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PHYSICAL REVIEW D VOLUME 54, NUMBER 12 15 DECEMBER 1996

Hierarchical search strategy for the detection of gravitational waves from coalescing binaries

S. D. Mohanty and S. V. Dhurandhar
Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind Pune 411 007, India
(Received 18 March 1996

The detection of gravitational waves from coalescing compact binaries would be a computationally intensive
process if a single bank of template wave fortns., a one-step searcls used. We present, in this paper, a
method which leads to a large reduction in the computational power required as compared to a one-step search.
This method is a hierarchical search strategy involving two template banks. We show that the computational
power required by such a two-step search, for an on-line detection of the one-parameter family of Newtonian
signals, is 1/8 of that required when an on-line one-step search is used. This reduction is achieved when signals
having a strength of- 8.8 are required to be detected with a probability~d3.95 and an average of one false
event per year. We present approximate formulas for the detection probability of a signal and the false alarm
probability. We investigate the effect of statistical correlations on these probabilities and incorporate these
effects wherever possible. Our numerical results are specific to the noise power spectral density expected for
the initial LIGO. [S0556-282(96)00224-X

PACS numbsg(s): 04.80.Nn, 95.55.Ym, 95.75.Pq, 97.80.Af

[. INTRODUCTION ity. The probability with which noise alone can masquerade
as a signal is called the false alarm probability.

The inspiral, because of gravitational radiation reaction, Computationally, efficient methods for the maximization
of a binary composed of compact massive objéneutron  of the LR are known for only a subset of the parameters
stars or black holeswill produce a gravitational wave signal involved. It is for the maximization over one such parameter
[1] which, during the last few minutes before merger, will lie that the correlation of the detector output with a template
within the bandwidths of upcoming laser interferometric de-wave form is computed. For the remaining parameters, how-
tectors such as the Laser Interferometric Gravitational Wavever, there is no straightforward method. The strategy which
Observatory(LIGO) [2], VIRGO [3], and GEO600. The has been considered most often is to carry out the maximi-
wave form of this signal can be computed with enough aczation over a discrete set of values for these parameters
curacy to allow pattern-matching techniques, such a$6-9]. Therefore, a set of templates would be required cor-
matched filtering, to considerably enhance the signal to noiseesponding to the set of values used for these parameters.
ratio [1,4]. Therefore, it should be possible to detect suchSuch a set is called lzankof templates. The use of a bank of
events up to a large distance and hence observe a significaleimplates implies, however, that not all of the possible sig-
event rate. nals can be detected equally well. This is because the signal

The technique of matched filtering is equivalent to corre-to noise ratio, hence the detection probability of a signal, is
lating the detector output with a wave form, called then-  reduced if its corresponding template is not used in obtaining
plate, which is constructed from the expected signal itself.the correlation$6,7]. Such a mismatch is bound to arise in a
This technique is derived from the more general method obank of templates for most of the signals. An arbitrarily fine
maximum likelihood detectiof5]. When applied to the de- spacing of the parameter values is not possible because of
tection of a signal with a fixed wave form, this method in- practical limitations imposed by the time required for the
volves the computation of a functional, called the likelihood maximization and the available computing power. One crite-
ratio (LR), of the given data. A detection is announced if therion which can be used to space the parameter values is that
LR exceeds a preset threshold. For coalescing binaries, howadl sighals with a given minimum energy be detected with a
ever, a wide range of signal wave forms are possible corregiven minimum detection probability. This is one of the cri-
sponding to different values of the parameters which characeria we adopt in this paper.
terize a binary, such as the masses and spins of the compactA method to set up a bank of templates satisfying a simi-
bodies among others. The LR then becomes dependent dar requirement was presented[#7]. It has been termed as
these parameters. In such a case, it is required that the LR liee Sathyaprakash-Dhurandh@D) formalism for aone-
maximized over the whole parameter space and the maxstep search However, detection probability was not used
mum, called the test statistic, be compared with a thresholdexplicitly by the authors in their computations. It was found
Depending on the particular realization of noise present ironly after the set of templates was obtained. Also, statistical
the data, it is possible that the test statistic stays below thdependencies among the correlation outputs were neglected.
threshold even though a signal is present. It is also possibl€he SD formalism can be used, nevertheless, to obtain esti-
that it exceeds the threshold in the absence of a signal benates of the computational power required for implementing
cause of noise alone. Thus, a given signal can be detecte¢de detection strategy outlined above. Such estimjg@¢es,
only with a certain probability called the detection probabil-for the on-line detection of coalescing binary wave forms
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incorporating post-Newtonian corrections, appear to be exthese distributions can be fit quite accurately by a distribu-
cessive. Therefore, it would be desirable to reduce the contion with a smaller set of statistically independent samples.
putational load if possible. One such way could be to use dhe effective number of samples required does not seem to
hierarchy of template banks in which information provided have any simple connection with the autocorrelation function
by a lower level is used to choose a subset of templates frof the noise. The issue of distribution functions of the test

the next level. The first level in such a strategy would consis tatistic was partially addressed fibl]. The authors found

. S he distribution function of a subsidiary test statistic which
of a template bank with a coarse spacing in parameter spagtve

b I hreshold. In th level finel as maximized over a single parameter only, namely, the
uta lower threshold. In the next level a more finely spaceg,;;a| hhase of the signal. We use the complete test statistic
set of templates and a higher threshold would be used b% this paper

only around those templates, in the previous level, which We also present a refined version of the SD formalism

produce a crossing of the Iovyer threshold. An appropriatgy, 5, explicitly takes detection probability into account. We
choice of thresholds and spacings would redug:e the nurnb‘?armphasize that nothing radically new has been incorporated
of templates employed compared to that required by a on€, yhig formalism. Our main purpose, however, is to use it as
step search and hence, save on the computational Cost. o jige in setting up the two-step search and to provide a
The use of such a strategy, known_ashmararcmcal more concrete context for a discussion of the distribution
search has been proposed a number of tiri@s10. How-  ¢,nqtions of the test statistic. In this connection, we present a

ever, a detailed formalism for the same has not been given QB mianalytic method for the computation of the drop in sig-

far in the context of the detection of gravitational wave Sig'nal to noise ratio as a function of the difference between the

nals. We present in this paper a rigorous formalism to deb irp times of a signal and a template.

scribe a two-step hierarchical search and a first estimate o The rest of the paper is organized as follows. In Sec. Il we
the numbers involved. We use the family of Newtonian Wavgfiscuss the distribution functions which govern the test sta-

gormg for our cgrr}lputz?]tlor]s_ .‘”‘Tdutg% n\c;\llse hpower spectr q istic in the presence and absence of a signal. These will be
ensity expecte orft e Initia ' 'de have not use I.required to obtain the detection probability of a signal and
more accurate wave forms so as to avoid the extra complig,o t55e alarm probability. We start in Sec. Il A with an

cations that V_I\_’ﬁmd con?g '1 because of a larger tr)l_umt_)er Outline of the signal detection problem and the method of
parameters. They would obscure an important objective of,ayimum likelihood detection. The family of signals and the

this paper which is to highlight some subtle _issues rggardingmise to be used in this paper will be described in Sec. Il B.
hierarchical search in general. However, this formalism CaRy/e obtain the test statistic relevant to this choice of signals

rarrTure]ters as well Elis aflz:]r_ger number ﬁf |ntﬁrmed|ate Stagesyt this test statistic in Sec. I D. An approximate expression
€ main réa?ut oft 'T. paper is that t ehcompbutauonalfor detection probability is obtained which will also be used

power required for an on-line two-step search can be Up 10 g, yhe case of a two-step search. The false alarm probability

factor of 8 smaller than that for an on-line one-step searchii turn out to be dependent on the method used for the

This hhappens V‘iher? a detection Iprobapility 1@&%95 IS computation of the test statistic. Hence, it will be discussed
sought for signals having a signal to noise raNR) of j, sec || E along with a rigorous reformulation of the SD

8.80 and the false alarm is kept so that there is, on thef?rmalism for a one-step search.

average, not more than one false event per year. An SNR O gecion |1 is devoted to the two-step hierarchical search.
8.8 corresponds to a distance of 38.5 Mpc for @ 1.4 — 1.4rye gistribution functions obtained in the previous section

Mg binary for the noise power spectral density used heréy pe required here also. In Sec. Il A, a general formalism,
This factor of 8 is, however, not the last word since although,ng associated set of notations, is introduced to describe a
our formalism can yield higher factors-(13) , the assump- yq_step hierarchical search. In Sec. Il B it is shown that
tion of statistical mdepend_ence made in some of the formulag,qre exists an optimum set of spacings and thresholds which
breaks down. The correlations among the outputs of the teNyinimizes the computational requirement. An algorithm to
plates become important when the templates are placeghain this optimum solution is presented. In Sec. Il C the
finely and this happens when the factor of 8 is exceeded. computing power required for an on-line two-step search is

A convenient parameter for characterizing the family of ggtimated and numerical results are presented. We conclude
Newtonian signals is the chirp time which roughly equals theiih sec. Iv.

time taken by a binary to coalesce starting from a fiducial

orbital frequency. This parameter depends on the masses ofj|. FALSE ALARM AND DETECTION PROBABILITIES

the components of the binary. The maximum value used for ] ) . .

the chirp time, in this paper, is 138.0 sec which corresponds Some of the results in the following will be obtained from
to a 0.5-0.5M, binary. The lowest value used for the chirp O compared with Monte Carlo simulations. For these simu-
time is 2.0 sec. We find that the minimum computational'ationsa we have mainly used the Gaussian random number

power required, for an on-line two-step search, for this rang&eneratorGosrpr, provided in the NAg library of numerical
of chirp time is 167 MFlops. We also present our resultsfoutines. Wherever possible, the results have been checked
using a lower value of 32.0 sec for the maximum chirp timefor consistency with those obtained using the routsre-
which corresponds to a 1.2—1N2, binary. For this case, the DEV provided in Ref[12].
computational power required is 32 MFlops.

Another objective of this paper is to study the effect of
statistical correlations on the distributions of the test statistic. We denote the parameters characterizing a family of wave
It is found that, in the presence of correlations, at least one dorms by u and the family itself bys(t; ). A specific mem-

A. The signal detection problem
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ber of the family is identified by a subscript gn We denote  should be larger than the longest signal. A particular realiza-
a segment of the output of a detectoxgk), wheret=0 and tion of the noise contaminating(t) will be denoted as
t=T will denote the beginning and the end of the segmentn(t). For a givenx(t), the problem of detection consists of
respectively. If the signals have finite durations th&n discriminating between the following cases:

n(t) when there is no signal,
x(t)= n(t)+s(t;us) Wwhen there is a signal with parameters.

