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Hierarchical search strategy for the detection of gravitational waves from coalescing binaries

S. D. Mohanty and S. V. Dhurandhar
Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind Pune 411 007, India

~Received 18 March 1996!

The detection of gravitational waves from coalescing compact binaries would be a computationally intensive
process if a single bank of template wave forms~i.e., a one-step search! is used. We present, in this paper, a
method which leads to a large reduction in the computational power required as compared to a one-step search.
This method is a hierarchical search strategy involving two template banks. We show that the computational
power required by such a two-step search, for an on-line detection of the one-parameter family of Newtonian
signals, is 1/8 of that required when an on-line one-step search is used. This reduction is achieved when signals
having a strength of;8.8 are required to be detected with a probability of;0.95 and an average of one false
event per year. We present approximate formulas for the detection probability of a signal and the false alarm
probability. We investigate the effect of statistical correlations on these probabilities and incorporate these
effects wherever possible. Our numerical results are specific to the noise power spectral density expected for
the initial LIGO. @S0556-2821~96!00224-X#

PACS number~s!: 04.80.Nn, 95.55.Ym, 95.75.Pq, 97.80.Af

I. INTRODUCTION

The inspiral, because of gravitational radiation reaction,
of a binary composed of compact massive objects~neutron
stars or black holes! will produce a gravitational wave signal
@1# which, during the last few minutes before merger, will lie
within the bandwidths of upcoming laser interferometric de-
tectors such as the Laser Interferometric Gravitational Wave
Observatory~LIGO! @2#, VIRGO @3#, and GEO600. The
wave form of this signal can be computed with enough ac-
curacy to allow pattern-matching techniques, such as
matched filtering, to considerably enhance the signal to noise
ratio @1,4#. Therefore, it should be possible to detect such
events up to a large distance and hence observe a significant
event rate.

The technique of matched filtering is equivalent to corre-
lating the detector output with a wave form, called thetem-
plate, which is constructed from the expected signal itself.
This technique is derived from the more general method of
maximum likelihood detection@5#. When applied to the de-
tection of a signal with a fixed wave form, this method in-
volves the computation of a functional, called the likelihood
ratio ~LR!, of the given data. A detection is announced if the
LR exceeds a preset threshold. For coalescing binaries, how-
ever, a wide range of signal wave forms are possible corre-
sponding to different values of the parameters which charac-
terize a binary, such as the masses and spins of the compact
bodies among others. The LR then becomes dependent on
these parameters. In such a case, it is required that the LR be
maximized over the whole parameter space and the maxi-
mum, called the test statistic, be compared with a threshold.
Depending on the particular realization of noise present in
the data, it is possible that the test statistic stays below the
threshold even though a signal is present. It is also possible
that it exceeds the threshold in the absence of a signal be-
cause of noise alone. Thus, a given signal can be detected
only with a certain probability called the detection probabil-

ity. The probability with which noise alone can masquerade
as a signal is called the false alarm probability.

Computationally, efficient methods for the maximization
of the LR are known for only a subset of the parameters
involved. It is for the maximization over one such parameter
that the correlation of the detector output with a template
wave form is computed. For the remaining parameters, how-
ever, there is no straightforward method. The strategy which
has been considered most often is to carry out the maximi-
zation over a discrete set of values for these parameters
@6–9#. Therefore, a set of templates would be required cor-
responding to the set of values used for these parameters.
Such a set is called abankof templates. The use of a bank of
templates implies, however, that not all of the possible sig-
nals can be detected equally well. This is because the signal
to noise ratio, hence the detection probability of a signal, is
reduced if its corresponding template is not used in obtaining
the correlations@6,7#. Such a mismatch is bound to arise in a
bank of templates for most of the signals. An arbitrarily fine
spacing of the parameter values is not possible because of
practical limitations imposed by the time required for the
maximization and the available computing power. One crite-
rion which can be used to space the parameter values is that
all signals with a given minimum energy be detected with a
given minimum detection probability. This is one of the cri-
teria we adopt in this paper.

A method to set up a bank of templates satisfying a simi-
lar requirement was presented in@6,7#. It has been termed as
the Sathyaprakash-Dhurandhar~SD! formalism for aone-
step search. However, detection probability was not used
explicitly by the authors in their computations. It was found
only after the set of templates was obtained. Also, statistical
dependencies among the correlation outputs were neglected.
The SD formalism can be used, nevertheless, to obtain esti-
mates of the computational power required for implementing
the detection strategy outlined above. Such estimates@8,9#,
for the on-line detection of coalescing binary wave forms
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incorporating post-Newtonian corrections, appear to be ex-
cessive. Therefore, it would be desirable to reduce the com-
putational load if possible. One such way could be to use a
hierarchy of template banks in which information provided
by a lower level is used to choose a subset of templates from
the next level. The first level in such a strategy would consist
of a template bank with a coarse spacing in parameter space
but a lower threshold. In the next level a more finely spaced
set of templates and a higher threshold would be used but
only around those templates, in the previous level, which
produce a crossing of the lower threshold. An appropriate
choice of thresholds and spacings would reduce the number
of templates employed compared to that required by a one-
step search and hence, save on the computational cost.

The use of such a strategy, known as ahierarchical
search, has been proposed a number of times@8–10#. How-
ever, a detailed formalism for the same has not been given so
far in the context of the detection of gravitational wave sig-
nals. We present in this paper a rigorous formalism to de-
scribe a two-step hierarchical search and a first estimate of
the numbers involved. We use the family of Newtonian wave
forms for our computations and the noise power spectral
density expected for the initial LIGO. We have not used
more accurate wave forms so as to avoid the extra compli-
cations that would come in because of a larger number of
parameters. They would obscure an important objective of
this paper which is to highlight some subtle issues regarding
hierarchical search in general. However, this formalism can
be easily extended to accommodate a larger number of pa-
rameters as well as a larger number of intermediate stages.

The main result of this paper is that the computational
power required for an on-line two-step search can be up to a
factor of 8 smaller than that for an on-line one-step search.
This happens when a detection probability of.0.95 is
sought for signals having a signal to noise ratio~SNR! of
8.8s and the false alarm is kept so that there is, on the
average, not more than one false event per year. An SNR of
8.8s corresponds to a distance of 38.5 Mpc for a 1.4 – 1.4
M( binary for the noise power spectral density used here.
This factor of 8 is, however, not the last word since although
our formalism can yield higher factors (;13) , the assump-
tion of statistical independence made in some of the formulas
breaks down. The correlations among the outputs of the tem-
plates become important when the templates are placed
finely and this happens when the factor of 8 is exceeded.

A convenient parameter for characterizing the family of
Newtonian signals is the chirp time which roughly equals the
time taken by a binary to coalesce starting from a fiducial
orbital frequency. This parameter depends on the masses of
the components of the binary. The maximum value used for
the chirp time, in this paper, is 138.0 sec which corresponds
to a 0.5–0.5M( binary. The lowest value used for the chirp
time is 2.0 sec. We find that the minimum computational
power required, for an on-line two-step search, for this range
of chirp time is 167 MFlops. We also present our results
using a lower value of 32.0 sec for the maximum chirp time
which corresponds to a 1.2–1.2M( binary. For this case, the
computational power required is 32 MFlops.

Another objective of this paper is to study the effect of
statistical correlations on the distributions of the test statistic.
It is found that, in the presence of correlations, at least one of

these distributions can be fit quite accurately by a distribu-
tion with a smaller set of statistically independent samples.
The effective number of samples required does not seem to
have any simple connection with the autocorrelation function
of the noise. The issue of distribution functions of the test
statistic was partially addressed in@11#. The authors found
the distribution function of a subsidiary test statistic which
was maximized over a single parameter only, namely, the
initial phase of the signal. We use the complete test statistic
in this paper.

We also present a refined version of the SD formalism
that explicitly takes detection probability into account. We
emphasize that nothing radically new has been incorporated
in this formalism. Our main purpose, however, is to use it as
a guide in setting up the two-step search and to provide a
more concrete context for a discussion of the distribution
functions of the test statistic. In this connection, we present a
semianalytic method for the computation of the drop in sig-
nal to noise ratio as a function of the difference between the
chirp times of a signal and a template.

The rest of the paper is organized as follows. In Sec. II we
discuss the distribution functions which govern the test sta-
tistic in the presence and absence of a signal. These will be
required to obtain the detection probability of a signal and
the false alarm probability. We start in Sec. II A with an
outline of the signal detection problem and the method of
maximum likelihood detection. The family of signals and the
noise to be used in this paper will be described in Sec. II B.
We obtain the test statistic relevant to this choice of signals
and noise in Sec. II C. We discuss the distribution functions
of this test statistic in Sec. II D. An approximate expression
for detection probability is obtained which will also be used
in the case of a two-step search. The false alarm probability
will turn out to be dependent on the method used for the
computation of the test statistic. Hence, it will be discussed
in Sec. II E along with a rigorous reformulation of the SD
formalism for a one-step search.

Section III is devoted to the two-step hierarchical search.
The distribution functions obtained in the previous section
will be required here also. In Sec. III A, a general formalism,
and associated set of notations, is introduced to describe a
two-step hierarchical search. In Sec. III B it is shown that
there exists an optimum set of spacings and thresholds which
minimizes the computational requirement. An algorithm to
obtain this optimum solution is presented. In Sec. III C the
computing power required for an on-line two-step search is
estimated and numerical results are presented. We conclude
with Sec. IV.

II. FALSE ALARM AND DETECTION PROBABILITIES

Some of the results in the following will be obtained from
or compared with Monte Carlo simulations. For these simu-
lations, we have mainly used the Gaussian random number
generator,G05FDF, provided in the NAg library of numerical
routines. Wherever possible, the results have been checked
for consistency with those obtained using the routineGAS-

DEV provided in Ref.@12#.

A. The signal detection problem

We denote the parameters characterizing a family of wave
forms bym̄ and the family itself bys(t;m̄). A specific mem-
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ber of the family is identified by a subscript onm̄. We denote
a segment of the output of a detector asx(t), wheret50 and
t5T will denote the beginning and the end of the segment,
respectively. If the signals have finite durations thenT

should be larger than the longest signal. A particular realiza-
tion of the noise contaminatingx(t) will be denoted as
n(t). For a givenx(t), the problem of detection consists of
discriminating between the following cases:

x~ t !5H n~ t ! when there is no signal,

n~ t !1s~ t;m̄s! when there is a signal with parametersm̄s .

The range of every parameter will, in general, be finite. In
the absence of any prior information, it must be assumed that
all the parameter values, within their respective ranges, are
equally likely to occur. In such a case, the method ofmaxi-
mum likelihood detection@5# can be used. When the noise is
a stationary Gaussian random process, maximum likelihood
detection~MLD ! reduces to~a! the computation of atest
statistic, defined below, and~b! its comparison with a thresh-
old h. The test statisticL is obtained as

L5max
m̄

„^x~ t !,s~ t;m̄ !&2 1
2 ^s~ t;m̄ !,s~ t;m̄ !&…, ~1!

where the maximization is performed over all the values of
the parameters. The angular brackets enclosing two functions
denote an inner product which can be written in the Fourier
domain as~‘‘ ’’ denotes a Fourier transform!

^x~ t !,g~ t !&5E
0

`

d f
1

Sn~ f !
@ x̃~ f !g̃* ~ f !1 x̃* ~ f !g̃~ f !#, ~2!

where the Hermitian property of the Fourier transform of a
real function has been used to restrict the domain of integra-
tion to positive frequencies.Sn( f ) is the power spectral den-
sity of the noise which is defined by

E@ ñ* ~ f !ñ~ f 8!#5Sn~ f !d~ f2 f 8!, ~3!

whereE@z# stands for the ensemble average of a random
variablez.

