene flow and long-di-

stance migrations between populations are not ex-
plicitly modelled, this result does not contradicts the
findings of Itan et al. (2009) but suggests that se-
lection was not constant through time and space, a
hypothesis that has not been rejected by the latter
study, where the selection coefficient was constant.

Conclusion

Lactase persistence is an amazing example of gene-
culture co-evolution. The modern-day pattern of di-
versity at this locus in Europe is the result of the in-
teraction of a large number of factors such as physio-
logy, genetics, demography, migrations of people,
social structuring, and cultural contact. The study of
such a complex subject must start from a very care-
ful analysis of the archaeological, historical and bio-
logical contexts and should be performed using me-
thods that allow as far as possible integrations of the
different types of information available. During the
last decade, the increase of computational power
coupled with more effective sequencing techniques
has led to the possibility to simulate in silico more
models, and to reconstruct with better precision the
history of our and other species. A better understan-
ding of the origin and spread of lactase persistence
in Europe will definitely pass along this path.
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