The range of every parameter will, in general, be finite. In _ 7 _
the absence of any prior information, it must be assumed that Qu(mus)=1— fo P1(A;us)dA. (4)
all the parameter values, within their respective ranges, are

(ranquurﬁ"ﬁlkglﬁﬁgof doectfel::f[ic:FB]s g;g gecﬁzgat%hn;ﬁt?ﬁm;e is The eventA > 5 can also occur in the absence of any signal
) ﬁecause of noise alone. This then leads to an error in detec-

a stationary Gaussian random process, maximum likelihoo on. The probability of such an event is called the false

detection(MLD) reduces to(a) the computation of dest o w "
- . ; . ! alarm probability(shortened to “false alarm” hencefoith
statistic defined below, anb) its comparison with a thresh- which we denote byq(7):

old 7. The test statistic\ is obtained as

A=max(x(t),s(t;u)) = 3(s(t;u),s(t;w))), (D) Qo n)=1—fO"PO(A)dA. (5)

s

where the maximization is performed over all the values ofit is the allowed false alarm, along wit8,(f), that fixes
the parameters. The angular brackets enclosing two functions. From Egs.(5) and (4), we see that the determination of
denote an inner product which can be written in the Fouriedetection and false alarm probabilities requires a knowledge

domain ag* " denotes a Fourier transform of the cumulative distribution functions o¥.
* 1 = ~ ~ B. The noise power spectral density
— - | * * .
x(0,9(0) fo dfSn(f)[X(f)g (H+Hx*(He(h], () and the Newtonian wave form

N ) The noise in ground-based laser interferometric detectors
where the Hermitian property of the Fourier transform of ay|| have, in general, both a Gaussian and a non-Gaussian
real function has been used to restrict the domain of integracomponent. The main sources for the Gaussian component
tion to positive frequenciess,(f) is the power spectral den- [13] are the shot noise because of photon counting, the ther-

sity of the noise which is defined by mal noise in the mirror suspensions along with the mirror
o itself and seismic noise. The non-Gaussian component can
E[n*(f)n(f")]=Sy(f)s(f—1"), (3)  be contributed by numerous sources such as sudden strain

releases in the mirror suspension wires or even lightning

where E[z] stands for the ensemble average of a randonstrikes[2,14]. It should be possible to remove most of the
variablez. non-Gaussian component by using environmental monitors

Consider, the detection problem mentioned above. Beand looking for coincidence among detectors located at
cause of the presence of noise,becomes a random vari- widely separated sites. It is, therefore, assumed usually that
able. Its probability density function will depend on the pres-the detector noise will be a Gaussian random process. Over a
ence or absence of the signal. We denote the two distributioime scale of hours, it can also be assumed to be stationary.
functions asP,(A;us) when the signal is present, and Thus, the method of maximum likelihood detection, as out-
Po(A) when there is no signal. The different distributions lined in the previous section, can be used in this case.
arise because the presence of the signal changes the mearThe power spectral density of the Gaussian noise compo-
values of the noise samples. It turns out that when 7, it nent rises very steeply towards the low frequency end be-
is more probable that the density function of whighis a  cause of seismic effects. At the high frequency end, it is
sample isP,(A;us) rather thanPy(A). This allows a dis- dominated by photon shot noise which leads to a rise to-
crimination to be made between the two cases above. Bavards higher frequencies. Thus, the data will have to be
cause of the random nature Afthough, there is no guaran- bandpassed with a low frequency seismic cutioffand a
tee that it will cross the threshold whenever the signal ishigh frequency cutoff.. We use the power spectral density
present. In general, in the presence of any signal, one caexpected for the initial LIGO as given {i3]. Accordingly,
only associate a probability with the event that- . Thisis  we choosef ;=40 Hz andf.=1 kHz.
known as the detection probability of that signal. For the The lowest-order approximation to the wave form of the
case being considered here, the detection probabilitygravitational wave emitted by a coalescing compact binary is
Qu( 7 1q), is provided by the quadrupole formalisih5]. The response of
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an interferometric detector to such a wave form can be writless massive componentswould be larger. In this paper we
ten as[7], present our results for two different ranges of chirp times.
The minimum valueé,;, is the same for both the ranges,
h(t Aty €, @) =Aa(t—t,,§)cod p(t—t3,6)+ ). (6) ¢ . —20 sec. The maximum values of the chirp time are

: . . ken as &,,=32.0 sec (for m=m,=1.2My) and
We choose this wave form as the signal that is to be detecteq. —138.0 sec(for my=m,~0.5M ). The parametet,

The parameterd takes into account the distance to the bi- g;xge taken as thine of arrivalof the sianal. The phase of
nary as well as various geometrical factors connected witl§ gnai. P

the orientation of the orbital plane of the binary relative tothe_l_f]'gTglsfl;?a'tissgggoff)]bﬁé expressed in terms of Fou-
the plane of the sky and the orientation of the detector an- g- P

; : rier domain representations. It has not been possible so far to
tenna patterr{1,16,17,18 When the detector is optimally ! . ) .
oriented and the plane of the binary coincides with that of theObtaln the Fourier ”a”SfOFm oIt Aty ,g,q)) exactly, but it
sky, can be calculated approximately by using the method of sta-

tionary phas€7]. The approximate form for positive fre-
~7/6

-2 quencies is
. 2 1/ f
h(f; A1, ,E,P)=AVE =—| | — exdiy(f)],
Because of the Earth’s rotational and orbital motions, the ( 26 ) \/3[31‘51 Z[fa Hiv()]

(7
orientation of the detector antenna pattern will change with (13
time, making.A time dependent. For observations lasting a
: S : where
few minutes, however, it is effectively a constant. The other,

time-dependent, part of the amplitude is

g -1
— —23
A=1.92x10 [25.0}

fa
40 Hz

r -1
100 Mp(J

o
s p(f)=—2aft,+2nmf fa(f)+ D+ 7
a(t,§)=|1- E} : 8
1 —5/3 f
The phase of the wave form(t,£) can be expressed as a(f)= §( 83 f_J _Sf_a)' (14
. , We can also write the wave form in E() as
d(t,&)=2m | f(t',5)dt’. 9
0 h(t;At,,&,®)=Ahg(t—t,;&)cog ®)
The integrandf(t,£) is the instantaneous frequency of the + AN _(t—ty:E)sind), (15
signal which is given by "
where
f(t,g):faa(t,g)S/z (10)
ho(t;€)=a(t,&)co t,6)]1, 16
Thus, the wave form is ahirp whose amplitude and instan- oltié)=a(t.Hcod 4(1,6)] (18
taneous frequency increase with time. The rate at which the hoa(t;§) = a(t,£)cod ¢(t, &) + /2] (17)
instantaneous frequency increases is governed by the param-
eter &, called thechirp time This representation will be helpful in what follows. The
MI-5F f e “quadrature” componentsy, andh,, have the properties
_ o a
¢ ‘34-5‘{% Lo A %% Y (hg(66),he(6E)~ (N 6), N £50)), (19)

where M, the chirp mass is the following combination of  |(hy(t;&),h,(t;&))]
the reduced masg and the total mas®l of the binary:
< (ho(t; €),ho(t; ))(ha(t:€),h ol 1 €)). (19

It should be noted that if the Fourier transformstgfand
Because of the seismic cutoff, the amplitude of the signah ., obtained in the stationary phase approximation were to
becomes negligible when its instantaneous frequency lies bée used, then Eq18) would be an equality while the left-
low f,. The time at which the instantaneous frequency of thehand side(LHS) of Eq. (19) would vanish. In practice the
wave form reache§, is denoted byt,. The high frequency ratio of LHS to the right-hand sidéRHS) in Eqg. (19 is
cutoff f. will also force the amplitude to a negligible value typically ~10 2. In the following, this ratio will turn out to
for instantaneous frequencies beyofid In addition, this be the statistical correlation between two Gaussian variables
nature of the wave form will change when the compact bod-and it will not make any significant difference if it is taken to
ies plunge towards one another once the last stable orbit ise zero. Similarly, the two sides in E(L8) can be taken to
reached. This would happen whé(t)~10® Hz. Thus, the be equal in the following. Actually, these approximations are
infinite instantaneous frequency implied by Efj0) att=¢  not a limitation because we can always orthonormalige
will not be reached in reality. The wave form has, thereforeandh_,» using Schmidt's orthogonalization. For our analy-
an effectively finite duration given, to a very good approxi- sis, however, such small effects will not make much differ-
mation, by£. For a binary consisting of neutron stars with ence and in the following, we treat E(L8) as an equality
my=m,=1.4M 5 the value of¢=24.8 sec. For binaries with while the LHS of Eq.(19) is taken to be zero.

M=(u*M?)Y5, (12
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C. The test statistic and its computation cussed, in this connection, is to perform the maximization

We now apply the strategy of maximum likelihood detec-OVer & discrete set;}. This would yield an approximation
tion to the noise and family of signals described above. Thd® the test statistic.

test statistic in this case can be written as Thus, the overall form of the detection strategy which
results, given{&;} and a thresholdy, is the following. For

A= max [{x(t),h(t;A,t,,&P)) eaché,e{¢;}, the detector output is separately correlated
(Ata,&P) with two templateshy(t;é,) and h_,(t;&,) to obtain

1 . . Co(7, &) and Co(7,&m), respectively. Then, the quantity
(LAt & @) hEAL £ (20 X(7;&m) = \C3(7,&m) + C2 (7,7 is computed. We call
The maximization overtd and ® can be carried out, in a X(7.ém) the rectified output of a template with chirp time
straightforward manndrl9], using Eqs(15), (18), and(19)  ém. We denote the maximum, ovet of a rectified output
(see the comments below the last two equaioniis yields ~ X(7;&m) by A, These operations lead, therefore, to the con-
an equivalent test statistic which we continue to denote astruction of a sef\;}. An approximation to the test statistic

A is then obtained which we again denote Ay
A=maxCj(t,, &) +CFnlta, ), (21)
(ta,$) A=ma){)\1} (24)
i
where
Colta, &) =(x(t), Npho(t—ta; £)) Finally, A would be compared with. This method for the
o 1 _ ' calculation of the test statistic has been termed asestep
=Nhf df—f['i(f)hg(f;g)ez”'“a search
fa Sn(f) The set{¢;}, as well as the corresponding set of tem-
+§*(f)ﬁo(f;§)e_2mﬁa]’ 22) plates, will be termed astaank of templatedt is convenient
to refer to the set of two templatelg(t; &) andh(t;€),
Con(ty. &)= (X(t) Noh (t—t.: having the same chirp time as a single “template.” This has
milta:8) = (X0 Nt~ 1a36)) already been done tacitly in the case of a rectified output.
fe 1~ o This “template” can then be labeled with its chirp time.
:Nhjf df—sn(f)[x(f)hﬂ/z(ff)e a Thus, a term such as “templatg,” is understood in the
2 _ following to mean a set of two templates, both having the
+X* (F)h, o f; €)™ 2™t (23 same chirp time¢,,. Also, templateqin the above senge

“lying” close or far from each other would, actually, imply
The functions/\/’hﬁo(f;g)/sn(f) anth’ﬁW/Z(f;g)/S (f) are the same for their chirp times. A helpful picture to adopt is to
the Fourier domain representations of teenplates p(t;¢)  treat the seho(t;y) andh,o(t; &) as a black box which
and h_(t;£), respectively. The presence of noise turnsn@s @ single input, namely(t), and a single output, namely,
Co(ta, &) andC_5(t,, &) into random variables. Demanding X(7;€m)- Eac_h box is labeled by a chirp time ar_1d is called a
that their variances be unity fixes the normalization constantemplate. This terminology should ensure clarity in the fol-
N;,. We express\V;, explicitly in Sec. 11 D. lowing which would otherwise get masked by a lot of redun-

A linear correlationc(7) [20,21, between two wave

formsr(t) andg(t) is given by

c(r)=J:r(t—T)g(t)dt

- [Cat g e T g (e 2.