Consider, the detection problem mentioned above. Be-
cause of the presence of noise,L becomes a random vari-
able. Its probability density function will depend on the pres-
ence or absence of the signal. We denote the two distribution
functions asP1(L;m̄s) when the signal is present, and
P0(L) when there is no signal. The different distributions
arise because the presence of the signal changes the mean
values of the noise samples. It turns out that whenL.h, it
is more probable that the density function of whichL is a
sample isP1(L;m̄s) rather thanP0(L). This allows a dis-
crimination to be made between the two cases above. Be-
cause of the random nature ofL though, there is no guaran-
tee that it will cross the threshold whenever the signal is
present. In general, in the presence of any signal, one can
only associate a probability with the event thatL.h. This is
known as the detection probability of that signal. For the
case being considered here, the detection probability,
Qd(h;m̄s), is

Qd~h;m̄s!512E
0

h
P1~L;m̄s!dL. ~4!

The eventL.h can also occur in the absence of any signal
because of noise alone. This then leads to an error in detec-
tion. The probability of such an event is called the false
alarm probability~shortened to ‘‘false alarm’’ henceforth!
which we denote byQ0(h):

Q0~h!512E
0

h
P0~L!dL. ~5!

It is the allowed false alarm, along withSn( f ), that fixes
h. From Eqs.~5! and ~4!, we see that the determination of
detection and false alarm probabilities requires a knowledge
of the cumulative distribution functions ofL.

B. The noise power spectral density
and the Newtonian wave form

The noise in ground-based laser interferometric detectors
will have, in general, both a Gaussian and a non-Gaussian
component. The main sources for the Gaussian component
@13# are the shot noise because of photon counting, the ther-
mal noise in the mirror suspensions along with the mirror
itself and seismic noise. The non-Gaussian component can
be contributed by numerous sources such as sudden strain
releases in the mirror suspension wires or even lightning
strikes @2,14#. It should be possible to remove most of the
non-Gaussian component by using environmental monitors
and looking for coincidence among detectors located at
widely separated sites. It is, therefore, assumed usually that
the detector noise will be a Gaussian random process. Over a
time scale of hours, it can also be assumed to be stationary.
Thus, the method of maximum likelihood detection, as out-
lined in the previous section, can be used in this case.

The power spectral density of the Gaussian noise compo-
nent rises very steeply towards the low frequency end be-
cause of seismic effects. At the high frequency end, it is
dominated by photon shot noise which leads to a rise to-
wards higher frequencies. Thus, the data will have to be
bandpassed with a low frequency seismic cutofff a and a
high frequency cutofff c . We use the power spectral density
expected for the initial LIGO as given in@13#. Accordingly,
we choosef a540 Hz andf c51 kHz.

The lowest-order approximation to the wave form of the
gravitational wave emitted by a coalescing compact binary is
provided by the quadrupole formalism@15#. The response of
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an interferometric detector to such a wave form can be writ-
ten as@7#,

h~ t;A,ta ,j,F!5Aa~ t2ta ,j!cos@f~ t2ta ,j!1F#. ~6!

We choose this wave form as the signal that is to be detected.
The parameterA takes into account the distance to the bi-
nary as well as various geometrical factors connected with
the orientation of the orbital plane of the binary relative to
the plane of the sky and the orientation of the detector an-
tenna pattern@1,16,17,18#. When the detector is optimally
oriented and the plane of the binary coincides with that of the
sky,

A51.92310223F j

25.0G
21F r

100 MpcG
21F f a

40 HzG
22

. ~7!

Because of the Earth’s rotational and orbital motions, the
orientation of the detector antenna pattern will change with
time, makingA time dependent. For observations lasting a
few minutes, however, it is effectively a constant. The other,
time-dependent, part of the amplitude is

a~ t,j!5F12
t

j G21/4

. ~8!

The phase of the wave formf(t,j) can be expressed as

f~ t,j!52pE
0

t

f ~ t8,j!dt8. ~9!

The integrandf (t,j) is the instantaneous frequency of the
signal which is given by

f ~ t,j!5 f aa~ t,j!3/2. ~10!

Thus, the wave form is achirp whose amplitude and instan-
taneous frequency increase with time. The rate at which the
instantaneous frequency increases is governed by the param-
eterj, called thechirp time,

j534.54FMM(
G25/3F f a

40 HzG
28/3

sec, ~11!

whereM, the chirp mass, is the following combination of
the reduced massm and the total massM of the binary:

M5~m3M2!1/5. ~12!

Because of the seismic cutoff, the amplitude of the signal
becomes negligible when its instantaneous frequency lies be-
low f a . The time at which the instantaneous frequency of the
wave form reachesf a is denoted byta . The high frequency
cutoff f c will also force the amplitude to a negligible value
for instantaneous frequencies beyondf c . In addition, this
nature of the wave form will change when the compact bod-
ies plunge towards one another once the last stable orbit is
reached. This would happen whenf (t);103 Hz. Thus, the
infinite instantaneous frequency implied by Eq.~10! at t5j
will not be reached in reality. The wave form has, therefore,
an effectively finite duration given, to a very good approxi-
mation, byj. For a binary consisting of neutron stars with
m15m251.4M( the value ofj524.8 sec. For binaries with

less massive components,j would be larger. In this paper we
present our results for two different ranges of chirp times.
The minimum valuejmin is the same for both the ranges,
jmin52.0 sec. The maximum values of the chirp time are
taken as jmax532.0 sec ~for m15m2.1.2M() and
jmax5138.0 sec~for m15m2.0.5M(). The parameterta
can be taken as thetime of arrivalof the signal. The phase of
the signal atta is denoted byF.

The test statistic@Eq. ~1!# was expressed in terms of Fou-
rier domain representations. It has not been possible so far to
obtain the Fourier transform ofh(t;A,ta ,j,F) exactly, but it
can be calculated approximately by using the method of sta-
tionary phase@7#. The approximate form for positive fre-
quencies is

h̃~ f ;A,ta ,j,F!5AAjF 2

3 f a
G1/2F ff aG

27/6

exp@ ic~ f !#,

~13!

where

c~ f !522p f ta12p f aja~ f !1F1
p

4
,

a~ f !5
1

5 S 823F ff aG
25/3

25
f

f a
D . ~14!

We can also write the wave form in Eq.~6! as

h~ t;A,ta ,j,F!5Ah0~ t2ta ;j!cos~F!

1Ahp/2~ t2ta ;j!sin~F!, ~15!

where

h0~ t;j!5a~ t,j!cos@f~ t,j!#, ~16!

hp/2~ t;j!5a~ t,j!cos@f~ t,j!1p/2#. ~17!

This representation will be helpful in what follows. The
‘‘quadrature’’ components,h0 andhp/2 , have the properties

^h0~ t;j!,h0~ t;j!&'^hp/2~ t;j!,hp/2~ t;j!&, ~18!

u^h0~ t;j!,hp/2~ t;j!&u

!A^h0~ t;j!,h0~ t;j!&^hp/2~ t;j!,hp/2~ t;j!&. ~19!

It should be noted that if the Fourier transforms ofh0 and
hp/2 obtained in the stationary phase approximation were to
be used, then Eq.~18! would be an equality while the left-
hand side~LHS! of Eq. ~19! would vanish. In practice the
ratio of LHS to the right-hand side~RHS! in Eq. ~19! is
typically ;1023. In the following, this ratio will turn out to
be the statistical correlation between two Gaussian variables
and it will not make any significant difference if it is taken to
be zero. Similarly, the two sides in Eq.~18! can be taken to
be equal in the following. Actually, these approximations are
not a limitation because we can always orthonormalizeh0
andhp/2 using Schmidt’s orthogonalization. For our analy-
sis, however, such small effects will not make much differ-
ence and in the following, we treat Eq.~18! as an equality
while the LHS of Eq.~19! is taken to be zero.
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C. The test statistic and its computation

We now apply the strategy of maximum likelihood detec-
tion to the noise and family of signals described above. The
test statistic in this case can be written as

L5 max
~A,ta ,j,F!

@^x~ t !,h~ t;A,ta ,j,F!&

2 1
2 ^h~ t;A,ta ,j,F!,h~ t;A,ta ,j,F!&#. ~20!

The maximization overA andF can be carried out, in a
straightforward manner@19#, using Eqs.~15!, ~18!, and~19!
~see the comments below the last two equations!. This yields
an equivalent test statistic which we continue to denote as
L:

L5max
~ ta ,j!

AC0
2~ ta ,j!1Cp/2

2 ~ ta ,j!, ~21!

where

C0~ ta ,j!5^x~ t !,Nhh0~ t2ta ;j!&

5NhE
f a

f c
d f

1

Sn~ f !
@ x̃~ f !h̃0* ~ f ;j!e2p i f t a

1 x̃* ~ f !h̃0~ f ;j!e22p i f t a#, ~22!

Cp/2~ ta ,j!5^x~ t !,Nhhp/2~ t2ta ;j!&

5NhE
f a

f c
d f

1

Sn~ f !
@ x̃~ f !h̃p/2* ~ f ;j!e2p i f t a

1 x̃* ~ f !h̃p/2~ f ;j!e22p i f t a#. ~23!

The functionsNhh̃0( f ;j)/Sn( f ) andNhh̃p/2( f ;j)/Sn( f ) are
the Fourier domain representations of thetemplates h̄0(t;j)
and h̄p/2(t;j), respectively. The presence of noise turns
C0(ta ,j) andCp/2(ta ,j) into random variables. Demanding
that their variances be unity fixes the normalization constant
Nh . We expressNh explicitly in Sec. II D.

A linear correlationc(t) @20,21#, between two wave
forms r (t) andg(t) is given by

c~t!5E
2`

`

r ~ t2t!g~ t !dt

5E
0

`

d f@ r̃ * ~ f !g̃~ f !e2p i f t1 r̃ ~ f !g̃* ~ f !e22p i f t#.

A comparison with Eqs.~22! and~23! shows that, for a fixed
j, C0 ~or Cp/2) can be computed, as functions ofta , by
simply obtaining a linear correlation betweenx(t) and the
templateh̄0(t;j) @or h̄p/2(t;j)#. The role of the lagt in a
correlation is played here byta . Since a correlation can be
efficiently computed using a fast Fourier transform~FFT!,
maximization overta becomes a straightforward operation of
computing the correlation ofx(t) with two templates, squar-
ing and summing these correlations for each value oft, and
finding the maximum of the result overt. However, as men-
tioned in Sec. I, the remaining parameterj is not amenable
to such a simple treatment. The method most commonly dis-

cussed, in this connection, is to perform the maximization
over a discrete set$j j%. This would yield an approximation
to the test statistic.

Thus, the overall form of the detection strategy which
results, given$j j% and a thresholdh, is the following. For
eachjmP$j j%, the detector output is separately correlated
with two templates h̄0(t;jm) and h̄p/2(t;jm) to obtain
C0(t,jm) andCp/2(t,jm), respectively. Then, the quantity
X(t;jm)5AC0

2(t,jm)1Cp/2
2 (t,jm) is computed. We call

X(t;jm) the rectified output of a template with chirp time
jm . We denote the maximum, overt, of a rectified output
X(t;jm) by lm . These operations lead, therefore, to the con-
struction of a set$l j%. An approximation to the test statistic
is then obtained which we again denote byL:

L5max
j

$l j%. ~24!