A comparison with Eqs(22) and(23) shows that, for a fixed
¢, Cq (or C, ) can be computed, as functions ©f, by
simply obtaining a linear correlation betweg(t) and the
templatehg(t;€) [or h,,x(t;€)]. The role of the lagr in a
correlation is played here by, . Since a correlation can be
efficiently computed using a fast Fourier transfo(RFFT),

d(T.6,S,t )

maximization ovet, becomes a straightforward operation of T
computing the correlation of(t) with two templates, squar-
ing and summing these correlations for each value, aind FIG. 1. The processed form of a signal. The template chirp time

finding the maximum of the result over However, as men-  was chosen ag,=4.0 sec while the signal chirp timg=4.10 sec.
tioned in Sec. |, the remaining parameteis not amenable The time of arrival of the signal was chosen tothe=1.0 sec and
to such a simple treatment. The method most commonly disthe strengtiisee Eq(26)], S=1.0.
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dant text. However, on the few occasions when the corredamily of Newtonian wave forms has a nice feature which
use of the term “template” would be required, we will ex- allows the bank of templates to be characterized by a single
plicitly use hg andh . parameter. However, this need not be true in general. In fact,
It is important to realize that , obtained as above, is only this simplicity will not be obtained when a parameter such as
an approximation to the true test statistic. No claim can bdhe chirp mass is used instead of the chirp time. We will
made as to the uniqueness of the procedure used to obtaienote the distribution functions of as Fy(z) when no
this approximation. Also, the cumulative distribution func- signal is present, and;(z; ) When a signal with param-
tions which characteriza will now depend on the method etersug is present. The dependence of these functions on the
used to obtain it. In the present case, this dependence will demplate bank used is implicit but we will make it explicit
in terms of a set of parameters characterizing the bank oiherever required.
templates. If the template chirp times were chosen arbitrarily, We now define some quantities which will be of use later
all of them would have to be treated as parameters. In then. Consider a signdi(t; us) where ug stands for the pa-
case of a two-step search, the dependence would be on twameters of the signal. We denote Oy, &y ;us), for &
banks of templates and two thresholds. It turns out that the= {&;}, the quantity

d(7,&m; ) = Ny V(h(t; me) Mot — 75 Em) )2+ (N(E; ig) N ot — 7€) ) (25

This is the rectified output of a template when correspond to a lower distance of 34.0 Mpc. Note that the
x(t)=h(t; us) and noise is absent. We call such a rectifiedstrength of a signal also depends on the noise power spectral
output as theprocessed fornof the signal produced by the density. For a detector with less noise, the same strength
template with chirp timef,,. One such processed form is would correspond to a larger distance.
shown in Fig. 1. The processed form of a signal has the When the template chirp time is not the same as that of
property that a change in the signal’s time of arrival simplythe signal, the maximum of the processed form will be re-
translates it along the rectified output. It is easy to showgduced. We call the maximum of the processed form in such
using the stationary phase approximation, that the processedcase as th@bserved strength & of the signal in that
form is independent of the signal parameterHowever, the template. The observed strength should depend only on the
exact processed form is not strictly independenddbut the  chirp times of the signal and the template involvepart
variation is typically ~0.1% around the peak of the pro- from A of course because of the properties of the processed
cessed form. This is an entirely negligible effect in ourform mentioned above. If the observed strength of a signal
analysis. Therefore, we will henceforth suppréswhenever with S=1 is determined as a function of the signal and tem-
the signal parameters (7,&.,; us) are required to be ex- plate chirp times[7], a determination of the observed
pressed explicitly. strength whers+ 1 becomes trivial. We denote this function
The maximum value that any processed form of a signaby H(&;,&s), where ¢, is the template chirp time ands
can have is called thetrength Sof the signal7]. This value denotes the chirp time of the signal. We will see later that
is attained only for a template with the same chirp time asH(é&;,&s) plays an important role in the determination of the

that of the signal. For a signal with amplitudg bank of templates.
Actually, this function is the result of a maximization of
A the ambiguity function [5] over a subset of the parameters
S= /\_fh (26) involved. The parameters that are maximized over are the

initial phase and the time of arrival. They have been termed
as extrinsic parameterg8], in contrast with the remaining
parameters, such as the chirp time, which have been called
the intrinsic parameters. We, therefore, cali(¢;,&s) the
intrinsic ambiguityfunction. Given a signal witls=1 and a
chirp time &g, it is formally defined as

where N, is the normalization constant for a template with
the same chirp time as that of the signal.

Our definition of the strength of a signal is identical,
within the orthonormality ofhy and h_,,, to the signal to
noise ratio (S/N)[h], defined in[16]. The inner product
(flg) defined in[16] is identical to our inner product L
(f,g). The signal to noise ratio ifiL6] is given by f|h)Y/? H(&, &) =maxd(7,&; us)- (27)
and hence, is equal t¢h,h)Y2 Thus, we get(h,h)¥2 T
= A(hg,ho) = (AINR) [N f(ho,ho) 1= (AING)  (by the
definition of ;;) which is nothing but the streng®defined
as above. Henceforth, we uSénstead ofA4 to parametrize a
signal. In this paper, the typical value for the strength is
S~9.0. For the canonical binary consisting of neutron stars Sops= SH(&¢,€s)- (28
with an identical mass of 1.M for both the components,
this value of the strength corresponds to a distance of 38.0 It is possible to computé{(¢,,£s) approximately using
Mpc. A signal of strength 10.0 from such a binary would the stationary phase approximation, to the Fourier transform

In terms of the intrinsic ambiguity function, the observed
strength can be obtained as
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of the Newtonian wave form, given in Eq13). First, the -

processed formd(r,&,;us) can be expressed, in this ap-
proximation, as o[ ]
o
. _ 1 ifcdf 1 » Sr ]
(Tygtuu“s)_ B ) f73Sn(f) S L .:
: X -
xooizwAgfaa(f)—zwAtaf]) ol ]
Qo
+ if°o|fﬁ3—1 2k ]
i, FPS(f) A T T
-0.6 —0.4 -0.2 0 0.2 0.4 0.6
2711/2
><sir'[27TA§faa(f)—277Ataf]) i . (29 Aé(sec)

FIG. 2. A plot of the intrinsic ambiguity functio®/(A¢&). The
fo 1 3 solid curve was obtained semianalyticalligq. (32)], while the
B= if df%f ) (30) dashed curve was obtained numerically using correlations. The
a value off, chosen was 310 Hz.

where At,=7—t, (t, is the signal arrival time nowand
A¢=¢,— &. Note that only the difference between the tem-
plate and signal chirp times occurs here. We then choose th
value of At, for which the instantaneous “frequency” of
both the integrands vanishesfat f, (wheref, is kept as a
parameter A simple maximization yields

siance, the use o1, the chirp mass, instead &f will make
fhie intrinsic ambiguity function dependent on both the signal
and template chirp masses.

In [7], the template chirp times chosen were such ffat
dropped to~0.9 in the middle of two consecutive templates.
Such a drop ir{ corresponds, here, thé=0.040 sec. The

£.183 difference between consecutive template chirp times, in a
Ata:Agi 2 _1i, (31) one-step search, would typically be of this order. Thus, the
fo number of template chirp times that will be required would

2
+

271/2

, (32

be ~1000.
The intrinsic ambiguity function can now be expressed as  The practical implementation of a one-step search would
be the following. The detector output will be sampled with a
H(é, &) =H(AE) sufficiently small sampling interval to give the time series
[x;=x(iA);i=0,... N—1]. Since the upper frequency cut-
21 ifc**** ifc**** off of the bandpass filter, in Sec. Il B, was chosen to be
B fa fa f.=1 kHz, the Nyquist sampling rate would be 2 kHz. We
take the sampling frequency to be 2048 Hz, the nearest
where the rows of asterisks stand for the same integrands R9Wer of 2, which implies\ =1.0/2048.0 sec. The time se-
in Eq. (29) but with At, replaced by Eq(31). The integrals €S should, of course, bg longer than the durauo_n of' the
can be evaluated numerically for a givég To fix fo, we longest template or equivalently, t_he largest chirp time
obtain the exact intrinsic ambiguity function using correla-&max: Such time series will be required for the templates,
tions and find, empirically, the value df which produces ho andh;,, also. In the time series of a template with chirp
the best agreement with it. We firffg=310 Hz. time &y, samples fori>§/A will be zero since the tem-
Our method is actually akin to a second stationary phas@late has a finite duration df,. Therefore, when a correla-
approximation but we do not have a formal proof for Ourtion between the template and the detector Output is taken
procedure. Nonetheless, we find the approximation to b&lsing an FFT, the preferable method, only the first
quite good and use Eq32) in our analysis. In Fig. 2 the N—&m/A samples will be the result of a linear correlation
approxima[e form is Compared with one obtained numeri.[4]. It is desirable to have equal Iengths of correlations for
cally without any approximations. The discrepancy betweergvery template. Hence, only the firdily=N— &y /A
the two curves is seen to be Significant oniy for |arge Chirpsamples will be retained in each correlation and the rest dis-
times. We do not expect a significant change in our finacarded. We calN,, the paddingfor the template bank. A
results because of the use of this approximation. useful figure for N, is ~5x10° corresponding to
Note thatH(&,,£5) in Eq. (32) depends only oA ¢| and ~ N=256X2048 and £,,,=32.0 sec. A time series corre-
not oné, andé& separately. This behavior is replicated by thesponding taX(7; &) will then be obtained whosigh sample
exact intrinsic ambiguity function also. This simplifies mat- we denote aX;(¢y,) (i=0, ... N, now):
ters a lot when it comes to setting up a bank of templates. It
is important to realize, however, that this behaviortofis — —
dependent on the choice of intrinsic parameters. For in- Xi(£m) = VCH(IA, £m) +C2 (i A, &) (33
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As before,\ , will then be found as The variance ofC, or C_,, can be computed from the
above equation by putting=b:

A= m_ax{Xi(gm)}. (34)

2/ _ H 2
Henceforth, we use this discrete form of the detection strat- ELC(IA, m) ]~ ElCaliA, Em)]

egy.
The description of a one-step search, presented above, is 2 L .

not complete. The bank of templates and the threshold are = Nin(a(t=14:&m), ha(t =14 €n))

yet to be fixed. In other words, the parameters characterizing fcm(f.g )2

a template bank have to be determined so that some desirable = 2Nﬁf — = df. (37

conditions are satisfied. These conditions are framed in terms fa Sa(f)

of false alarm and detection probabilities which depend on

the distribution functions,F;(z; us) and Fo(z), of A. We L .
will now discuss these distribution functions. The normalizationV}, can now be chosen to make the vari-

ance unity. It follows from Eq.(19) and the above that

Co(iA, &) andC (i A, &,) are very nearly statistically in-

dependent. We take them to be exactly so. We will now
The distribution functions of\ can be constructed from move on to the random variab¥ (&,,) defined in Eq(33).

the distributions of its building blocks. We start at the lowest |n general, ifx; andx, are two uncorrelated, zero-mean

level, i.e., the distributions o, andC,,,. In the following,  Gaussian random variables with unit variances then the dis-

the parameters of a signal will be denoted Dbytribytion ofu= \X?+x2 is given by the Rayleigh distribution

ns=(A,ty,£,®). The context in which these symbols will f,nction R(u) [22]:

be used in the following will be clear enough so that no

confusion should arise because of the use of the same, in the

previous section, as parameters for maximization. A typical R(u)=u g U2, (39)

member of the bank of templates will be denoted &y,

unless specified otherwise.

The random variable€y(iA, &) and C5(1A,&m) are o the other hand, i, andx, have an expectation value of
obtained by correlating the detector outpt) with two w, and u,, respectively, other moments being the same as

templatesho(t;&m) and h;o(t;€m), respectively. ThusCo  hefore, then the probability density function wis given by
and C,, are linear combinations of the time samples ofthe Rician distribution Rig) [22]:

X(t). Since the noise ix(t) was assumed to be Gaussian

random proces$;o(iA, &) andC (i A, €y, will, therefore,

be Gaussian random variables. In the absence of a signal, Ri(u)=uexg — (u?+d?)/2]14(du), (39
their mean values would be zero but in the presence of a

signalh(t; ug), their mean values would be

D. Distributions of the test statistic

whered?= 2+ 12 , andly(x) is the modified Bessel func-
E[C.(i1A,&n) ]=(h(t; us) Npha(t—iA; €)Y, (35 tion of the first kind, of order zero. Fatu>1,

for a=0,7/2. Their covariance matrix can be calculated as
follows (a=0,7/2 andb=0,7/2) where we have suppressed . u )
arguments and parameters at some places for clarity: Ri(u)~ /5 gexd — (u—d)72], (40)
E[Ca(i,&m)Co(i,Em) 1= E[Cali, Em) IE[Cp (i, Em) ]
while for d=0, it goes into a Rayleigh distribution. The

=NEE{[(ha,n(t))+(ha,h(H))I[(Np,N(t)) asymptotic form given above shows that a Rician density

behaves such as a Gaussian wherd .
+(hy ()T} = Ni(hg h(t))(hy (1)) From Eq.(33) and what has been said about the moments

of Cy(iA, &) andC (i A, &), it follows thatX;(&,,) has a

=NZE[(ha(t—iA;£m) (D)) hp(t—iA;&m),Nn(1))] Rayleigh density when a signal is absent and a Rician den-
sity when a signal is present. The quantity corresponding to