Finally, L would be compared withh. This method for the
calculation of the test statistic has been termed as aone-step
search.

The set$j j%, as well as the corresponding set of tem-
plates, will be termed as abank of templates. It is convenient
to refer to the set of two templates,h̄0(t;j) and h̄p/2(t;j),
having the same chirp time as a single ‘‘template.’’ This has
already been done tacitly in the case of a rectified output.
This ‘‘template’’ can then be labeled with its chirp time.
Thus, a term such as ‘‘templatejm’’ is understood in the
following to mean a set of two templates, both having the
same chirp timejm . Also, templates~in the above sense!
‘‘lying’’ close or far from each other would, actually, imply
the same for their chirp times. A helpful picture to adopt is to
treat the seth̄0(t;jm) and h̄p/2(t;jm) as a black box which
has a single input, namely,x(t), and a single output, namely,
X(t;jm). Each box is labeled by a chirp time and is called a
template. This terminology should ensure clarity in the fol-
lowing which would otherwise get masked by a lot of redun-

FIG. 1. The processed form of a signal. The template chirp time
was chosen asjm54.0 sec while the signal chirp timej54.10 sec.
The time of arrival of the signal was chosen to beta51.0 sec and
the strength@see Eq.~26!#, S51.0.
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dant text. However, on the few occasions when the correct
use of the term ‘‘template’’ would be required, we will ex-
plicitly use h̄0 and h̄p/2 .

It is important to realize thatL, obtained as above, is only
an approximation to the true test statistic. No claim can be
made as to the uniqueness of the procedure used to obtain
this approximation. Also, the cumulative distribution func-
tions which characterizeL will now depend on the method
used to obtain it. In the present case, this dependence will be
in terms of a set of parameters characterizing the bank of
templates. If the template chirp times were chosen arbitrarily,
all of them would have to be treated as parameters. In the
case of a two-step search, the dependence would be on two
banks of templates and two thresholds. It turns out that the

family of Newtonian wave forms has a nice feature which
allows the bank of templates to be characterized by a single
parameter. However, this need not be true in general. In fact,
this simplicity will not be obtained when a parameter such as
the chirp mass is used instead of the chirp time. We will
denote the distribution functions ofL as F0(z) when no
signal is present, andF1(z;m̄s) when a signal with param-
etersm̄s is present. The dependence of these functions on the
template bank used is implicit but we will make it explicit
wherever required.

We now define some quantities which will be of use later
on. Consider a signalh(t;m̄s) where m̄s stands for the pa-
rameters of the signal. We denote byd(t,jm ;m̄s), for jm
P$j j%, the quantity

d~t,jm ;m̄s!5NhA^h~ t;m̄s!,h0~ t2t;jm!&21^h~ t;m̄s!,hp/2~ t2t;jm!&2. ~25!

This is the rectified output of a template when
x(t)5h(t;m̄s) and noise is absent. We call such a rectified
output as theprocessed formof the signal produced by the
template with chirp timejm . One such processed form is
shown in Fig. 1. The processed form of a signal has the
property that a change in the signal’s time of arrival simply
translates it along the rectified output. It is easy to show,
using the stationary phase approximation, that the processed
form is independent of the signal parameterF. However, the
exact processed form is not strictly independent ofF but the
variation is typically;0.1% around the peak of the pro-
cessed form. This is an entirely negligible effect in our
analysis. Therefore, we will henceforth suppressF whenever
the signal parameters ind(t,jm ;m̄s) are required to be ex-
pressed explicitly.

The maximum value that any processed form of a signal
can have is called thestrength Sof the signal@7#. This value
is attained only for a template with the same chirp time as
that of the signal. For a signal with amplitudeA,

S5
A
Nh

, ~26!

whereNh is the normalization constant for a template with
the same chirp time as that of the signal.

Our definition of the strength of a signal is identical,
within the orthonormality ofh0 and hp/2, to the signal to
noise ratio (S/N)@h#, defined in @16#. The inner product
( f ug) defined in @16# is identical to our inner product
^ f ,g&. The signal to noise ratio in@16# is given by (huh)1/2
and hence, is equal tôh,h&1/2. Thus, we get^h,h&1/2

5A^h0 ,h0&
1/25(A/Nh)@N h

2^h0 ,h0&#1/25(A/Nh) ~by the
definition ofNh) which is nothing but the strengthS defined
as above. Henceforth, we useS instead ofA to parametrize a
signal. In this paper, the typical value for the strength is
S;9.0. For the canonical binary consisting of neutron stars
with an identical mass of 1.4M( for both the components,
this value of the strength corresponds to a distance of 38.0
Mpc. A signal of strength 10.0 from such a binary would

correspond to a lower distance of 34.0 Mpc. Note that the
strength of a signal also depends on the noise power spectral
density. For a detector with less noise, the same strength
would correspond to a larger distance.

When the template chirp time is not the same as that of
the signal, the maximum of the processed form will be re-
duced. We call the maximum of the processed form in such
a case as theobserved strength Sobs of the signal in that
template. The observed strength should depend only on the
chirp times of the signal and the template involved~apart
fromA of course! because of the properties of the processed
form mentioned above. If the observed strength of a signal
with S51 is determined as a function of the signal and tem-
plate chirp times @7#, a determination of the observed
strength whenSÞ1 becomes trivial. We denote this function
by H(j t ,js), where j t is the template chirp time andjs
denotes the chirp time of the signal. We will see later that
H(j t ,js) plays an important role in the determination of the
bank of templates.

Actually, this function is the result of a maximization of
the ambiguity function @5# over a subset of the parameters
involved. The parameters that are maximized over are the
initial phase and the time of arrival. They have been termed
as extrinsic parameters@8#, in contrast with the remaining
parameters, such as the chirp time, which have been called
the intrinsic parameters. We, therefore, callH(j t ,js) the
intrinsic ambiguityfunction. Given a signal withS51 and a
chirp timejs , it is formally defined as

H~j t ,js!5max
t

d~t,j t ;m̄s!. ~27!

In terms of the intrinsic ambiguity function, the observed
strength can be obtained as

Sobs5SH~j t ,js!. ~28!

It is possible to computeH(j t ,js) approximately using
the stationary phase approximation, to the Fourier transform
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of the Newtonian wave form, given in Eq.~13!. First, the
processed formd(t,j t ;m̄s) can be expressed, in this ap-
proximation, as

d~t,j t ;m̄s!5
1

bF S E
f a

f c
d f

1

f 7/3Sn~ f !

3cos@2pDj f aa~ f !22pDtaf # D 2
1S E

f a

f c
d f

1

f 7/3Sn~ f !

3sin@2pDj f aa~ f !22pDtaf # D 2G1/2, ~29!

b5E
f a

f c
d f

1

Sn~ f !
f27/3, ~30!

whereDta5t2ta (ta is the signal arrival time now! and
Dj5j t2js . Note that only the difference between the tem-
plate and signal chirp times occurs here. We then choose that
value of Dta for which the instantaneous ‘‘frequency’’ of
both the integrands vanishes atf5 f 0 ~where f 0 is kept as a
parameter!. A simple maximization yields

Dta5DjS F f af 0G
8/3

21D . ~31!

The intrinsic ambiguity function can now be expressed as

H~j t ,js!5H~Dj!

5
1

b F S E
f a

f c
**** D 21S E

f a

f c
**** D 2G1/2, ~32!

where the rows of asterisks stand for the same integrands as
in Eq. ~29! but with Dta replaced by Eq.~31!. The integrals
can be evaluated numerically for a givenf 0. To fix f 0, we
obtain the exact intrinsic ambiguity function using correla-
tions and find, empirically, the value off 0 which produces
the best agreement with it. We findf 05310 Hz.

Our method is actually akin to a second stationary phase
approximation but we do not have a formal proof for our
procedure. Nonetheless, we find the approximation to be
quite good and use Eq.~32! in our analysis. In Fig. 2 the
approximate form is compared with one obtained numeri-
cally without any approximations. The discrepancy between
the two curves is seen to be significant only for large chirp
times. We do not expect a significant change in our final
results because of the use of this approximation.

Note thatH(j t ,js) in Eq. ~32! depends only onuDju and
not onj t andjs separately. This behavior is replicated by the
exact intrinsic ambiguity function also. This simplifies mat-
ters a lot when it comes to setting up a bank of templates. It
is important to realize, however, that this behavior ofH is
dependent on the choice of intrinsic parameters. For in-

stance, the use ofM, the chirp mass, instead ofj, will make
the intrinsic ambiguity function dependent on both the signal
and template chirp masses.

In @7#, the template chirp times chosen were such thatH
dropped to;0.9 in the middle of two consecutive templates.
Such a drop inH corresponds, here, toDj50.040 sec. The
difference between consecutive template chirp times, in a
one-step search, would typically be of this order. Thus, the
number of template chirp times that will be required would
be;1000.

The practical implementation of a one-step search would
be the following. The detector output will be sampled with a
sufficiently small sampling intervalD to give the time series
@xi5x( iD); i50, . . . ,N21#. Since the upper frequency cut-
off of the bandpass filter, in Sec. II B, was chosen to be
f c51 kHz, the Nyquist sampling rate would be 2 kHz. We
take the sampling frequency to be 2048 Hz, the nearest
power of 2, which impliesD51.0/2048.0 sec. The time se-
ries should, of course, be longer than the duration of the
longest template or equivalently, the largest chirp time
jmax. Such time series will be required for the templates,
h̄0 andh̄p/2 , also. In the time series of a template with chirp
time jm , samples fori.jm/D will be zero since the tem-
plate has a finite duration ofjm . Therefore, when a correla-
tion between the template and the detector output is taken
using an FFT, the preferable method, only the first
N2jm /D samples will be the result of a linear correlation
@4#. It is desirable to have equal lengths of correlations for
every template. Hence, only the firstNp5N2jmax/D
samples will be retained in each correlation and the rest dis-
carded. We callNp , the padding for the template bank. A
useful figure for Np is ;53105 corresponding to
N525632048 and jmax532.0 sec. A time series corre-
sponding toX(t;jm) will then be obtained whosei th sample
we denote asXi(jm) ( i50, . . . ,Np now!:

Xi~jm!5AC0
2~ iD,jm!1Cp/2

2 ~ iD,jm!. ~33!

FIG. 2. A plot of the intrinsic ambiguity functionH(Dj). The
solid curve was obtained semianalytically@Eq. ~32!#, while the
dashed curve was obtained numerically using correlations. The
value of f 0 chosen was 310 Hz.
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As before,lm will then be found as

lm5max
i

$Xi~jm!%. ~34!

Henceforth, we use this discrete form of the detection strat-
egy.

The description of a one-step search, presented above, is
not complete. The bank of templates and the threshold are
yet to be fixed. In other words, the parameters characterizing
a template bank have to be determined so that some desirable
conditions are satisfied. These conditions are framed in terms
of false alarm and detection probabilities which depend on
the distribution functions,F1(z;m̄s) and F0(z), of L. We
will now discuss these distribution functions.

D. Distributions of the test statistic

The distribution functions ofL can be constructed from
the distributions of its building blocks. We start at the lowest
level, i.e., the distributions ofC0 andCp/2 . In the following,
the parameters of a signal will be denoted by
m̄s5(A,ta ,j,F). The context in which these symbols will
be used in the following will be clear enough so that no
confusion should arise because of the use of the same, in the
previous section, as parameters for maximization. A typical
member of the bank of templates will be denoted byjm ,
unless specified otherwise.