=N3(hy(t—iA;&m),he(t—iA; &), (36)  d, inthe case oK;(&n), will depend on both the signal and
the template parameters. We denote it, therefore, by

where Eq.(3) has been used in the last step. di(émims):

d=di(&mss) =NaV(h(t; we) ho(t—iA;Em)) >+ (h(t; pe) Nt =145 €r)) 2. (41)
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The time serie$d;(ém; 1s);i=0, . .. Np—1) is nothing but _
a sampled version of the processed fod{z, &1, ; 1), of the T
signal which was introduced in the previous section. The [
samples are taken at=iA. @ L
The next step in the determination of the distributions of i
the test statistic would be to obtain the distribution function

(o)
of \,,, the maximum over a single rectified output. We de- =
note it by Fl,m(U;E), in the presence of a signal with pa- -
rametersus andFom(7), in the absence of a sign@alote the o
use of “F” in these symbols as opposed to the™ used in
the distribution functions of the test statist\g. St

Let the joint probability density function of all N
the samples in a given rectified output be \N/ °
Py Xo(&m) X1(&m), - - - vXprl(fm)] where b=1 corre- 5-_.0 s

[ (b)
sponds to the presence of a sigphrameters suppressed :
andb=0 corresponds to the absence of a signal. The cumu- Sr

lative distribution function ol ,, is then

Fom(2)=PAN=<z}={X{(&n)=<z forall i} s
z z < [
:J' J P(b)(X07X11"'1XN *l) o
0 0 p
xdXo, ... Xy —1, (42 S
where we have again suppressed the signal parameters for o L

clarity. We find it difficult to proceed further because solving
such an integral, assuming thRy, itself could be calculated
first, appears to be an intractable task. This is because of the
large values thaN, can take (~105) and the fact that it is FIG. 3. Monte Carlo estimates &f,(z), the distribution func-
difficult to separate the interdependence of the variables. tion of the maximum over a single rectified output in the absence of
The distribution of the maximum over a set of statistically @ signal. The padding used {a) wasN,xA=108.0 sec. Fotb)
dependent random variables appears to be a difficult problefip< A =40.0 sec. The dashed curves were obtained using43y.
in general. Even the case of the maximum over a set of mor)é{lthout any reFjuctlon iN, . The circled points were obtallned. us-
than a few correlated Gaussian random variables, does n#id Ed: (48) with Neq=0.7N,. The number of noise realizations
appear to have been solved exactly. There are ways of apSed Was 1000 for botf®) and (b).

proximately calculating this distributidr23] but it is imprac- . . .
tical to apply them to a case of more than four or five vari-effective bandwidtti24] of the correlation outputs. The ef-

ables. On the other hand, if there were no statistica[eCtive number of sampleN required in the present case,
dependence among thé , it would be trivial to solve the Was found empirically to be about Vg for a large range of
integral becaus® ;,, would then be just a product of the Np. ThatNet/Np should be a constant, a4, is varied, is
density functions of the variables. The density functions ofProPably related to the stationarity of the noise.

X.(&,) have already been obtained above. Therefore, in this Strictly speaking, nothing can be said about the validity of
case this fit for »>1. For large thresholds~7 or greater the

number of events would be small and, therefore, a large
z Np number of noise realizationgapproximately 16 or 1)
f R(x)dx
0

Fom(2)= (43)  would be required in a Monte Carlo simulation to register
such events. This, however, is not possible. A typical noise
when a signal is absent, and realization _in such a simulation can have upwards of 10
samples. Since, pseudorandom number generators have a pe-
o Nply o riod of ~10% numbers, the number of realizations which can
Fim(zms)= H f Ri(X,dj(&m: ms))dX (44  be used is limited to just a few thousand. We will, nonethe-
I=0 less, assume that such a fit will remain valid for sufficiently
: : —. large values ofy. Monte Carlo simulations also show that
when a signal with parametegs,; is present. . o o
g b 15 1S P Fom(2) is independent of the template chirp tirdg. This is

An obvious way to estimate the true distribution)af, is .
to perform a Monte Carlo simulation. For the case WhenaISO evident from Eq(43). Therefore, we suppress hence-

: ; e ; . th: Fom(2) =Fq(2). Plots of the Monte Carlo simulations
there is no signal, we found a surprisingly simple result: Thefor om\4/— 7 0
estimated distribution can be fit, almost exactly, by the dis2'€ shown in Figs. @) and 3b). In the rest of the paper,
tribution of Eq.(43) but with a reduced number of samples , Nef
Ne#<<Np . This behavior was also noted[i24]. It was found Fom(2)= Fo(z)=( JO R(x)dx) (45)

that the effective number of samples required depends on the

0
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or cerned. We mark the boundary of such a neighborhood
around a signal chirp timé by §,<&<¢,.
INFo(2) = Neﬁln(l_e—ZZ/z) Leti,, be the time sample for which the processed form,
produced by a template with chirp tingg,, attains its maxi-
m_Neﬁe*ZZ/Z for z>1, mum value. Thus, the distribution function &f,, will now

be the same as that of thig sampleX; (&), of the recti-
which gives fied output. In this approximationZ;(z; us) becomes the
distribution of the maximum ovefX; (£4)}, the template
72 chirp times in this set being located witHig, ,£,]. We now
Fo(z)=exg —Negexpg — || for z>1.  (46)  make the assumption tha (&) andX; (¢,) are statisti-
cally independent random variables for any two template
We find the approximate expression to be quite good and us%.l"'fp times¢r, &, € {j}. This assumption is quite strqng qnd
it in our analysis can be expected to hold only when the template chirp times
We believe that the effective number of samples found®'® placed far apart: L.Jnder .th|s assumptigx, (£} b?'
here would remain the same even when post_Newtonian ten&OMmes a set of Statlstlcally Independent random variables.
p|ates are used_ Th|S iS becau}dsief appears to depend on the The diStribution Of the maXimum over SUCh a set haS already
correlation noise power spectral density via a quantity, sucieen discussed at length earlier. It will just be the product of
as its effective bandwidth, which is quite insensitive to thethe distribution functions ofX; (£y) in the presence of a
details of its shape. The use of higher order wave forms wilkignal. Thus,
not produce a large change in such a quantity. On the other  __
hand, a change in the detector noise itself should definitely"1(Z; us)
lead to a change iNg.

In principle, the technique of using a Monte Carlo simu- =PH{A=<z; when a signal, with parametets, is preserjt
lation for estimating the true distribution can be extended to q
LT . .. . z
the case of 1 (z; us). In practice, this is quite cumbersome ~ _ H Ri(x, S0 dx, (47)

because of its dependence on both the signal and the tem- _k:p 0
plate parameters. This would require the cataloging of a large
number of distributions corresponding to various combinawhere
tions of signal and template parameters. For sufficiently
strong signals, however, it is possible to bypass this proce- Sk=SH(§&,&)
dure. _ B
Suppose that a signdi(t;us) with a chirp time ¢ is =SH(§~ &0 (48)
present inx(t_). The processed form of a signal produce_d byis the observed strength of the signal in the tempiate
a template is observed to have a very sharp maximum. The detection probability of the signal(t; zg) can now

Therefore, it can be expected that in the presence of nOiSSe determined. Since only the observed strengths of the sig-

also, the maximum over .the rectified output of a templatenal enter into the calculation ofy, this function depends on
would occur near the maximum of the processed form of theonly the parameters and S of the signal. This will, there-

signal produced by that template. This would not be truefore, hold for the detection probability also. Given a thresh-

however, if the maximum of the processed fofthe ob- . - .
served strengtB,,d is not large enough. In the absence of aOQId( Z:SW;) .denote the detection probability of the signal by
d 1 .

signal and for a typical value df,~ 10°, we see from Figs.
3(a) and 3b) that noise alone can produag, <4.5 with a q ”
non-negligible probability. This noise-induced maximum can Qu(7:8,8)=1-]] f Ri(X,S,)dx. (49)
occur anywhere at random within the time series of the rec- k=p Jo
tified output. ThereforeS,,s should at least be greater than ) )
about 5.0 so that the presence of the signal is able to restrict We will now explore the effect of reducing the number of
the location of\,,. templates used in the above formula. Suppose ¢hées
Actually, in the case of a strong signal also, a scatter ovePetween the two consecutive template chirp tinggsand
a few neighboring points will always be present. We seem+1 and that the signal strengthS=10.0. Let
from Monte Carlo simulations that this scatter is alwaysé—ém= ém+1—§=0.10 sec. Thus, the template chirp times
within two or three samples around the expected positionare 0.20 sec apart. Statistical correlations betwegrand
But such samples will be strongly correlated and will effec-Am+1 Would be negligible for such a separatiome justify
tively act as one. We can safely say, therefore, that the locdhis late) and Eq.(49) will, thus, be valid. The observed
tion of \,, coincides with that of the maximum of the pro- strengths required in this equation can be calculated from the
cessed form of the signal produced by the templateambiguity function. For the templateg, and &n. 1,
However, this would be true for only those templates in theSn=Sn+1=10.01(0.10)=8.2. If we also assume that
neighborhood of the signal for whic®,,sis sufficiently large ~ &m+2— ém+1= ém—&m-1=0.20 sec, then Sy, =Sy
(=5.0). Also, for the kind of thresholds which will occur in = 10.0+(0.20+0.10)=6.0. For a typical value of the thresh-
this paper, an observed strength=5.0 will not be signifi-  old, »=7.8, the value of[ [{®Ri(x,8.2)dx]?=0.1 while
cant as far as the detection probability of the signal is conf [ ;°Ri(x,6.0)dx]?=0.92. Thus, the inclusion of,,., and
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¢n—1 Will lead to an increase of the detection probability
from 0.9 to 1-0.1X0.92=0.908, an entirely negligible
change. The correction because of the templgtes, and
Em+a (for ém—1—&m—2=&m+3— Em+2=0.20 segcan be cal-
culated similarly: H(0.40+0.10)=0.5 and hence,S,,3
=S,_1=10.0H4(0.5)=5.0. Therefore, [ [§®Ri(x,5.0)dx]?
~0.99 leading to a reduction of just 0.1% in the detection
probability if these templates are neglected. For larger detec-
tion probabilities the error because of the exclusion of
ém—1 andén,, » becomes larger but it still remains negligible.
For instance, if » were brought down to#n=7.5,

[/ 5°Ri(x,8.2)dx]?=0.045 (which gives a detection prob-
ability of 1—0.045=0.955), but now[ f{°Ri(x,6.0)dx]?
~0.85, which implies a reduction of 0.7% in the detection
probability if these templates are neglected. Thus, when the
template chirp times are far apart, we are completely justified
in keeping just the two template§,, and &, 1, in Eq. (49).

It should be noted that if only a single template were used in
Eq. (49), the error in the detection probability would be too
large. Again, taking an observed strength of 8.2 and a thresh-
old of 7.8, the detection probability obtained in this case
would be just t [{®Ri(x,8.2)dx=0.68. This should be
compared with the value of 0.9 obtained when the two-
template formula was used.

If, however, the template chirp times were closely spaced,
the statistical correlations among the maxima over rectified
outputs will not be negligible. In such a case the true detec-
tion probability of a signal will be reduced. We used Monte
Carlo simulations to estimate the true detection probability
for a signal with é=(&,+ &m+1)/2 and various values of
&1~ &m- The results are shown in Figsiatand 4b). We
have also shown the results obtained when afly,; and
&, are used in Eq(49) for the calculation of the detection
probability, i.e., when

Q,(1:5.¢)

FIG. 4. The detection probability of a signal. Solid curves are
Monte Carlo estimates. Dashed curves were obtained using8q.
while for the dash-dot-dash curve {@), only one template &)
was used in Eq(49). In (a), the open circles and the filled circles
were obtained using Eq51) with p=0.75 andp=0.0, respec-
tively. The signal chirp time in both(a) and (b) is
” ” E=(&nt €émi1)/2. For(a), £,=4.0 sec£,,1=4.03 sec. The signal
Qu(7:S, §)=1—J Ri(x,Sm)dxf Ri(X, Sy 1)dX. strength was chosen a$=8.5 and the signal chirp time is

0 0 £=4.015 sec. Fofb), ¢,=4.0 sec,é,,1=4.40 sec,é=4.20 sec,
(50)  and the signal strengtf=10.0. The number of noise realizations

. . . . d 2000 and 1000, f@ and (b), respectively.
We find that Eq(50) indeed provides an overestimate of the used were @ (b) P y

detection probability when the difference between the temtemplates were included in the above simulation, the true
plate chirp times is smaJFig. 4a)]. The detection probabil- detection probability should rise. On the other hand, these
ity estimated from the simulation, for a spacing of 0.030 sectemplates would, at the same time, be highly dependent sta-
is about 12% less when E0) gives a value of 0.95. In our tistically and may not be able to contribute much to the de-
analysis, this value for the detection probability will be usedtection probability. We repeated the simulation used to ob-
as a fiducial value. Hence, the use of the two-template fortain Fig. 4a) with six templates instead of two but having
mula would be erroneous if it is used for template chirpthe same spacing. The signal was placed in the middle of the
times spaced more finely than0.030 sec. Also shown in third and the fourth templates and had the same strength as
Fig. 4a@) is a plot of the detection probability obtained when before. We foundho significant risein the detection prob-
only one template is used in E¢49) with an observed ability.
strengthS,, (or S, 1). We see that now the detection prob-  The asymptotic form of a Rician density function, for a
ability is underestimatedin a sense, such as the effective threshold close to the observed strength, is a Gaussian with
number of samples in the case Ie§, statistical correlations the observed strength as the me&i. (40)]. Thus, each of
will now lead to an effective number of templates. However,the maxima over the rectified outputs can be considered to
this effective number would depend on the spacing of thehave approximately a Gaussian distribution. The distribution
templates. For this reason, it is difficult to incorporate it inof A can, therefore, be approximated by that of the maxi-
our calculations. mum over correlated Gaussian variables. It appears that an
For closely spaced templates it can be expected that tenexact expression for this distribution has not been obtained
plates other thag,,, and &.,, would also contribute signifi- for more than two variables. But the latter is precisely the
cantly to the detection probability because the observedase of interest to us. An elementary integration yields the
strength would still be high in these templates. Thus, if moreollowing approximation to the two-template detection prob-
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ability when the observed strengths in the two templates arbowever, this formula leads to the above kind of a signal
equal Gy 1=Sn=So9: having the highest detection probability. This is because of
the fact that, for small spacings, the drop in the intrinsic
_ \F 7 ) ambiguity function is not much across the templates neigh-
Qu(7:S,)= P JO dx exp — (X~ Sepg /2] boring &, and &.,4 1 [7(0.045)=0.91, for instanck Hence,
templates other than the two adjacent ongs. 6, -1, and
otherg can also contribute, in E§49), to the detection prob-
, (51  ability of signals lying betweert,, and &.,.;. Indeed, the
expected behavior of the detection probability for such sig-
nals is recovered when these extra templates are used. All
this would be applicable only if the rectified outputs of these
1 (= templates were statistically independent of each other. How-
erfo(x) = _J dt exp(—t2/2). (52)  ever, as discussed above, the assumption of statistical inde-
J2m)x pendence would not remain valid for templates spaced so
closely. The failure of Eq(50) to assign detection probabili-
For p=0, we should get an approximation to E&Q). In-  ties in the correct order, in such a case, is perhaps less seri-
deed, as shown in Fig.(d), a good fit is obtained which is ous than neglecting statistical correlations. Hence, as long as
also valid for thresholds that are not close to the observeits use is confined to “centered” signals, E§O) appears to
strength. The Monte Carlo curve can also be fit almost exbe a good tool to use.
actly by Eq.(51) when p=0.75. The covariance should To summarize, we can now calculate the detection prob-
depend on the intrinsic ambiguity function but this depen-ability of a signal from Eq(50), given a bank of templates
dence does not appear to be straightforward. Moreover, sindé;} and a threshold;. We also have a formula, E¢45), to
rectification mixes the signal and the noise nonlineaply, calculate the distribution of the maximum over a single rec-
would also depend on the observed strength of the signalified output. While the former was derived under some ap-
Further work to obtairp analytically is in progress. For the proximations, the latter is exact and was estimated from
present we will continue to use E(p0) in our analysis. Monte Carlo simulations. These formulas will be used unal-
As we will show later, an overestimation of the detectiontered in the case of a two-step search. However, the estima-
probability will lead to an underestimation of the computa-tion of the distribution function ofA in the absence of a
tional cost of a one-step search. The effect on a two-stepignal, Fo(7), requires a clearer specification of the bank of
search is similar but it will be elaborated upon in Sec. Il B. templates. We proceed to do that below.
Thus, the use of Eq50) will lead to a lower limit on the
computational cost. Similarly, the one-template formula will
lead to an overestimation of the computational cost since this
formula underestimates the true detection probability. In any We now state thene-step template placement criteria
case, both an upper and a lower bound can be put on thEhe bank of templates should be chosen in such a way that
computational cost of a one-step search. However, it is moré) every wave form, having a strengéhgreater than a given
convenient to use Eq50) since it can also be used for large minimum strengthS,,;,, should have a detection probability
spacings. While if the one-template equation were used, greater than a given minimum detection probabil@y n;,,
shift from the two- to one-template formula would have to beand (ii) the false alarm should stay below a specified level,
performed when the spacings being dealt with become smalQg .« A solution in terms of» and{;}, satisfying both
This is cumbersome since it is difficult to demarcate the recriteria, need not always exist. For instance, a signal having
gimes where one formula would be better than the other. S=S.;,=6.0 will not be detected with a detection probabil-
We also observe, in Fig.(d), that the agreement between ity of Qg ,,=0.95 if the false alarm is kept such that there is
Eq. (50) and the estimated distribution becomes better as thenly one false event, on the average, in a year. These num-
templates are drawn farther apart. This is an indication thabers can be computed by using the formulas below.
statistical correlations between the rectified outputs have be- The detection probability would be smallest for signals
come negligible. This agreement is observed to hold for @aving a strengtl8,,;, and chirp timeé=(&,+ &ms1)/2 for
smaller separation ofy,.;—&n=0.20 sec also which justi- £;,e{¢}. Such signals will have a detection probability
fies our use of this value in the argument above. We foungjiven by Q4(%; Snin:(ént &mr1)/2), Which can be calculated
that the effect of statistical correlations becomes noticeabl@sing Eq.(50). To satisfy criterion(i) above, all that needs to
when s <0.080 sec. The same simulations also show that thee done, given a thresholg, is to ensure that all such mini-
scatter in the location of, is mostly over two to three mum detection probability signals have,
samples aroun¥; (&) in both the rectified outputs.

Another feature of Eq(50) which should be noted is the Qa(77; Siin+ (ém+ ém+1)/2)= Qq,min- (53
following. For sufficiently large spacings=0.03 seg, this
formula assigns the minimum detection probability, for aThe observed strengths that will be required in the above
given strength, to the signal which lies in the middle of two formula are
consecutive templatefi.e., £=(&,+£&441)/2]. This is in
conformity with the expected variation of the detection prob-
ability since such a signal would be furthest from the tem- S.=S..1=S. H( §m+1_§m) (54)
plates on either side. For spacings smaller tksh03 sec, 1 " 2 '

X

1-p
1—erf (X_Sobs) m

wherep is the covariance between the two maxima and

E. One-step search
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Thus, only &, 1— &, enters into the calculation of the de-
tection probability and nof,, and &, separately. This im-
plies that¢,,.1— &y should be constant throughout a tem-
plate bank. We call this quantity trpacingof the templates
and denote it bys. The whole template bank can now be
constructed, using, aséy= &mintkd (k=0,1, .. ) till &nax
is reached. It should be noted that the template bank is now
characterized by a single parameter, namely, the spacing.
The spacing of the templates depends on the value of
Smin- FoOr instance, if »=7.9 (a typical valug, and
Qq.min=0.95, the observed strength required for a signal ly-
ing in the middle of two templates iS,,~8.6. For a signal
havingS= 8.8, this would mean that the value of the intrinsic
ambiguity function be~8.6/8.8=0.98. From Fig. 2 it is clear
that the difference between the chirp times of the signal and
a template should then be0.015 sec. Thus, the template
chirp times would be placee0.030 sec apart. For a larger
strength of 10.0, the value of the intrinsic ambiguity function

Qo(n, Np)

FIG. 5. Monte Carlo estimates of the false alarm for three tem-
. . . plates having a spacing of 0.020 sec. The padding used was
required would be 0.86. Hence, the spacings obtained Iqo‘f\'lpAzlo&O sec. The solid curve is the Monte Carlo estimate while

would be larger. o the dashed curve was obtained using &) andNg4=0.7N,. The
In order to calculate the false alarm, the distribution func-gjrcieq points were obtained using the same formula but with

tion Fy(z) of A is required. In Sec. Il D, the cumulative Nesr=0.4M, .

distribution functions E, andF, ) of A, were discussed.

There, the problems associated with obtaining the distribu- Qo( 7Ny =1—Fo( )
tion of the maximum, over a set of statistically dependent

variables, were outlined. In the case &f essentially the NT

same problems are again encountered. This is because the set =1- .1:[1 Fo(7) (57)
of random variablegA ;}, whose maximum is\, would, in

general, be a statist_ically de_pendent set. However, as in the ~1—exg — NyNgexp — 72/2)].

case ofF,, we can first obtain an expression f#p by as- (59)

suming that{\} is a statistically independent set, and then,

explore the effect of statistical correlations on this expressioffror typical values of the spacinbl;~1000. If a false alarm

by using Monte Carlo simulations. Actually, the assumptionof =8x 10" ° is required over a padding of,A=256.0 sec

of statistical independence here would be, in a sense, an efeorresponding to an average of one false event pej,yibar
tension of the assumption which was used in obtaining Eqthreshold needed according to E§8) would be ~7.93.

(49. There, statistical independence was assumed amonhis is higher than the threshold of 7.5 estimatel7ih The
samples of rectified outputs where only one sample was usediscrepancy is because of the use of a Gaussian distribution
from each rectified output. Further, the positions of thoseby these authors instead of the Rayleigh distribution used
points were related to each other by the fact that the samieere.

signal was being observed. Here, all such restrictions would Unlike the case of\,,, which is the maximum over a

be dropped. singlerectified output, Monte Carlo simulations for the esti-
Having made the above assumption, the cumulative dismation of the trueF,(z) are more difficult to perform. This
tribution functionFy(z) is easily obtained as would require not only the use of a large number of tem-

plates, but also several values of the spacing between them.
We, nonetheless, performed a Monte Carlo simulation to es-
Nt timate Qq(7;Ny) for a small value oN;=3 and a spacing
Fo2)=11 Fo(2), (55  $=0.020 sec. The value af was kept small to ensure that
=1 statistical dependencies were able to play a significant role.
The results are shown in Fig. 5. For comparison, the curve
obtained from Eq(58) is also plotted. The curious property
of their being an effective number of samples, for each rec-
tified output, surfaced again here. We find that E&@) pro-
1 vides an excellent fit to the Monte Carlo curve if the value of
_- s Ness Iin that formula is changed from (the value used
NT=5(Emax Emin) (56) for Fo) to 0.4M,. Of course, it can aIs%%ae interpreted as an
effective number of templates. We are unable to test the fit
for higher thresholds since the number of noise realizations
is the number of templates in the template bank. Note that, ahat can be used for such a simulation is not large enough.
stated earlier in Sec. Il CFy(z) now depends ors (via  We will assume, as in the case Bf(z), that the fit to the
N1). We include this dependence explicitly in the false alarmMonte Carlo curve will remain good for higher thresholds
which we denote, for a given thresholg by Qq(7;N7), also. Note that the reduction required in the number of

where
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samples would be dependent on the spacing of the templatggcause a detection probability @ i, can now be pro-
and hence, it is more difficult to incorporate it in a calcula-vided by a lower observed strength and hence a wider spac-
tion. However, the necessity of such an effort should be deing. Thus, the algorithm would stop at a largérthan is

cided by the use that E¢57) would be put to, while setting actually required. This would lead to an underestimation of

up a one-step search. _ the computational requirements since the number of tem-
A simple algorithm for setting up a one-step search, giverplates would turn out to be lower.
Smins Qd,min» @Nd Qg max, Would be the following. A value Given a false alarmQgma, that can be tolerated, the

for the spacing is chosefstarting from a large value, say threshold» can be obtained provideN;, or equivalently,
0=0.10 seg andNy is found. Then a thresholg is found,  the spacings of the templates, is known. But at the same
from Eq.(58), such that the false alarm becon@gma.. The  time, 5 cannot be determined unlessis specified since the
detection probabilityQq( 7; Syin . émint 9/2) is found. If it ex-  detection probability, which(along with S,,;;) determines
ceedsQq min, then stop or else reduce the spacing and repea; also depends on. One way to find a solution is to use the
the above process. In this algorithm, the threshold found iigorithm presented above. Another solution to this problem
the second step should be accurate to withi% so as not as obtained if7] by making ana priori estimate ofNy

to make a significant change in the detection probability thaiyhich was taken to be-1000. This allows the circular chain

is calculated in the next step. For instance, ifof dependencies to be broken. The final valueNgfturned
Sm=Sm+1=8.6, thenpy=7.9 gives a detection probability of out to be consistent with the assumed one. Such an approach
0.95. If » were changed by 4%, i.ey=8.2, then the detec- can be justified ifN; is large since, as can be seen from Eq.