The random variablesC0( iD,jm) and Cp/2( iD,jm) are
obtained by correlating the detector outputx(t) with two
templatesh̄0(t;jm) and h̄p/2(t;jm), respectively. Thus,C0
and Cp/2 are linear combinations of the time samples of
x(t). Since the noise inx(t) was assumed to be Gaussian
random process,C0( iD,jm) andCp/2( iD,jm) will, therefore,
be Gaussian random variables. In the absence of a signal,
their mean values would be zero but in the presence of a
signalh(t;m̄s), their mean values would be

E@Ca~ iD,jm!#5^h~ t;m̄s!,Nhha~ t2 iD;jm!&, ~35!

for a50,p/2. Their covariance matrix can be calculated as
follows (a50,p/2 andb50,p/2) where we have suppressed
arguments and parameters at some places for clarity:

E@Ca~ i ,jm!Cb~ i ,jm!#2E@Ca~ i ,jm!#E@Cb~ i ,jm!#

5N h
2E$@^ha ,n~ t !&1^ha ,h~ t !&#@^hb ,n~ t !&

1^hb ,h~ t !&#%2Nh
2^ha ,h~ t !&^hb ,h~ t !&

5N h
2E@^ha~ t2 iD;jm!,n~ t !&^hb~ t2 iD;jm!,n~ t !&#

5N h
2^ha~ t2 iD;jm!,hb~ t2 iD;jm!&, ~36!

where Eq.~3! has been used in the last step.

The variance ofC0 or Cp/2 can be computed from the
above equation by puttinga5b:

E@Ca
2~ iD,jm!#2E@Ca~ iD,jm!#2

5N h
2^ha~ t2 iD;jm!,ha~ t2 iD;jm!&

52N h
2E

f a

f cuh̃~ f ;jm!u2

Sn~ f !
d f . ~37!

The normalizationNh can now be chosen to make the vari-
ance unity. It follows from Eq.~19! and the above that
C0( iD,jm) andCp/2( iD,jm) are very nearly statistically in-
dependent. We take them to be exactly so. We will now
move on to the random variableXi(jm) defined in Eq.~33!.

In general, ifx1 andx2 are two uncorrelated, zero-mean
Gaussian random variables with unit variances then the dis-
tribution ofu5Ax121x2

2 is given by the Rayleigh distribution
functionR(u) @22#:

R~u!5ue2u2/2. ~38!

On the other hand, ifx1 andx2 have an expectation value of
m1 andm2, respectively, other moments being the same as
before, then the probability density function ofu is given by
the Rician distribution Ri(u) @22#:

Ri~u!5uexp@2~u21d2!/2#I 0~du!, ~39!

whered25m1
21m2

2 , andI 0(x) is the modified Bessel func-
tion of the first kind, of order zero. Fordu@1,

Ri~u!;A u

2pd
exp@2~u2d!2/2#, ~40!

while for d50, it goes into a Rayleigh distribution. The
asymptotic form given above shows that a Rician density
behaves such as a Gaussian whenu;d .

From Eq.~33! and what has been said about the moments
of C0( iD,jm) andCp/2( iD,jm), it follows thatXi(jm) has a
Rayleigh density when a signal is absent and a Rician den-
sity when a signal is present. The quantity corresponding to
d, in the case ofXi(jm), will depend on both the signal and
the template parameters. We denote it, therefore, by
di(jm ;m̄s):

d5di~jm ;m̄s!5NhA^h~ t;m̄s!,h0~ t2 iD;jm!&21^h~ t;m̄s!,hp/2~ t2 iD;jm!&2. ~41!
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The time series„di(jm ;m̄s); i50, . . . ,Np21 … is nothing but
a sampled version of the processed form,d(t,jm ;m̄s), of the
signal which was introduced in the previous section. The
samples are taken att5 iD.

The next step in the determination of the distributions of
the test statistic would be to obtain the distribution function
of lm , the maximum over a single rectified output. We de-
note it byF1,m(h;m̄s), in the presence of a signal with pa-
rametersm̄s andF0,m(h), in the absence of a signal~note the
use of ‘‘F ’’ in these symbols as opposed to the ‘‘F’’ used in
the distribution functions of the test statisticL).

Let the joint probability density function of all
the samples in a given rectified output be
P(b)@X0(jm),X1(jm), . . . ,XNp21(jm)# where b51 corre-
sponds to the presence of a signal~parameters suppressed!
andb50 corresponds to the absence of a signal. The cumu-
lative distribution function oflm is then

Fb,m~z!5Pr$lm<z%5$Xi~jm!<z for all i%

5E
0

z

. . . E
0

z

P~b!(X0 ,X1 , . . . ,XNp21)

3dX0 , . . . ,dXNp21 , ~42!

where we have again suppressed the signal parameters for
clarity. We find it difficult to proceed further because solving
such an integral, assuming thatP(b) itself could be calculated
first, appears to be an intractable task. This is because of the
large values thatNp can take (;105) and the fact that it is
difficult to separate the interdependence of the variables.

The distribution of the maximum over a set of statistically
dependent random variables appears to be a difficult problem
in general. Even the case of the maximum over a set of more
than a few correlated Gaussian random variables, does not
appear to have been solved exactly. There are ways of ap-
proximately calculating this distribution@23# but it is imprac-
tical to apply them to a case of more than four or five vari-
ables. On the other hand, if there were no statistical
dependence among theXi , it would be trivial to solve the
integral becauseP(b) would then be just a product of the
density functions of the variables. The density functions of
Xi(jm) have already been obtained above. Therefore, in this
case,

F0,m~z!5S E
0

z

R~x!dxD Np ~43!

when a signal is absent, and

F1,m~z;m̄s!5 )
j50

Np21 E
0

z

Ri„x,dj~jm ;m̄s!…dx ~44!

when a signal with parametersm̄s is present.
An obvious way to estimate the true distribution oflm is

to perform a Monte Carlo simulation. For the case when
there is no signal, we found a surprisingly simple result: The
estimated distribution can be fit, almost exactly, by the dis-
tribution of Eq.~43! but with a reduced number of samples
Neff,Np . This behavior was also noted in@24#. It was found
that the effective number of samples required depends on the

effective bandwidth@24# of the correlation outputs. The ef-
fective number of samplesNeff required in the present case,
was found empirically to be about 0.7Np for a large range of
Np . ThatNeff /Np should be a constant, asNp is varied, is
probably related to the stationarity of the noise.

Strictly speaking, nothing can be said about the validity of
this fit for h@1. For large thresholds (;7 or greater! the
number of events would be small and, therefore, a large
number of noise realizations~approximately 104 or 105)
would be required in a Monte Carlo simulation to register
such events. This, however, is not possible. A typical noise
realization in such a simulation can have upwards of 105

samples. Since, pseudorandom number generators have a pe-
riod of ;108 numbers, the number of realizations which can
be used is limited to just a few thousand. We will, nonethe-
less, assume that such a fit will remain valid for sufficiently
large values ofh. Monte Carlo simulations also show that
F0,m(z) is independent of the template chirp timejm . This is
also evident from Eq.~43!. Therefore, we suppressm hence-
forth: F0,m(z)5F0(z). Plots of the Monte Carlo simulations
are shown in Figs. 3~a! and 3~b!. In the rest of the paper,

F0,m~z!5F0~z!5S E
0

z

R~x!dxD Neff ~45!

FIG. 3. Monte Carlo estimates ofF0(z), the distribution func-
tion of the maximum over a single rectified output in the absence of
a signal. The padding used in~a! wasNp3D5108.0 sec. For~b!
Np3D540.0 sec. The dashed curves were obtained using Eq.~43!
without any reduction inNp . The circled points were obtained us-
ing Eq. ~46! with Neff50.7Np . The number of noise realizations
used was 1000 for both~a! and ~b!.
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or

lnF0~z!5Neffln~12e2z2/2!

'2Neffe
2z2/2 for z@1,

which gives

F0~z!.expF2NeffexpS 2
z2

2 D G for z@1. ~46!

We find the approximate expression to be quite good and use
it in our analysis.

We believe that the effective number of samples found
here would remain the same even when post-Newtonian tem-
plates are used. This is becauseNeff appears to depend on the
correlation noise power spectral density via a quantity, such
as its effective bandwidth, which is quite insensitive to the
details of its shape. The use of higher order wave forms will
not produce a large change in such a quantity. On the other
hand, a change in the detector noise itself should definitely
lead to a change inNeff .

In principle, the technique of using a Monte Carlo simu-
lation for estimating the true distribution can be extended to
the case ofF1,m(z;m̄s). In practice, this is quite cumbersome
because of its dependence on both the signal and the tem-
plate parameters. This would require the cataloging of a large
number of distributions corresponding to various combina-
tions of signal and template parameters. For sufficiently
strong signals, however, it is possible to bypass this proce-
dure.

Suppose that a signalh(t;m̄s) with a chirp time j is
present inx(t). The processed form of a signal produced by
a template is observed to have a very sharp maximum.
Therefore, it can be expected that in the presence of noise
also, the maximum over the rectified output of a template
would occur near the maximum of the processed form of the
signal produced by that template. This would not be true,
however, if the maximum of the processed form~the ob-
served strengthSobs) is not large enough. In the absence of a
signal and for a typical value ofNp;105, we see from Figs.
3~a! and 3~b! that noise alone can producelm &4.5 with a
non-negligible probability. This noise-induced maximum can
occur anywhere at random within the time series of the rec-
tified output. Therefore,Sobs should at least be greater than
about 5.0 so that the presence of the signal is able to restrict
the location oflm .

Actually, in the case of a strong signal also, a scatter over
a few neighboring points will always be present. We see
from Monte Carlo simulations that this scatter is always
within two or three samples around the expected position.
But such samples will be strongly correlated and will effec-
tively act as one. We can safely say, therefore, that the loca-
tion of lm coincides with that of the maximum of the pro-
cessed form of the signal produced by the template.
However, this would be true for only those templates in the
neighborhood of the signal for whichSobs is sufficiently large
(*5.0). Also, for the kind of thresholds which will occur in
this paper, an observed strength of&5.0 will not be signifi-
cant as far as the detection probability of the signal is con-

cerned. We mark the boundary of such a neighborhood
around a signal chirp timej by jp,j,jq .

Let i m be the time sample for which the processed form,
produced by a template with chirp timejm , attains its maxi-
mum value. Thus, the distribution function oflm will now
be the same as that of thei m

th sample,Xim
(jm), of the recti-

fied output. In this approximation,F1(z;m̄s) becomes the
distribution of the maximum over$Xik

(jk)%, the template

chirp times in this set being located within@jp ,jq#. We now
make the assumption thatXim

(jm) andXin
(jn) are statisti-

cally independent random variables for any two template
chirp timesjm ,jnP$j j%. This assumption is quite strong and
can be expected to hold only when the template chirp times
are placed far apart. Under this assumption,$Xik

(jk)% be-
comes a set of statistically independent random variables.
The distribution of the maximum over such a set has already
been discussed at length earlier. It will just be the product of
the distribution functions ofXik

(jk) in the presence of a
signal. Thus,

F1~z;m̄s!

5Pr$L<z; when a signal, with parametersm̄s, is present%

5 )
k5p

q E
0

z

Ri~x,Sk!dx, ~47!

where

Sk5SH~j,jk!

5SH~j2jk! ~48!

is the observed strength of the signal in the templatejk .
The detection probability of the signalh(t;m̄s) can now

be determined. Since only the observed strengths of the sig-
nal enter into the calculation ofF1, this function depends on
only the parametersj andS of the signal. This will, there-
fore, hold for the detection probability also. Given a thresh-
old h, we denote the detection probability of the signal by
Qd(h;S,j):

Qd~h;S,j!512 )
k5p

q E
0

h
Ri~x,Sk!dx. ~49!

We will now explore the effect of reducing the number of
templates used in the above formula. Suppose thatj lies
between the two consecutive template chirp timesjm and
jm11 and that the signal strength,S510.0. Let
j2jm5jm112j50.10 sec. Thus, the template chirp times
are 0.20 sec apart. Statistical correlations betweenlm and
lm11 would be negligible for such a separation~we justify
this later! and Eq.~49! will, thus, be valid. The observed
strengths required in this equation can be calculated from the
ambiguity function. For the templatesjm and jm11,
Sm5Sm11510.0H(0.10)58.2. If we also assume that
jm122jm115jm2jm2150.20 sec, then Sm125Sm21
510.0H(0.2010.10)56.0. For a typical value of the thresh-
old, h57.8, the value of@*0

7.8Ri(x,8.2)dx#250.1 while
@*0

7.8Ri(x,6.0)dx#250.92. Thus, the inclusion ofjm12 and
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jm21 will lead to an increase of the detection probability
from 0.9 to 120.130.9250.908, an entirely negligible
change. The correction because of the templatesjm22 and
jm13 ~for jm212jm225jm132jm1250.20 sec! can be cal-
culated similarly: H(0.4010.10)50.5 and hence,Sm13

5Sm21510.0H(0.5)55.0. Therefore, @*0
7.8Ri(x,5.0)dx#2

'0.99 leading to a reduction of just 0.1% in the detection
probability if these templates are neglected. For larger detec-
tion probabilities the error because of the exclusion of
jm21 andjm12 becomes larger but it still remains negligible.
For instance, if h were brought down toh57.5,
@*0

7.5Ri(x,8.2)dx#250.045 ~which gives a detection prob-
ability of 120.04550.955), but now@*0

7.5Ri(x,6.0)dx#2

'0.85, which implies a reduction of 0.7% in the detection
probability if these templates are neglected. Thus, when the
template chirp times are far apart, we are completely justified
in keeping just the two templates,jm andjm11, in Eq. ~49!.
It should be noted that if only a single template were used in
Eq. ~49!, the error in the detection probability would be too
large. Again, taking an observed strength of 8.2 and a thresh-
old of 7.8, the detection probability obtained in this case
would be just 12*0

7.8Ri(x,8.2)dx50.68. This should be
compared with the value of 0.9 obtained when the two-
template formula was used.

If, however, the template chirp times were closely spaced,
the statistical correlations among the maxima over rectified
outputs will not be negligible. In such a case the true detec-
tion probability of a signal will be reduced. We used Monte
Carlo simulations to estimate the true detection probability
for a signal with j5(jm1jm11)/2 and various values of
jm112jm . The results are shown in Figs. 4~a! and 4~b!. We
have also shown the results obtained when onlyjm11 and
jm are used in Eq.~49! for the calculation of the detection
probability, i.e., when

Qd~h;S,j!512E
0

h
Ri~x,Sm!dxE

0

h
Ri~x,Sm11!dx.

~50!

We find that Eq.~50! indeed provides an overestimate of the
detection probability when the difference between the tem-
plate chirp times is small@Fig. 4~a!#. The detection probabil-
ity estimated from the simulation, for a spacing of 0.030 sec,
is about 12% less when Eq.~50! gives a value of 0.95. In our
analysis, this value for the detection probability will be used
as a fiducial value. Hence, the use of the two-template for-
mula would be erroneous if it is used for template chirp
times spaced more finely than;0.030 sec. Also shown in
Fig. 4~a! is a plot of the detection probability obtained when
only one template is used in Eq.~49! with an observed
strengthSm ~or Sm11). We see that now the detection prob-
ability is underestimated. In a sense, such as the effective
number of samples in the case ofF0, statistical correlations
will now lead to an effective number of templates. However,
this effective number would depend on the spacing of the
templates. For this reason, it is difficult to incorporate it in
our calculations.

For closely spaced templates it can be expected that tem-
plates other thanjm andjm11 would also contribute signifi-
cantly to the detection probability because the observed
strength would still be high in these templates. Thus, if more

templates were included in the above simulation, the true
detection probability should rise. On the other hand, these
templates would, at the same time, be highly dependent sta-
tistically and may not be able to contribute much to the de-
tection probability. We repeated the simulation used to ob-
tain Fig. 4~a! with six templates instead of two but having
the same spacing. The signal was placed in the middle of the
third and the fourth templates and had the same strength as
before. We foundno significant risein the detection prob-
ability.

The asymptotic form of a Rician density function, for a
threshold close to the observed strength, is a Gaussian with
the observed strength as the mean@Eq. ~40!#. Thus, each of
the maxima over the rectified outputs can be considered to
have approximately a Gaussian distribution. The distribution
of L can, therefore, be approximated by that of the maxi-
mum over correlated Gaussian variables. It appears that an
exact expression for this distribution has not been obtained
for more than two variables. But the latter is precisely the
case of interest to us. An elementary integration yields the
following approximation to the two-template detection prob-

FIG. 4. The detection probability of a signal. Solid curves are
Monte Carlo estimates. Dashed curves were obtained using Eq.~50!
while for the dash-dot-dash curve in~a!, only one template (jm)
was used in Eq.~49!. In ~a!, the open circles and the filled circles
were obtained using Eq.~51! with r50.75 andr50.0, respec-
tively. The signal chirp time in both ~a! and ~b! is
j5(jm1jm11)/2. For~a!, jm54.0 sec,jm1154.03 sec. The signal
strength was chosen asS58.5 and the signal chirp time is
j54.015 sec. For~b!, jm54.0 sec,jm1154.40 sec,j54.20 sec,
and the signal strengthS510.0. The number of noise realizations
used were 2000 and 1000, for~a! and ~b!, respectively.
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ability when the observed strengths in the two templates are
equal (Sm115Sm5Sobs):

Qd~h;S,j!.A2

p E
0

h
dx exp@2~x2Sobs!

2/2#

3F12erfcS ~x2Sobs!A12r

11r D G , ~51!

wherer is the covariance between the two maxima and

erfc~x!5
1

A2p
E
x

`

dt exp~2t2/2!. ~52!

For r50, we should get an approximation to Eq.~50!. In-
deed, as shown in Fig. 4~a!, a good fit is obtained which is
also valid for thresholds that are not close to the observed
strength. The Monte Carlo curve can also be fit almost ex-
actly by Eq. ~51! when r50.75. The covariancer should
depend on the intrinsic ambiguity function but this depen-
dence does not appear to be straightforward. Moreover, since
rectification mixes the signal and the noise nonlinearly,r
would also depend on the observed strength of the signal.
Further work to obtainr analytically is in progress. For the
present we will continue to use Eq.~50! in our analysis.

As we will show later, an overestimation of the detection
probability will lead to an underestimation of the computa-
tional cost of a one-step search. The effect on a two-step
search is similar but it will be elaborated upon in Sec. III B.
Thus, the use of Eq.~50! will lead to a lower limit on the
computational cost. Similarly, the one-template formula will
lead to an overestimation of the computational cost since this
formula underestimates the true detection probability. In any
case, both an upper and a lower bound can be put on the
computational cost of a one-step search. However, it is more
convenient to use Eq.~50! since it can also be used for large
spacings. While if the one-template equation were used, a
shift from the two- to one-template formula would have to be
performed when the spacings being dealt with become small.
This is cumbersome since it is difficult to demarcate the re-
gimes where one formula would be better than the other.

We also observe, in Fig. 4~b!, that the agreement between
Eq. ~50! and the estimated distribution becomes better as the
templates are drawn farther apart. This is an indication that
statistical correlations between the rectified outputs have be-
come negligible. This agreement is observed to hold for a
smaller separation ofjm112jm50.20 sec also which justi-
fies our use of this value in the argument above. We found
that the effect of statistical correlations becomes noticeable
whend &0.080 sec. The same simulations also show that the
scatter in the location oflm is mostly over two to three
samples aroundXim

(jm) in both the rectified outputs.
Another feature of Eq.~50! which should be noted is the

following. For sufficiently large spacings (*0.03 sec!, this
formula assigns the minimum detection probability, for a
given strength, to the signal which lies in the middle of two
consecutive templates~i.e., j5(jm1jm11)/2#. This is in
conformity with the expected variation of the detection prob-
ability since such a signal would be furthest from the tem-
plates on either side. For spacings smaller than&0.03 sec,

however, this formula leads to the above kind of a signal
having the highest detection probability. This is because of
the fact that, for small spacings, the drop in the intrinsic
ambiguity function is not much across the templates neigh-
boring jm andjm11 @H(0.045).0.91, for instance#. Hence,
templates other than the two adjacent ones (jm12, jm21, and
others! can also contribute, in Eq.~49!, to the detection prob-
ability of signals lying betweenjm and jm11. Indeed, the
expected behavior of the detection probability for such sig-
nals is recovered when these extra templates are used. All
this would be applicable only if the rectified outputs of these
templates were statistically independent of each other. How-
ever, as discussed above, the assumption of statistical inde-
pendence would not remain valid for templates spaced so
closely. The failure of Eq.~50! to assign detection probabili-
ties in the correct order, in such a case, is perhaps less seri-
ous than neglecting statistical correlations. Hence, as long as
its use is confined to ‘‘centered’’ signals, Eq.~50! appears to
be a good tool to use.

To summarize, we can now calculate the detection prob-
ability of a signal from Eq.~50!, given a bank of templates
$j j% and a thresholdh. We also have a formula, Eq.~45!, to
calculate the distribution of the maximum over a single rec-
tified output. While the former was derived under some ap-
proximations, the latter is exact and was estimated from
Monte Carlo simulations. These formulas will be used unal-
tered in the case of a two-step search. However, the estima-
tion of the distribution function ofL in the absence of a
signal,F0(h), requires a clearer specification of the bank of
templates. We proceed to do that below.

E. One-step search

We now state theone-step template placement criteria:
The bank of templates should be chosen in such a way that
~i! every wave form, having a strengthS greater than a given
minimum strengthSmin , should have a detection probability
greater than a given minimum detection probabilityQd,min ,
and ~ii ! the false alarm should stay below a specified level,
Q0,max. A solution in terms ofh and $j j%, satisfying both
criteria, need not always exist. For instance, a signal having
S5Smin56.0 will not be detected with a detection probabil-
ity of Qd,min50.95 if the false alarm is kept such that there is
only one false event, on the average, in a year. These num-
bers can be computed by using the formulas below.

The detection probability would be smallest for signals
having a strengthSmin and chirp timej5(jm1jm11)/2 for
jmP$j j%. Such signals will have a detection probability
given byQd„h;Smin ,(jm1jm11)/2…, which can be calculated
using Eq.~50!. To satisfy criterion~i! above, all that needs to
be done, given a thresholdh, is to ensure that all such mini-
mum detection probability signals have,

Qd„h;Smin ,~jm1jm11!/2…5Qd,min . ~53!

The observed strengths that will be required in the above
formula are

Sm5Sm115SminHS jm112jm
2 D . ~54!
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Thus, onlyjm112jm enters into the calculation of the de-
tection probability and notjm andjm11 separately. This im-
plies thatjm112jm should be constant throughout a tem-
plate bank. We call this quantity thespacingof the templates
and denote it byd. The whole template bank can now be
constructed, usingd, asjk5jmin1kd (k50,1, . . . ) till jmax
is reached. It should be noted that the template bank is now
characterized by a single parameter, namely, the spacing.