tion probability would fall to 0.90. This error is significant (58), A y~AN;/(5N7), which makes the threshold insensi-
because, usually, a minimum detection probability greatefive to Nt in such a regime.

than 0.9 is desired.
Fortunately, the threshold, for a given false alarm, is not
very sensitive to which of the two curves in Fig. 5 is used for

its determination. This is clear, by inspection, in the region . .
y Insp g In a one-step search, the operation which makes the

where the curves are steep. For larger valueg,ofve can heaviest demand on number crunchin bility is th
estimate the error by using the fit to the Monte Carlo curve Vi u unching capabiiity IS the cor-

. : _ relation of x(t) with a large number of templates. The pri-
. =0. . > . LN P . . :
gg)v f;r? bbeyfsgrw(gr? )a\[;V[I)trhoxl\ilr%ﬁateod‘l::g p- Whenz>1, Eq mary motivation behind implementing a hierarchical search

is to obtain a reduction in the number of templates used in

this operation. In order to quantify the efficacy of a hierar-

chical search, however, this as yet loosely defined concept
needs to be cast into a rigorous form. We present below one
such structure for a two-step hierarchical search. This struc-
ture is based on the properties of a one-step search which
Svere described above. It should be noted that it need not be
unique. It is based on our experience with a one-step search.

Ill. TWO-STEP HIERARCHICAL SEARCH

Qo( 7 Np) ~NrNerexp( — 7°/2). (59

In order to study the effect of the change in the effective
number of samples, létlos=XxN, for 0<x<1. Then it fol-
lows from the equation above that for a fixed false alarm, th
change A% in the threshold for a changd&x in x is
An~Ax/(yx). In the case of the above simulatior,
changes from x=0.7 to x=0.47. Therefore, _ _ o
Ax=0.7-0.47=0.23, and forp=7.9, we getA 5=0.04. A. A two-step hierarchical search: Description
This change is negligible as far as its effect on detection The basic idea behind a two-step search is the use of two
probability is concerned. For instance, if a detection probbanks of templates. One of them has template chirp times
ability of 0.95 is required for a thresholg=7.9, the ob- placed farther apart than those of the other. A one-steplike
served strength requiredor a signal lying in the middle of search would be conducted with the finely spaced templates
two templatepis Sype=8.6. If 7 were now to be increased by but only around “promising” candidate chirp times, namely,
0.04, i.e., »=7.94, the detection probability falls by only those templates in the coarser bank for which the maximum
=0.6% to 0.944. In this sense, even the correction of 0.®ver their rectified output exceeds a threshold. This threshold
used for Ngi is not significant. Supposex=1.0, then would be kept lower than the one which would be used with
Ax=0.53 which leads ta&\ =0.07. In the above example, the finely spaced templates.
the detection probability would now fall by=1% which is In the case of a one-step search the template bank could
again insignificant. However, this correction was obtained bybe fixed using the one-step template placement criteria and it
performing a simulation with a single template and, thereturned out that the spacing between the templates was a con-
fore, it was quite easy to incorporate it in our calculations.stant. This was essentially because of the dependence of the
The argument presented above shows that(B@. for the intrinsic ambiguity function on only the difference in signal
false alarm is a good approximation for our analysis even foand template chirp times. A similar set of conditions can be
closely spaced templates. imposed on a two-step search also. We will do this formally
Since the threshold can be determined quite accuratelyn the next section but it can be expected that the template
the main source of error in the algorithm given above is thébanks will again have uniform spacings, although one of
detection probability. We had seen that E80) provided an them would be less than the other. We, thus, construct a
overestimation of the detection probability when templateswo-step search as follows.
were spaced closely. In the algorithm, an overestimation of The maximum over a rectified output is, first, computed
the detection probability for a given threshold would result infor each chirp time in a banB,={¢;}. We call By, the
a spacing that would be larger than the true spacing. This ifirst-stagetemplate bank and denote the spacing of this bank
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by 6. The number of templates usedBy is n{*, Neglecting adjacent crossings is justifiechif<n{*) For
instance, ifn{*)=200 andn.=2, then the number of ways in

(60) which adjacent crossings can occur is 199 while for nonad-
jacent crossings, the number of ways is 19 701. Thus, the
probability of an adjacent crossing 1s1/100 that of a non-

If for some template irB; having a chirp timez,,, it hap-  adjacent crossing. It turns out that the conditigren(®) is

pens that the maximum over its rectified output crosses  satisfied in our final results.

7 then we call this event arossingof ) produced by The dependence of the distributions &f2) will now be

the chirp timeé&,,. Given such a crossing, the next step in-on a set of two spacings and two thresholds. As a conse-

volves using a template bari, ,, with a spacings® thatis  quence, both detection probability and false alarm will also

smaller thans™. We takes/ 8(2=n to be an integer. This depend on the same. Before proceeding further, we empha-

keeps the two banks of templates commensurate with eadize thatA(?) need not be equal to the test statistic that is

other. It is possible to envisage a two-step search where thigbtained by using a one-step search. The same holds for

condition is relaxed anah is allowed to take nonintegral 7‘® and 5? also. A one-step search with a threshajt?

values also. However, an incommensurability in the twoand a spacing®® will not, in general, satisfy the one-step

banks would require the storage of more template wavéemplate placement criteria. However, statistical correlations

forms than those for commensurate banks. Also, there doestep in to effectively decouple the detection probability and

not seem to be any significant advantage when the computfalse alarm from the presence of a hierarchy which allows

tional costs are considered because allowing incommensura{? and 5 to be valid solutions for a one-step search.

bility marginally reduces the minimum in the computational

cost(Sec. Il B).

The set of chirp times used B, , will be located sym- B. Determination of thresholds and spacings

metrically aroundén, (except wheném=&min OF £max, but We impose on the two-step search described above, con-
these can be ignorgdit will be convenient, therefore, t0 gitions similar to the one-step template placement criteria of
!ndex the chirp times i, , Wlth bo_th positive a}nd negative gec. || E. Thetwo-step template placement criterae: (i)
integers. Thus, the set of chirp times usedBify, can be  Eyery signal with a strength greater than a given minimum
constructed as strengthSy,;, should produce, with a probabilitQg i, at
least one crossing among the two templates which lie on
£p=Emtpo?, (61)  either side of it. It should also be detected with a probability
of Qg min When the second-stage templates corresponding to
where—n+1<p=n—1. However, the range gf need not the above crossings are employe@, The false alarm
be made as wide as this. For instance, it could beshould be less than a specified le@) yax. This false alarm
—n/2<p=n/2 also. For the former, the number of templateis for the overall search and does not refer to a specific level
chirp times inB,,,, would be 26— 1) while for the latter it ~ of the hierarchy. As in the case of a one-step search, a solu-
will be n. tion in terms of thresholds and spacings need not exist for all
Since » would, in general, be kept quite low, the combinations oSy, Qg min, and Qg max-
probability of more than one crossing will not be negligible. ~ Our choice of only two adjacent templates for the first-
In general, for every crossing of?), a fixed number, Stage crossing can be justified using the following example.
M [n=M<2(n—1)], of templates will be employed as de- Suppose thas(?), the first-stage spacing, is 0.300 sec which
scribed above. Since the number of crossings that appear ifi @ typical value. Let a signal be present with a chirp time
our final results is smalitypically, ~2), the choice oM & such thatt=(&n+&m.1)/2, whereé,, and &y, 1 belong to
within the above-mentioned range does not make too mucBi- Let 7(M=6.0, »®=7.9, and the signal strength
of a difference to the computational cost. We chooseS=8.8. These are again representative values. The observed
M=2(n—1) for our analysis, the maximum of the range, in strength of the signal in the templat&s andé,,. ; would be
order to maximize our chances of detection. Thus, the tem8.8H(0.150)=6.56. The probability of at least one crossing
plates, inB,,, with chirp times¢,_, and¢_,,1, will have ~ among §, and ., can be found using EqK50). It is,
a separation 05 from the templates corresponding to 1—(J§Ri(x,6.56)0x)*=0.93. The observed strength of the
&mr1 and &, 4, respectively. signal in the  template ¢,.;  would be
Let n. be the number of crossings that are produced by3.8H(0.150+0.300)=4.51. If the templatesé,,_; and
the first-stage templates iB;. Then the total number of &y, were also included, then the probability of at least one
second-stagéemplates that will be used will be.M. Adja-  crossing among these four templates would be
cent crossings will reduce this number since there would bé—(fg'ORi(x,6.56)dx)z(fg'oRi(x,4.51)dx)2=0.94. Thus,
some second-stage templates in common for such crossingbkere is an increase of only 1%. These extra events would
We assume, however, that adjacent crossings have a neglie those in which at least one crossing was produced among
gible probability compared to nonadjacent ones. Finally, thet,,_; and &,,,, but none was produced if}, or &, 1.
overall maximum over the rectified outputs of the second- Consider the case where ony,_, produces a crossing.
stage templates employed is found. We denote if\&%). If In such a case, a search with second-stage templatesa
A® crosses a thresholg® (> %), a detection is an- higher threshold7®) would be performed around,_;.
nounced. ThusA @) is the test statistic for a two-step search Assume that the observed strength in the tempkate,
configured as above. € B, -1, the extreme “right” among the second stage tem-

1
nfl)=w(§max— min) -
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plates used, is also almost the same6(56) as that in the Qﬁ,min would be almost equal tQq min- This is so because a
templateé,,,. Since there was no crossing fg,, the only  crossing of the second-stage threshold would be more likely
way the signal can be detected now would be if a crossing ofp be accompanied by a crossing of the first-stage threshold
7® is produced ing,_;. The probability of this event is now than would have been the case if the rectified outputs
1— [§Ri(x,6.56)dx=0.2 which is quite small. Thus, most were statistically independent.
of the extra crossings obtained, when four templates are used If a crossing of 5 (which is quite large were to be
instead of two, would actually be spurious since they will notinduced by noise alone, it would imply that the noise “re-
lead to the final detection of the signal. The relevant crosssembles” the template wave form very closely. Therefore, as
ings are, therefore, only those that are producednor in the case of an actual signal, one can expect that such a
&m+1. It should be ensured that the probability of such crossnoise realization would also induce a crossing of the first-
ings is sufficiently high for a given strength. This is precisely stage threshold in a nearby first-stage template. This need not
what is required in criteriorii) above. We, therefore, con- be true when the templates are far apart. However, for small
tinue to use Eq(50) for the first stage. spacings {0.030 segit can be expected that the presence
Since the second-stage spacing in our final results wilbf a hierarchy will not be an impediment to a false alarm.
turn out to be~0.030 sec, statistical correlations will not be In order to check this, we performed a Monte Carlo simu-
negligible as far as the calculation of the detection probabiliation with a set of five templates spaced 0.025 sec apart and
ity is concerned. However, just as in the case of a one-steghe input data consisting of noise alone. Since the crossing of
search, the use of this formula would lead to an overestimatg large threshold+ 7) is an extremely rare event, we had to
of 52 for a given,(). This will lead to an underestimate of \ork with a lower value of7®=5.7 in order to register a
515, This quantity can be expected to be an estimate oizable number of the events that are of interest here. The
the reduction in Computational requirementS, as Compared tﬁ}st stage thresho|d7(l) was kept at 5.2. These two thresh-
a one-step search, that a two-step search can bring aboglds are obtained when the value @f a4 is kept such that
Hence, the use of E¢50) in the second stage will give a there are, on the average,®lfalse events in a year while
lower bound on the efficacy of a hierarchical search. If thisQd nin=0.95. The calculation of these thresholds assumed
lower bound turns out to be significant, a further, more dextatistical independence. The same calculation also yields the
tailed analysis can be carried out. spacing used in this simulatidthe method used here will be
We emphasize here that, for a two-step search, the actug|tiined below. The extreme-right and -left templates can be
detection probability of a signal will beessthanQq min- IN taken as first-stage templates while the remaining serve as
fact, it is the probability of a composite event which involves second-stage templates. The template chirp times were cho-
two different template banks and crossings of two differentsen small enough so that a large number of independent
thresholds. The event whose probability is being sought herggise realization$4000 could be generated.
is that, in the presence of a signal, there be at least one Gjven a maximum among the second-stage templates
crossing in either of the two consecutive first-stage templategich crosse®), we found that the probability of a cross-
between which the signal lies and that this be followed bying of 71 in either of the first-stage templates~€0.9. On
the test statistic\?) crossing 7. Suppose that a signal, the other hand, if the rectified outputs had been statistically
with a strengthSy,, and chirp timeg, is present in(t). Let  jhgependent, the corresponding probability would have been
§ke By be such thag <£<{y.1. Also, let g be the tem- st that of a crossing of*) among either of the first-stage
plate, in the second-stage templates around eitheor  templates and would be 0.08. The few events that failed to
€1, SUCh thatfy <£<£ .. Then, thefrue detection prob-  make it through the hierarchy were those in which the cross-
ability of this signal would be dominated by the probability ing of 7® occured in the middle template. The probability
of the event: §,>7™ or Ni1>7%Y) and (\>7® or £ such events would be small, especially when the number
Ni+1> 7). Now, there are two possibiliies. The first is of second-stage templates becomes larger. Thus, it is a good
thatn=6(1/5(*) is odd. In this case, if=(&+ & 1)/2then  approximation that statistical correlations almost wipe out
it will also be true that= (¢, + £,.1)/2. Such a signal can be the presence of a hierarchy. Since this is true for a low
expected to have the least true detection probability for the,(2) it would also be true for a larger threshold as a crossing
strengthSyy, since it lies in the middle of consecutive tem- would then indicate a stronger match between the noise re-
plates in both the banks. If wassume statistical indepen- glization and the template. Therefore, E&j7) should remain
dencebetween the maxima over rectified outputs, then the,zjid for the calculation ofp® where the number of tem-
minimumtrue detection probabilitQy i, would beQj win-  plates to be used would now be thetal numberof second-
The second possibility is that is even. In this case, if the stage templates. Since we present our results for weak signal
signal chirp time§= (§x+ &x+1)/2, theng will actually coin-  strengths, for which the spacir§? would be small, we will
cide with & in the second stage. Such a signal will not haveyse Eq.(57) in our analysis. An immediate implication of
the minimum true detection probability. In fact, it is easy tothis is that the second-stage threshold and spacing are now
see that for this case there is no signal which occurs exactljetermined independently of the corresponding first-stage
in the middle of two consecutive templates in both the banksquantities. Also, this simulation shows that the detection
Thus, under the same assumption as abQjg,, would be  probability of asignalwill be much higher tha? .., when
strictly greater tharQ i, Thus, in generalQy w=>Q3mn  the spacings are small.
for a two-step search. In our ca&® min=0.95; therefore, The template placement criteria given above admit many
Qg,mmzo.g. However, in the presence of significant statisti-solutions for given values 0®g min» Smin: 8Nd Qg max- All
cal correlations among the different rectified outputs,solutions will not, however, lead to the same computational
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requirement in terms of the number of templates that will be
employed ultimately. An estimation of the computational re-
quirement of a given solution is complicated by the fact that

ok
the number of templates used is a random variable. This is so qf ]
because the number of crossingsof 7*) depends on the 2 i

particular realization of the noise presentxift). We choose o § _ 8
to quantify the computational requirement of a given two- g

step search by the average number of templaféhat will

be required on the whole. We denote the average value of
n. in the absence of a signal y2'. The computational
requirement can then be expressed as

200

15

n®=(n®+q)xM+n?, (62) 3 ' J/

10

where the quantityy is the average number of signals that 0 . P 7
may occur in a given length of data. This number will de- S D , B
pend on the event rate of the signals. For coalescing binary 0.1 015 02 025 03 035 04
signals, the expected event rate is quite low 8/yr up to a 5(1)

distance of 200 Mp¢25]). Taking into account the antenna <Sec>

pattern factor, if we assume an event rate of even 50—100 per

year and about Fodata trains in a yeaq~10"3. We take FIG. 6. The average number of template¥ required in a two-
g=0. In Eq.(62), we have neglected, as before, the prob-Step search as a function of the first-stage spadily For this
ability of adjacent crossings in the absence of a signal. Undeii™Ve:  Qamin=0.95, = Spi;=9.0, N,A=224.0 sec, and

the assumption of statistical independence made abiVe Qomac7-10x10"°. This false alarm corresponds to an average of
can be obtained as ' one false event per year. The range of chirp times used was

Emin=2.0 sec and,,,=32.0 sec. The dashed curve is a plot of the
average number of first-stage crossimd$in the absence of a sig-
n&=Qo(7™)xn{, (63  nal.

ol INPERVTE IR |

(i) A trial value of 1) is chosen a$®=j x 82 where
j=2 is an integer. For each trial value 8f"), %) is calcu-
lated so thatQu(7™; Syin,émint 8/2)=Qq min- The aver-
age computational requiremenf’ is then calculated using
Egs. (63) and (62). The value ofs") is increased by incre-

enting j, starting from a suitable initial value, until the
Or;ginimum ofn is reached.

In Fig. 6, a representative plot of the average computa-
tional requirement as obtained using this algorithm is shown
as a function of the first-stage spaciaf). Also shown is

whereQq(7V) is the probability of a crossing for a single
template, Qqu(7)=1—Fq(7n). As an example, for
N,=224x2048 and Neg=0.7N,, n2/n{"'=0.005 for
7M=6.0 andn®/n{!=0.7 for (Y=5.0. We see that the
number of crossings is quite sensitive to the threshold. Not
that Eq.(63) should provide an accurate result becasiSeé
can be expected to be quite large and, thus, the effect
statistical correlations would be small.

From Eq.(62), we see that in order to reduce the compu-
tational reqL_liremenn,ﬁl) Sh(.)UId be made small or equiva- av ~ qpsene the sharp rise in2Y and consequently, in
lently, the first-stage spacing'®) should be made large. & ¢
However, an increase Y will lower the observed
strength S, of a signal having a chirp time
E=(&mtéms1)!2, for £,,€ B4. This would imply a decrease
in the probability of a crossing induced by such a signal in
the first stage and hence, a violation of criterigrabove. To
avert this, »*) would have to be lowered too. From Figs. p?=
3(@ and 3b) we see thatFy(z) has an almost step-

functionlike behaylor(lt;elo(\/vl) a critical value @ If, in the  \ypare N is the total number of second-stage templates. A

course of Increasing™, » became less than this critical t55e glarm that yields not more than one false event per year

value, the value of" would rise quite fast so much so that o the average would be

n{ would actuallyincreasewith an increase ob1) beyond

this point. Thus, there should exist a solution for the thresh- Qo,max= NpA/(365.0<24.0< 3600.0. (65)

olds and spacings in a two-step search, for which the com-

putational requirement is minimized. This optimum solutionFrom Eq. (64) and the above expression, it follows that

can be found by a simple extension of the algorithm that was7'?) is independent oN,, .

presented for a one-step search. For small spacings 0§~ 0.030 sec, the number of tem-
The Algorithm plates that will be required in the one step-search constructed
(i) Given Spin, Qg min» Qomax: and the paddindN,, a  in step(i) above would be~1000. Thus, the typical thresh-

one-step template bank and threshold is set up using theld ) that would be required is- 7.9 for a false alarm that

algorithm presented in Sec. Il E. leads to one false event per year on the average. The ob-

Since the value 0Q maxWould, in general, be kept quite
small (~10 ), Eq. (58) can be further approximated to
yield the following expression fo(?):
N+N 1/2
2 In( T ef'f) , (64)
QO,max
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served strength required to attain a detection probability of TABLE I. Minimum Cg,i,e as a function ofN for: Sy,;,=8.8,
0.95 for such thresholds is 8.6. If the detection of signals &mn=2.0 SecC, &n=32.0 sec, Qqmn=0.95. 7?=7.92,
having a strength=8.6 is desired with the above probability, 8?=0.0325 sec.

then it is clear that an almost continuous set of template chirp
times would be required since otherwise the observed*A(sed — ConinMFlops 7Y oM(se9  ni’  ng’
strength would become:8.6. Of course, this would require g, 41.3(392.9 5.58 0.358 97
an infinite amount of computing power. Thus, there does nof»g 32.6(279.6 5.75 0.325 107
exist a solution to the template placement criteria for such 3560 31.6(253.7 502 0.293 115
set of values foQy min,Qo maxaNd Syin=<8.6. We call such a 512.0 33.6(249.3 6.11 0.260 124
limiting value of S;;, as theminimum visible strengtfor a 102'4 0 36'7(253'2 6.11 0.260 134
one-step search. In actual practice, we find that the minimum_" " ’ ' ' '
visible strength is a little higher at 8.75. This is because

7?) also increases a8 is reduced. . ~ force 6 to a smaller value since the required observed
The paddingN,, was kept fixed throughout the discussion strength would now be higher. The overall effect is an in-
above. This parameter of a two-step search is, however, dgrease im?’ as well asNy,,. On the other hand, an increase
cisive in an estimation of the computationmwerrequired. N, will result in a Ionggr time in which the required pro-
cessing has to be completed. Thus, g8, Qg min, and
C. Computational power required for an on-line analysis Qo,max there would exist an optimuN, at whichCoy jine is

For the on-line detection of a signal, it is required that theminimized.
processing of a given segment of data be completed within We compute the value dE,, e @s a function ofN, for
the time required to gather the next off. In a two-step WO different ranges of the chirp time. For each range, the
search, the processing required consists of the computatidhinimum values ofn¢" are found for a few representative
of rectified outputs, finding the maxima over them and, fi-values ofN,, keepingS,, fixed. This process is then re-
nally, obtaining the test statistit?). The construction of a peated for progressively lower values 8f;, till 8 be-
single rectified output involves, first, performing correlationscomes~0.030 sec. We quote our results for such values of
between the time series of the detector output and two tenBSy,, (note that these values are not the minimum visible
plates,hy andh,,,. For a givenN,, each time series will Strengths Table | contains the results fd,,=2.0 sec and
haveN=N,+ &na/A samples, wherd is the sampling in-  émax=32.0 sec. In this table,S;,=8.8. In Table II,
terval. If an FFT is used, this implies doindN&,N floating ~ &émax=138.0 sec an;,=9.0. In each table, the minimum
point operationgflops) [20]. The correlations will be fol- value of n{" is computed, using the algorithitfor small
lowed by N, flops for the squaring and summation requiredspacing$ presented in the previous section, for several val-
for the calculation of a rectified output. The maximization ues of N. The value ofC,, . is then found at each such
over a single rectified output would involve, at most, ~ minimum. We also list the corresponding values o,
flops. Thus, the total number of flops required per templates?), n?Y, andn2" (the last two are rounded to the nearest
chirp time Ny, is whole number. Note that the value of(?), and hence the
value of 5, is independent oN,, as shown earlier. They
are presented in the captions of the tables. The numbers in
eparentheses in the second column are the computing powers
required for an on-line one-step search. The valueN afe
chosen as powers of 2 because an FFT is most efficient at
Nfiop=N"Nop (67) these value$20]. The value ofQ . is always chosen to
give an average of one false event per \idag. (65)].