The spacing of the templates depends on the value of
Smin . For instance, if h57.9 ~a typical value!, and
Qd,min50.95, the observed strength required for a signal ly-
ing in the middle of two templates isSobs.8.6. For a signal
havingS58.8, this would mean that the value of the intrinsic
ambiguity function be'8.6/8.850.98. From Fig. 2 it is clear
that the difference between the chirp times of the signal and
a template should then be.0.015 sec. Thus, the template
chirp times would be placed.0.030 sec apart. For a larger
strength of 10.0, the value of the intrinsic ambiguity function
required would be 0.86. Hence, the spacings obtained now
would be larger.

In order to calculate the false alarm, the distribution func-
tion F0(z) of L is required. In Sec. II D, the cumulative
distribution functions (F0 andF1,m) of lm were discussed.
There, the problems associated with obtaining the distribu-
tion of the maximum, over a set of statistically dependent
variables, were outlined. In the case ofL, essentially the
same problems are again encountered. This is because the set
of random variables$l j%, whose maximum isL, would, in
general, be a statistically dependent set. However, as in the
case ofF0, we can first obtain an expression forF0 by as-
suming that$l j% is a statistically independent set, and then,
explore the effect of statistical correlations on this expression
by using Monte Carlo simulations. Actually, the assumption
of statistical independence here would be, in a sense, an ex-
tension of the assumption which was used in obtaining Eq.
~49!. There, statistical independence was assumed among
samples of rectified outputs where only one sample was used
from each rectified output. Further, the positions of those
points were related to each other by the fact that the same
signal was being observed. Here, all such restrictions would
be dropped.

Having made the above assumption, the cumulative dis-
tribution functionF0(z) is easily obtained as

F0~z!5)
i51

NT

F0~z!, ~55!

where

NT5
1

d
~jmax2jmin! ~56!

is the number of templates in the template bank. Note that, as
stated earlier in Sec. II C,F0(z) now depends ond ~via
NT). We include this dependence explicitly in the false alarm
which we denote, for a given thresholdh, by Q0(h;NT),

Q0~h;NT!512F0~h!

512)
i51

NT

F0~h! ~57!

'12exp@2NTNeffexp~2h2/2!#.
~58!

For typical values of the spacing,NT;1000. If a false alarm
of .831026 is required over a padding ofNpD5256.0 sec
~corresponding to an average of one false event per year!, the
threshold needed according to Eq.~58! would beh'7.93.
This is higher than the threshold of 7.5 estimated in@7#. The
discrepancy is because of the use of a Gaussian distribution
by these authors instead of the Rayleigh distribution used
here.

Unlike the case oflm , which is the maximum over a
singlerectified output, Monte Carlo simulations for the esti-
mation of the trueF0(z) are more difficult to perform. This
would require not only the use of a large number of tem-
plates, but also several values of the spacing between them.
We, nonetheless, performed a Monte Carlo simulation to es-
timateQ0(h;NT) for a small value ofNT53 and a spacing
d50.020 sec. The value ofd was kept small to ensure that
statistical dependencies were able to play a significant role.
The results are shown in Fig. 5. For comparison, the curve
obtained from Eq.~58! is also plotted. The curious property
of their being an effective number of samples, for each rec-
tified output, surfaced again here. We find that Eq.~58! pro-
vides an excellent fit to the Monte Carlo curve if the value of
Neff in that formula is changed from 0.7Np ~the value used
for F0) to 0.47Np . Of course, it can also be interpreted as an
effective number of templates. We are unable to test the fit
for higher thresholds since the number of noise realizations
that can be used for such a simulation is not large enough.
We will assume, as in the case ofF0(z), that the fit to the
Monte Carlo curve will remain good for higher thresholds
also. Note that the reduction required in the number of

FIG. 5. Monte Carlo estimates of the false alarm for three tem-
plates having a spacing of 0.020 sec. The padding used was
NpD5108.0 sec. The solid curve is the Monte Carlo estimate while
the dashed curve was obtained using Eq.~56! andNeff50.7Np . The
circled points were obtained using the same formula but with
Neff50.47Np .
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samples would be dependent on the spacing of the templates
and hence, it is more difficult to incorporate it in a calcula-
tion. However, the necessity of such an effort should be de-
cided by the use that Eq.~57! would be put to, while setting
up a one-step search.

A simple algorithm for setting up a one-step search, given
Smin , Qd,min , andQ0,max, would be the following. A value
for the spacing is chosen~starting from a large value, say
d50.10 sec! andNT is found. Then a thresholdh is found,
from Eq.~58!, such that the false alarm becomesQ0,max. The
detection probabilityQd(h;Smin ,jmin1d/2) is found. If it ex-
ceedsQd,min , then stop or else reduce the spacing and repeat
the above process. In this algorithm, the threshold found in
the second step should be accurate to within;4% so as not
to make a significant change in the detection probability that
is calculated in the next step. For instance, if
Sm5Sm1158.6, thenh57.9 gives a detection probability of
0.95. If h were changed by 4%, i.e.h58.2, then the detec-
tion probability would fall to 0.90. This error is significant
because, usually, a minimum detection probability greater
than 0.9 is desired.

Fortunately, the threshold, for a given false alarm, is not
very sensitive to which of the two curves in Fig. 5 is used for
its determination. This is clear, by inspection, in the region
where the curves are steep. For larger values ofh, we can
estimate the error by using the fit to the Monte Carlo curve
provided by Eq.~58! with Neff50.47Np . Whenh@1, Eq.
~58! can be further approximated as

Q0~h;NT!'NTNeffexp~2h2/2!. ~59!

In order to study the effect of the change in the effective
number of samples, letNeff5xNp for 0,x<1. Then it fol-
lows from the equation above that for a fixed false alarm, the
changeDh in the threshold for a changeDx in x is
Dh'Dx/(hx). In the case of the above simulation,x
changes from x50.7 to x50.47. Therefore,
Dx50.720.4750.23, and forh57.9, we getDh.0.04.
This change is negligible as far as its effect on detection
probability is concerned. For instance, if a detection prob-
ability of 0.95 is required for a thresholdh57.9, the ob-
served strength required~for a signal lying in the middle of
two templates! isSobs'8.6. If h were now to be increased by
0.04, i.e.,h57.94, the detection probability falls by only
.0.6% to 0.944. In this sense, even the correction of 0.7
used for Neff is not significant. Suppose,x51.0, then
Dx50.53 which leads toDh50.07. In the above example,
the detection probability would now fall by.1% which is
again insignificant. However, this correction was obtained by
performing a simulation with a single template and, there-
fore, it was quite easy to incorporate it in our calculations.
The argument presented above shows that Eq.~57! for the
false alarm is a good approximation for our analysis even for
closely spaced templates.

Since the threshold can be determined quite accurately,
the main source of error in the algorithm given above is the
detection probability. We had seen that Eq.~50! provided an
overestimation of the detection probability when templates
were spaced closely. In the algorithm, an overestimation of
the detection probability for a given threshold would result in
a spacing that would be larger than the true spacing. This is

because a detection probability ofQd,min can now be pro-
vided by a lower observed strength and hence a wider spac-
ing. Thus, the algorithm would stop at a largerd than is
actually required. This would lead to an underestimation of
the computational requirements since the number of tem-
plates would turn out to be lower.

Given a false alarmQ0,max that can be tolerated, the
thresholdh can be obtained providedNT , or equivalently,
the spacingd of the templates, is known. But at the same
time, d cannot be determined unlessh is specified since the
detection probability, which~along with Smin) determines
d, also depends onh. One way to find a solution is to use the
algorithm presented above. Another solution to this problem
was obtained in@7# by making ana priori estimate ofNT
which was taken to be;1000. This allows the circular chain
of dependencies to be broken. The final value ofNT turned
out to be consistent with the assumed one. Such an approach
can be justified ifNT is large since, as can be seen from Eq.
~58!, Dh'DNT /(hNT), which makes the threshold insensi-
tive to NT in such a regime.

III. TWO-STEP HIERARCHICAL SEARCH

In a one-step search, the operation which makes the
heaviest demand on number crunching capability is the cor-
relation of x(t) with a large number of templates. The pri-
mary motivation behind implementing a hierarchical search
is to obtain a reduction in the number of templates used in
this operation. In order to quantify the efficacy of a hierar-
chical search, however, this as yet loosely defined concept
needs to be cast into a rigorous form. We present below one
such structure for a two-step hierarchical search. This struc-
ture is based on the properties of a one-step search which
were described above. It should be noted that it need not be
unique. It is based on our experience with a one-step search.

A. A two-step hierarchical search: Description

The basic idea behind a two-step search is the use of two
banks of templates. One of them has template chirp times
placed farther apart than those of the other. A one-steplike
search would be conducted with the finely spaced templates
but only around ‘‘promising’’ candidate chirp times, namely,
those templates in the coarser bank for which the maximum
over their rectified output exceeds a threshold. This threshold
would be kept lower than the one which would be used with
the finely spaced templates.

In the case of a one-step search the template bank could
be fixed using the one-step template placement criteria and it
turned out that the spacing between the templates was a con-
stant. This was essentially because of the dependence of the
intrinsic ambiguity function on only the difference in signal
and template chirp times. A similar set of conditions can be
imposed on a two-step search also. We will do this formally
in the next section but it can be expected that the template
banks will again have uniform spacings, although one of
them would be less than the other. We, thus, construct a
two-step search as follows.

The maximum over a rectified output is, first, computed
for each chirp time in a bankB15$j j%. We call B1, the
first-stagetemplate bank and denote the spacing of this bank
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by d (1). The number of templates used inB1 is nt
(1) ,

nt
~1!5

1

d~1! ~jmax2jmin!. ~60!

If for some template inB1 having a chirp timejm , it hap-
pens that the maximum over its rectified outputlm crosses
h (1) then we call this event acrossingof h (1) produced by
the chirp timejm . Given such a crossing, the next step in-
volves using a template bankB2,m with a spacingd (2) that is
smaller thand (1). We taked (1)/d (2)5n to be an integer. This
keeps the two banks of templates commensurate with each
other. It is possible to envisage a two-step search where this
condition is relaxed andn is allowed to take nonintegral
values also. However, an incommensurability in the two
banks would require the storage of more template wave
forms than those for commensurate banks. Also, there does
not seem to be any significant advantage when the computa-
tional costs are considered because allowing incommensura-
bility marginally reduces the minimum in the computational
cost ~Sec. III B!.

The set of chirp times used inB2,m will be located sym-
metrically aroundjm ~except whenjm5jmin or jmax, but
these can be ignored!. It will be convenient, therefore, to
index the chirp times inB2,m with both positive and negative
integers. Thus, the set of chirp times used inB2,m can be
constructed as

jp5jm1pd~2!, ~61!

where2n11<p<n21. However, the range ofp need not
be made as wide as this. For instance, it could be
2n/2<p<n/2 also. For the former, the number of template
chirp times inB2,m would be 2(n21) while for the latter it
will be n.

Since h (1) would, in general, be kept quite low, the
probability of more than one crossing will not be negligible.
In general, for every crossing ofh (1), a fixed number,
M @n<M<2(n21)#, of templates will be employed as de-
scribed above. Since the number of crossings that appear in
our final results is small~typically, ;2), the choice ofM
within the above-mentioned range does not make too much
of a difference to the computational cost. We choose
M52(n21) for our analysis, the maximum of the range, in
order to maximize our chances of detection. Thus, the tem-
plates, inB2,m , with chirp timesjn21 andj2n11, will have
a separation ofd (2) from the templates corresponding to
jm11 andjm21, respectively.