on the average. We neglect the relatively small number of From Table | we see that the value fofA at which
flops involved in the calculation of®). Thus, for an on-line  Coniine IS Minimized is 256.0 sec. This implies a padding of
implementation of a two-step seard¥y,, operations would ~NpA=224.0 sec. However, this minimum is quite broad. In
have to be performed ilN,A sec. The average computa- fact, it may be preferable to usBA=128.0 sec since
tional power require,, jine iS, then, memory requirements would become smaller for computa-
tions involving a shorter time series. The corresponding pad-
ding in this case i&l,A =96.0 sec which is three times larger

R

Niop=6NIN;N+ 4N . (66)

The total number of flops required for the whole templat
bankNqq, is, therefore,

_ Niiop -6
Con ine™ 1A X 10~ ° MFlops, (689
P TABLE Il. Minimum C,, ine @s a function oN for: S,;,=9.0,
where “MFlops” stands for a million floating point opera- &mn=2.0 Sec, &ma=138.0 sec, Qqmn=0.95. 7?=8.10,
tions per second. 5?=0.0335 sec.
An increase inN, leads to an increase iRy(7) for a

given threshold. Consequently, the number of false crossind§XA(se()

ConindMFlops 7 sB(seg n nd"

in the first stage would increase, for glVéH') and 77(1), with 256.0 234.22092.1) 5.84 0.335 455 3
an increase |.|Np. SII’]CEI”.I?\./ starts toa\rl|se when the number 512.0 172.91400.8 6.03 0301 502 3
of crossings is=1, the minimum ofn{" for a Iargeer will 1024.0 167.112455  6.21 0.268 545 3
be achieved at a larger value gf!). At the same time, the 2048.0 175012115 621 0268 588 6

requirement that the probability of a crossing ®g y, will
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correlations into account, is needed when the valu&gf
becomes close to the minimum visible strength.

The assumption of statistical independence of rectified
outputs is quite good when applied to the first stage. There-
fore, the values obtained fof*) and 6) are accurate. How-
ever, the spacings obtained for the second-stage template
banks are quite small which implies that statistical correla-
tions would now be significant. As far as the false alarm is
concerned, it is used in the algorithm only for the determi-
nation of »(?). We have shown in Sec. Il E that the determi-
nation of the threshold is insensitive to the presence of such

300
L
T

Conl,ine(MFlops)
200

100
|
T

[ | correlations. As in the case of a one-step search, the main
o ———————————— source of error here is the use of E§O) in the second stage
9 95 10 for the calculation of detection probability.
Smin It was pointed out in the previous section that in the pres-

ence of significant statistical correlations, the use of(B6)
FIG. 7. The computing power required, as a functionSgf,,  for the second stage provides an underestimat&6f5(2).
for an on-line one-step sear¢top) and an on-line two-step search This is approximately the computational advantage of a two-
(bottom). For both the curvesNA=256.0 sec,éma=32.0 sec,  step search. Thus, the computational advantage of a two-step

Qu,min=0.95, andQg max=7.10X 10" °. search could be more than the value=68 obtained above.
However, it is difficult to obtain a clean estimate of this
error.

than §pq,. Similarly, the optimum padding for the larger  ror instance, consider the case when only one template is
range of chirp times is alse-3 {nax. In [4], the optimum  yseqd in Eq.(49) for the detection probability. It was ob-
padding for a one-step search was found as a trade off begryved in Fig. 4) that such a formula gave a detection prob-
tween thenumber of flopsequired for a single data segment gpjjity that was lower than the true value. Its use in the

and the number of segments that would have to be analyzeglgorithm, for the calculation of second-stage detection prob-
in a long period (-1 yr). Here, we have used the computing gpjlity, should therefore give aaverestimateor &/ 6®),
powerrequired for an on-line search as a discriminant. However, a straightforward comparison is difficult because
We call the ratio of the computing power required for anhe minimum visible strength for a one-template formula
on-line one-step search to _that required for an on-line twWoy,rns out to be significantly higher<(9.5). When this larger
step search as theomputational advantagef a two-step yajye ofS,,, is used with a two-template formula, the typical
search. From Table I, the computational advantage at thg(2) gptained is large enough-0.10 set that statistical cor-
minimum of Copjin is 8.0. In Table II, the corresponding g|ations should be insignificant and the answer obtained
number is 7.5. qu numt;er of CrOSS'q@SW'" have a vari-  ghouid be correct. But a one-template formula leads, for the
ance given byn{YQo(7)[1-Qq(%™)]. For the entry game strength, to small spacings@.020 segin which case
from Table | considered above, the rms deviatiomiM it js definitely preferable to use this formula rather than Eq.
will be =12. Thus, the value afi{'=127 and the computa- (50).
tional advantage falls te=7.2. This is not a large change.  The probability of adjacent crossings was neglected as
Thus, a two-step search offers a large reduction in the comeompared to nonadjacent crossings. This is true when
puting power required for an on-line detection while provid—nc< n§1). The values obtained fon2’ clearly satisfy this
ing a useful combination of detection and false alarm probgngition. Note thas® is large enough for statistical corre-

abilities. _ _ lations to be negligible and hence E§3) to be valid.
In Fig. 7, we show the computing power required for an

on-line two-step search, and the corresponding on-line one-
step search, as a function 8f;,. The value of¢,,,=32.0

sec. For this range of chirp times and the valueQgfi, We have investigated the performance of a two-step hier-
and Qg max Which were used above, it was noted earlier thatarchical search for the detection of Newtonian wave forms
Smin~8.6 is the minimum strength which would be detect-from coalescing binaries. The noise power spectral density
able. At this value ofS;,, the computational requirement used in the analysis is that of the initial LIGO. A rigorous
would become infinitely large since a template would beformalism to describe a two-step search was presented which
required for each value of the chirp time. This is evident inemploys the detection probability of a signal in an essential
the sharp rise in the computing power for the one-step searclay to set up the bank of templates and thresholds. The
as Sy, approaches the minimum visible strength. The com{formulas for detection probability and the false alarm used in
putational advantage of a two-step search increases to this formalism were obtained under the assumption of statis-
value of =13 near this limit. However, the second-stagetical independence of time samples in the rectified output of
spacing becomes quite small for such low valuesSgf, templates. However, Monte Carlo simulations were used to
which implies that the statistical correlations among the recstudy the effect of statistical correlations on these formulas.
tified outputs can no longer be ignored. The formula used foWWe found that, in the absence of a signal, it is straightfor-
the detection probability would, therefore, be very erroneousvard to incorporate such effects for the case of a single rec-
in such a case. A more careful analysis, taking statisticalified output by the use of agffective numbeof statistically

IV. CONCLUSIONS
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independent samples. The threshold, for a given false alarniemplates, the intrinsic ambiguity function has a value of
was found to be insensitive to correlations. ~0.97. This is consistent with the value used[8] for a
Statistical correlations, however, affect the detectionone-step search.
probability in a complex manner which makes it difficult to  In terms of detection probability, the argument usef8ih
incorporate these effects in a simple way. Strictly speakingreduces to assigning a detection probability of unity to sig-
neglecting correlations gives us a lower bound on the comnals having a strength above the threshold and zero to signals
putational advantage of a two-step search. However, thwith a strength below it. This is justified since the detection
bound itself is close to the actual value if the spacing beprobability does indeed fall very rapidly as the observed
tween templates is not too sméallve take this value as strength goes below the threshold. For instance, if the thresh-
=0.030 seg old were 8.0 then an observed strength of 7.5 corresponds to
(i) We find that a two-step search allows a large reduca detection probability of 0.55. In terms of distances, a
tion, by at least a factor o8, in the computing power strength of 8.0 corresponds t038.0 Mpc while 7.5 corre-
required for an on-line detection as compared to a one-steghonds to 40.5 Mpc for a 1.4—1M binary. Thus, the
search for Newtonian signals. For an on-line detection ofjetectability of events would fall to only half the actual num-
signals having a strength of-8.8 (detection probability per of events, within a short distance from that correspond-
=0.95 and an average of one false event per)y#@ com-  jng to the threshold.
puting power required, for a two-step search, is 167 MFlops |t should be noted that the canonical value of 0.9 for the
when the range of chirp times is taken &5,=2.0 sec and intrinsic ambiguity function that is usually used for the de-
&max=138.0 sec. We expect our results to hold good sincgermination of the spacing is valid only for large signal
the second-stage spacings ar€.030 sec. For weaker sig- strengths(when a detection probability of 0.95 is desired
nals the spacings turn out to be much smaller, in which casgor instance, when the threshold in a one-step search is 7.9,
statistical correlations will play a very significant role. The a signal having an observed strength of 8.6 is detectable with
formula used for the detection probability would then bea probability of 0.95. But if the observed strength is taken as
suspect. However, if we apply this formula for smaller spac{).9x 8.6/0.97, the detection probability would fall to 0.80.
ings, the reduction achieved in computational power turns |n itself, the reduction 08, from a value of, say, 10.0 to
out to be much larger. This can be seen from Fig. 7. But-g g |eads to an increase of the volume in which sources
these cases merit a more thorough investigation in whiclgan be detected by a factor of 1.5. If a one-step search were
statistical correlations are considered more carefully. Foysed, the computing power required for the detection of the
closely spaced templates the use of two templates in the cajgegker signalgwith Q4=0.95) would be much larger than
culation of the detection probability, E¢50), leads to an  that for the stronger signals. Therefore, the question arises
overestimate while the use of a single template leads to a@hether it is worth devoting a lot of extra resources in order
underestimate. Either of these can be used in the algorithfg obtain such an increase in the volume of detectability.
that we have presented for a two-step search. If the ongqowever, a two-step search would require only a very small
template formula were usei@nly in the second stagethe  jncrease in computing power for the same increase in event
minimum strength that would be required to achieve a detecrate. Moreover, as mentioned i, it may bring down the
tion probability of 0.95, for a second-stage threshold of 7.9¢computing requirement significantly in the case of higher
would increase to 9.5 from the 8.6 obtained with E80).  order templates. This may happen even for large strengths
However, the computational advantage of a two-step search.- 10).
when the one-template formula is used, again turns out to be (jy) The spacings in both a two-step as well as a one-step
a factor of~10. search are primarily governed by the intrinsic ambiguity
(it) The one-step search formalism presented here waginction. If the bandwidth of the detector were to be made
restricted to the family of Newtonian wave forms. This fam- larger, as would be the case for the VIRGO and advanced
ily has essentially a single important parameter, namgly, ||GO detectors, the falloff in the intrinsic ambiguity func-
There is no problem though in extending this formalism totjon, as the spacing between template and signal chirp times
include multiparameter signal families such as the postis increased, would be faster. We believe, however, that the
Newtonian signals. In fact, this is very much required since itcomputational advantage of a two-step search over a one-
has now been establishgg] that the quadrupole approxima- step search would still remain the same. This is because the
tion will not furnish templates that are good enough for theeffect on both the first-stage and second-stage spacings
detection of coalescing binary signals. should be similar. In absolute terms, the computing powers

The eXtenSion is Straightforward because the key id_ea |rﬁequ|red may be greater for both the one-step and two-step
this formalism, namely, the template placement criteria, isearch.

not restricted to a particular signal family. The same would
hold for the second-stage template placement criteria also. It
may be expected that the computational advantage of a two-
step search would be larger when the number of parameters
increases because we may expect the hierarchical search toWe are grateful to Professor B. F. Schutz for pointing out
yield an advantage for each parameter independently. Then error in the calculation of the false alarm for a two-step
combined computational advantage would be the product adearch. Special thanks are due from S.D.M. to Dr. Soma
the computational advantage for each parameter. Mukherjee for help with the statistical literature. S.D.M. was

(i) The values obtained for the second-stage spacingupported by the Council of Scientific and Industrial Re-
(~0.030 segimply that, in the middle of two consecutive search(CSIR) of India.
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