Let nc be the number of crossings that are produced by
the first-stage templates inB1. Then the total number of
second-stagetemplates that will be used will bencM . Adja-
cent crossings will reduce this number since there would be
some second-stage templates in common for such crossings.
We assume, however, that adjacent crossings have a negli-
gible probability compared to nonadjacent ones. Finally, the
overall maximum over the rectified outputs of the second-
stage templates employed is found. We denote it byL (2). If
L (2) crosses a thresholdh (2) (.h (1)), a detection is an-
nounced. Thus,L (2) is the test statistic for a two-step search
configured as above.

Neglecting adjacent crossings is justified ifnc!nt
(1) For

instance, ifnt
(1)5200 andnc52, then the number of ways in

which adjacent crossings can occur is 199 while for nonad-
jacent crossings, the number of ways is 19 701. Thus, the
probability of an adjacent crossing is;1/100 that of a non-
adjacent crossing. It turns out that the conditionnc!nt

(1) is
satisfied in our final results.

The dependence of the distributions ofL (2) will now be
on a set of two spacings and two thresholds. As a conse-
quence, both detection probability and false alarm will also
depend on the same. Before proceeding further, we empha-
size thatL (2) need not be equal to the test statistic that is
obtained by using a one-step search. The same holds for
h (2) and d (2) also. A one-step search with a thresholdh (2)

and a spacingd (2) will not, in general, satisfy the one-step
template placement criteria. However, statistical correlations
step in to effectively decouple the detection probability and
false alarm from the presence of a hierarchy which allows
h (2) andd (2) to be valid solutions for a one-step search.

B. Determination of thresholds and spacings

We impose on the two-step search described above, con-
ditions similar to the one-step template placement criteria of
Sec. II E. Thetwo-step template placement criteriaare: ~i!
Every signal with a strength greater than a given minimum
strengthSmin should produce, with a probabilityQd,min , at
least one crossing among the two templates which lie on
either side of it. It should also be detected with a probability
of Qd,min when the second-stage templates corresponding to
the above crossings are employed;~ii ! The false alarm
should be less than a specified levelQ0,max. This false alarm
is for the overall search and does not refer to a specific level
of the hierarchy. As in the case of a one-step search, a solu-
tion in terms of thresholds and spacings need not exist for all
combinations ofSmin , Qd,min , andQ0,max.

Our choice of only two adjacent templates for the first-
stage crossing can be justified using the following example.
Suppose thatd (1), the first-stage spacing, is 0.300 sec which
is a typical value. Let a signal be present with a chirp time
j such thatj5(jm1jm11)/2, wherejm andjm11 belong to
B1. Let h (1)56.0, h (2)57.9, and the signal strength
S58.8. These are again representative values. The observed
strength of the signal in the templatesjm andjm11 would be
8.8H(0.150)56.56. The probability of at least one crossing
among jm and jm11 can be found using Eq.~50!. It is,
12„*0

6.0Ri(x,6.56)dx…250.93. The observed strength of the
signal in the template jm21 would be
8.8H(0.15010.300)54.51. If the templatesjm21 and
jm12 were also included, then the probability of at least one
crossing among these four templates would be
12„*0

6.0Ri(x,6.56)dx…2„*0
6.0Ri(x,4.51)dx…250.94. Thus,

there is an increase of only;1%. These extra events would
be those in which at least one crossing was produced among
jm21 andjm12 but none was produced injm or jm11.

Consider the case where onlyjm21 produces a crossing.
In such a case, a search with second-stage templates~and a
higher thresholdh (2)) would be performed aroundjm21.
Assume that the observed strength in the templatejn21
PB2,m21, the extreme ‘‘right’’ among the second stage tem-
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plates used, is also almost the same (56.56) as that in the
templatejm . Since there was no crossing forjm , the only
way the signal can be detected now would be if a crossing of
h (2) is produced injn21. The probability of this event is
12*0

7.9Ri(x,6.56)dx50.2 which is quite small. Thus, most
of the extra crossings obtained, when four templates are used
instead of two, would actually be spurious since they will not
lead to the final detection of the signal. The relevant cross-
ings are, therefore, only those that are produced injm or
jm11. It should be ensured that the probability of such cross-
ings is sufficiently high for a given strength. This is precisely
what is required in criterion~i! above. We, therefore, con-
tinue to use Eq.~50! for the first stage.

Since the second-stage spacing in our final results will
turn out to be;0.030 sec, statistical correlations will not be
negligible as far as the calculation of the detection probabil-
ity is concerned. However, just as in the case of a one-step
search, the use of this formula would lead to an overestimate
of d (2) for a givenh (2). This will lead to an underestimate of
d (1)/d (2). This quantity can be expected to be an estimate of
the reduction in computational requirements, as compared to
a one-step search, that a two-step search can bring about.
Hence, the use of Eq.~50! in the second stage will give a
lower bound on the efficacy of a hierarchical search. If this
lower bound turns out to be significant, a further, more de-
tailed analysis can be carried out.

We emphasize here that, for a two-step search, the actual
detection probability of a signal will belessthanQd,min . In
fact, it is the probability of a composite event which involves
two different template banks and crossings of two different
thresholds. The event whose probability is being sought here
is that, in the presence of a signal, there be at least one
crossing in either of the two consecutive first-stage templates
between which the signal lies and that this be followed by
the test statisticL (2) crossingh (2). Suppose that a signal,
with a strengthSmin and chirp timej, is present inx(t). Let
jkPB1 be such thatjk,j,jk11. Also, let j l be the tem-
plate, in the second-stage templates around eitherjk or
jk11, such thatj l,j,j l11. Then, thetrue detection prob-
ability of this signal would be dominated by the probability
of the event: (lk.h (1) or lk11.h (1)) and (l l.h (2) or
l l11.h (2)). Now, there are two possibilities. The first is
thatn5d (1)/d (2) is odd. In this case, ifj5(jk1jk11)/2 then
it will also be true thatj5(j l1j l11)/2. Such a signal can be
expected to have the least true detection probability for the
strengthSmin since it lies in the middle of consecutive tem-
plates in both the banks. If weassume statistical indepen-
dencebetween the maxima over rectified outputs, then the
minimumtrue detection probabilityQd,min

t would beQd,min
2 .

The second possibility is thatn is even. In this case, if the
signal chirp timej5(jk1jk11)/2, thenj will actually coin-
cide with j l in the second stage. Such a signal will not have
the minimum true detection probability. In fact, it is easy to
see that for this case there is no signal which occurs exactly
in the middle of two consecutive templates in both the banks.
Thus, under the same assumption as above,Qd,min

t would be
strictly greater thanQd,min

2 Thus, in general,Qd,min
t >Qd,min

2

for a two-step search. In our caseQd,min50.95; therefore,
Qd,min
t >0.9. However, in the presence of significant statisti-

cal correlations among the different rectified outputs,

Qd,min
t would be almost equal toQd,min . This is so because a

crossing of the second-stage threshold would be more likely
to be accompanied by a crossing of the first-stage threshold
now than would have been the case if the rectified outputs
were statistically independent.

If a crossing ofh (2) ~which is quite large! were to be
induced by noise alone, it would imply that the noise ‘‘re-
sembles’’ the template wave form very closely. Therefore, as
in the case of an actual signal, one can expect that such a
noise realization would also induce a crossing of the first-
stage threshold in a nearby first-stage template. This need not
be true when the templates are far apart. However, for small
spacings (;0.030 sec! it can be expected that the presence
of a hierarchy will not be an impediment to a false alarm.

In order to check this, we performed a Monte Carlo simu-
lation with a set of five templates spaced 0.025 sec apart and
the input data consisting of noise alone. Since the crossing of
a large threshold (;7) is an extremely rare event, we had to
work with a lower value ofh (2)55.7 in order to register a
sizable number of the events that are of interest here. The
first stage thresholdh (1) was kept at 5.2. These two thresh-
olds are obtained when the value ofQ0,max is kept such that
there are, on the average, 106 false events in a year while
Qd,min50.95. The calculation of these thresholds assumed
statistical independence. The same calculation also yields the
spacing used in this simulation~the method used here will be
outlined below!. The extreme-right and -left templates can be
taken as first-stage templates while the remaining serve as
second-stage templates. The template chirp times were cho-
sen small enough so that a large number of independent
noise realizations~4000! could be generated.

Given a maximum among the second-stage templates
which crossesh (2), we found that the probability of a cross-
ing of h (1) in either of the first-stage templates is'0.9. On
the other hand, if the rectified outputs had been statistically
independent, the corresponding probability would have been
just that of a crossing ofh (1) among either of the first-stage
templates and would be'0.08. The few events that failed to
make it through the hierarchy were those in which the cross-
ing of h (2) occured in the middle template. The probability
of such events would be small, especially when the number
of second-stage templates becomes larger. Thus, it is a good
approximation that statistical correlations almost wipe out
the presence of a hierarchy. Since this is true for a low
h (2), it would also be true for a larger threshold as a crossing
would then indicate a stronger match between the noise re-
alization and the template. Therefore, Eq.~57! should remain
valid for the calculation ofh (2) where the number of tem-
plates to be used would now be thetotal numberof second-
stage templates. Since we present our results for weak signal
strengths, for which the spacingd (2) would be small, we will
use Eq.~57! in our analysis. An immediate implication of
this is that the second-stage threshold and spacing are now
determined independently of the corresponding first-stage
quantities. Also, this simulation shows that the detection
probability of asignalwill be much higher thanQd,min

2 when
the spacings are small.

The template placement criteria given above admit many
solutions for given values ofQd,min , Smin , andQ0,max. All
solutions will not, however, lead to the same computational
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requirement in terms of the number of templates that will be
employed ultimately. An estimation of the computational re-
quirement of a given solution is complicated by the fact that
the number of templates used is a random variable. This is so
because the number of crossingsnc of h (1) depends on the
particular realization of the noise present inx(t). We choose
to quantify the computational requirement of a given two-
step search by the average number of templatesnt

av that will
be required on the whole. We denote the average value of
nc in the absence of a signal bync

av. The computational
requirement can then be expressed as

nt
av5~nc

av1q!3M1nt
~1! , ~62!

where the quantityq is the average number of signals that
may occur in a given length of data. This number will de-
pend on the event rate of the signals. For coalescing binary
signals, the expected event rate is quite low (; 3/yr up to a
distance of 200 Mpc@25#!. Taking into account the antenna
pattern factor, if we assume an event rate of even 50–100 per
year and about 105 data trains in a year,q;1023. We take
q50. In Eq. ~62!, we have neglected, as before, the prob-
ability of adjacent crossings in the absence of a signal. Under
the assumption of statistical independence made above,nc

av

can be obtained as,

nc
av5Q0~h~1!!3nt

~1! , ~63!

whereQ0(h
(1)) is the probability of a crossing for a single

template, Q0(h)512F0(h). As an example, for
Np522432048 and Neff50.7Np , nc

av/nt
(1)50.005 for

h (1)56.0 andnc
av/nt

(1)50.7 for h (1)55.0. We see that the
number of crossings is quite sensitive to the threshold. Note
that Eq.~63! should provide an accurate result becaused (1)

can be expected to be quite large and, thus, the effect of
statistical correlations would be small.

From Eq.~62!, we see that in order to reduce the compu-
tational requirement,nt

(1) should be made small or equiva-
lently, the first-stage spacingd (1) should be made large.
However, an increase ind (1) will lower the observed
strength Sobs of a signal having a chirp time
j5(jm1jm11)/2, for jmPB1. This would imply a decrease
in the probability of a crossing induced by such a signal in
the first stage and hence, a violation of criterion~i! above. To
avert this,h (1) would have to be lowered too. From Figs.
3~a! and 3~b! we see thatF0(z) has an almost step-
functionlike behavior below a critical value ofz. If, in the
course of increasingd (1), h (1) became less than this critical
value, the value ofnc

av would rise quite fast so much so that
nt
av would actuallyincreasewith an increase ofd (1) beyond
this point. Thus, there should exist a solution for the thresh-
olds and spacings in a two-step search, for which the com-
putational requirement is minimized. This optimum solution
can be found by a simple extension of the algorithm that was
presented for a one-step search.

The Algorithm
~i! Given Smin , Qd,min , Q0,max, and the paddingNp , a

one-step template bank and threshold is set up using the
algorithm presented in Sec. II E.

~ii ! A trial value ofd (1) is chosen asd (1)5 j3d (2) where
j>2 is an integer. For each trial value ofd (1), h (1) is calcu-
lated so thatQd(h

(1);Smin ,jmin1d(1)/2)5Qd,min . The aver-
age computational requirementnt

av is then calculated using
Eqs. ~63! and ~62!. The value ofd (1) is increased by incre-
menting j , starting from a suitable initial value, until the
minimum ofnt

av is reached.
In Fig. 6, a representative plot of the average computa-

tional requirement as obtained using this algorithm is shown
as a function of the first-stage spacingd (1). Also shown is
nc
av. Observe the sharp rise innc

av and consequently, in
nt
av.
Since the value ofQ0,maxwould, in general, be kept quite

small (;1026), Eq. ~58! can be further approximated to
yield the following expression forh (2):

h~2!5F2 lnSNTNeff

Q0,max
D G1/2, ~64!

whereNT is the total number of second-stage templates. A
false alarm that yields not more than one false event per year
on the average would be

Q0,max5NpD/~365.0324.033600.0!. ~65!

From Eq. ~64! and the above expression, it follows that
h (2) is independent ofNp .

For small spacings ofd (2);0.030 sec, the number of tem-
plates that will be required in the one step-search constructed
in step~i! above would be;1000. Thus, the typical thresh-
old h (2) that would be required is;7.9 for a false alarm that
leads to one false event per year on the average. The ob-

FIG. 6. The average number of templatesnt
av required in a two-

step search as a function of the first-stage spacingd (1). For this
curve, Qd,min50.95, Smin59.0, NpD5224.0 sec, and
Q0,max57.1031026. This false alarm corresponds to an average of
one false event per year. The range of chirp times used was
jmin52.0 sec andjmax532.0 sec. The dashed curve is a plot of the
average number of first-stage crossingsnc

av in the absence of a sig-
nal.
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served strength required to attain a detection probability of
0.95 for such thresholds is;8.6. If the detection of signals
having a strength.8.6 is desired with the above probability,
then it is clear that an almost continuous set of template chirp
times would be required since otherwise the observed
strength would become,8.6. Of course, this would require
an infinite amount of computing power. Thus, there does not
exist a solution to the template placement criteria for such a
set of values forQd,min ,Q0,maxandSmin<8.6. We call such a
limiting value ofSmin as theminimum visible strengthfor a
one-step search. In actual practice, we find that the minimum
visible strength is a little higher at 8.75. This is because
h (2) also increases asd (2) is reduced.

The paddingNp was kept fixed throughout the discussion
above. This parameter of a two-step search is, however, de-
cisive in an estimation of the computationalpowerrequired.

C. Computational power required for an on-line analysis

For the on-line detection of a signal, it is required that the
processing of a given segment of data be completed within
the time required to gather the next one@4#. In a two-step
search, the processing required consists of the computation
of rectified outputs, finding the maxima over them and, fi-
nally, obtaining the test statisticL (2). The construction of a
single rectified output involves, first, performing correlations
between the time series of the detector output and two tem-
plates,h̄0 and h̄p/2 . For a givenNp , each time series will
haveN5Np1jmax/D samples, whereD is the sampling in-
terval. If an FFT is used, this implies doing 6Nln2N floating
point operations~flops! @20#. The correlations will be fol-
lowed by 3Np flops for the squaring and summation required
for the calculation of a rectified output. The maximization
over a single rectified output would involve, at most,Np
flops. Thus, the total number of flops required per template
chirp timenflop is

nflop56Nln2N14Np . ~66!

The total number of flops required for the whole template
bankNflop is, therefore,

Nflop5nt
avnflop ~67!

on the average. We neglect the relatively small number of
flops involved in the calculation ofL (2). Thus, for an on-line
implementation of a two-step search,Nflop operations would
have to be performed inNpD sec. The average computa-
tional power requiredCon line is, then,

Con line5
Nflop

NpD
31026 MFlops, ~68!

where ‘‘MFlops’’ stands for a million floating point opera-
tions per second.

An increase inNp leads to an increase inF0(h) for a
given threshold. Consequently, the number of false crossings
in the first stage would increase, for givend (1) andh (1), with
an increase inNp . Sincent

av starts to rise when the number
of crossings is*1, the minimum ofnt

av for a largerNp will
be achieved at a larger value ofh (1). At the same time, the
requirement that the probability of a crossing beQd,min will

force d (1) to a smaller value since the required observed
strength would now be higher. The overall effect is an in-
crease innt

av as well asNflop . On the other hand, an increase
in Np will result in a longer time in which the required pro-
cessing has to be completed. Thus, givenSmin , Qd,min , and
Q0,max, there would exist an optimumNp at whichCon line is
minimized.

We compute the value ofCon line as a function ofN, for
two different ranges of the chirp time. For each range, the
minimum values ofnt

av are found for a few representative
values ofNp , keepingSmin fixed. This process is then re-
peated for progressively lower values ofSmin till d (2) be-
comes;0.030 sec. We quote our results for such values of
Smin ~note that these values are not the minimum visible
strengths!. Table I contains the results forjmin52.0 sec and
jmax532.0 sec. In this table,Smin58.8. In Table II,
jmax5138.0 sec andSmin59.0. In each table, the minimum
value of nt

av is computed, using the algorithm~for small
spacings! presented in the previous section, for several val-
ues ofN. The value ofCon line is then found at each such
minimum. We also list the corresponding values ofh (1),
d (1), nt

av, andnc
av ~the last two are rounded to the nearest

whole number!. Note that the value ofh (2), and hence the
value of d (2), is independent ofNp as shown earlier. They
are presented in the captions of the tables. The numbers in
parentheses in the second column are the computing powers
required for an on-line one-step search. The values ofN are
chosen as powers of 2 because an FFT is most efficient at
these values@20#. The value ofQ0,max is always chosen to
give an average of one false event per year@Eq. ~65!#.

From Table I we see that the value forND at which
Con line is minimized is 256.0 sec. This implies a padding of
NpD5224.0 sec. However, this minimum is quite broad. In
fact, it may be preferable to useND5128.0 sec since
memory requirements would become smaller for computa-
tions involving a shorter time series. The corresponding pad-
ding in this case isNpD596.0 sec which is three times larger

TABLE I. Minimum Con line as a function ofN for: Smin58.8,
jmin52.0 sec, jmax532.0 sec, Qd,min50.95. h (2)57.92,
d (2)50.0325 sec.

N3D~sec! Con line~MFlops! h (1) d (1)~sec! nt
av nc

av

64.0 41.3~392.9! 5.58 0.358 97 1
128.0 32.6~279.6! 5.75 0.325 107 1
256.0 31.6~253.7! 5.92 0.293 115 1
512.0 33.6~249.3! 6.11 0.260 124 1
1024.0 36.7~253.2! 6.11 0.260 134 1

TABLE II. Minimum Con line as a function ofN for: Smin59.0,
jmin52.0 sec, jmax5138.0 sec, Qd,min50.95. h (2)58.10,
d (2)50.0335 sec.

N3D~sec! Con line~MFlops! h (1) d (1)~sec! nt
av nc

av

256.0 234.2~2092.1! 5.84 0.335 455 3
512.0 172.9~1400.8! 6.03 0.301 502 3
1024.0 167.1~1245.5! 6.21 0.268 545 3
2048.0 175.2~1211.5! 6.21 0.268 588 6
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than jmax. Similarly, the optimum padding for the larger
range of chirp times is also;3 jmax. In @4#, the optimum
padding for a one-step search was found as a trade off be-
tween thenumber of flopsrequired for a single data segment
and the number of segments that would have to be analyzed
in a long period (;1 yr!. Here, we have used the computing
power required for an on-line search as a discriminant.

We call the ratio of the computing power required for an
on-line one-step search to that required for an on-line two-
step search as thecomputational advantageof a two-step
search. From Table I, the computational advantage at the
minimum of Con line is 8.0. In Table II, the corresponding
number is 7.5. The number of crossingsnc will have a vari-
ance given bynt

(1)Q0(h
(1))@12Q0(h

(1))#. For the entry
from Table I considered above, the rms deviation inncM
will be .12. Thus, the value ofnt

av.127 and the computa-
tional advantage falls to.7.2. This is not a large change.
Thus, a two-step search offers a large reduction in the com-
puting power required for an on-line detection while provid-
ing a useful combination of detection and false alarm prob-
abilities.

In Fig. 7, we show the computing power required for an
on-line two-step search, and the corresponding on-line one-
step search, as a function ofSmin . The value ofjmax532.0
sec. For this range of chirp times and the values ofQd,min
andQ0,maxwhich were used above, it was noted earlier that
Smin;8.6 is the minimum strength which would be detect-
able. At this value ofSmin , the computational requirement
would become infinitely large since a template would be
required for each value of the chirp time. This is evident in
the sharp rise in the computing power for the one-step search
asSmin approaches the minimum visible strength. The com-
putational advantage of a two-step search increases to a
value of '13 near this limit. However, the second-stage
spacing becomes quite small for such low values ofSmin
which implies that the statistical correlations among the rec-
tified outputs can no longer be ignored. The formula used for
the detection probability would, therefore, be very erroneous
in such a case. A more careful analysis, taking statistical

correlations into account, is needed when the value ofSmin
becomes close to the minimum visible strength.

The assumption of statistical independence of rectified
outputs is quite good when applied to the first stage. There-
fore, the values obtained forh (1) andd (1) are accurate. How-
ever, the spacings obtained for the second-stage template
banks are quite small which implies that statistical correla-
tions would now be significant. As far as the false alarm is
concerned, it is used in the algorithm only for the determi-
nation ofh (2). We have shown in Sec. II E that the determi-
nation of the threshold is insensitive to the presence of such
correlations. As in the case of a one-step search, the main
source of error here is the use of Eq.~50! in the second stage
for the calculation of detection probability.

It was pointed out in the previous section that in the pres-
ence of significant statistical correlations, the use of Eq.~50!
for the second stage provides an underestimate ofd (1)/d (2).
This is approximately the computational advantage of a two-
step search. Thus, the computational advantage of a two-step
search could be more than the value of.8 obtained above.
However, it is difficult to obtain a clean estimate of this
error.

For instance, consider the case when only one template is
used in Eq.~49! for the detection probability. It was ob-
served in Fig. 4~a! that such a formula gave a detection prob-
ability that was lower than the true value. Its use in the
algorithm, for the calculation of second-stage detection prob-
ability, should therefore give anoverestimatefor d (1)/d (2).
However, a straightforward comparison is difficult because
the minimum visible strength for a one-template formula
turns out to be significantly higher (;9.5). When this larger
value ofSmin is used with a two-template formula, the typical
d (2) obtained is large enough (;0.10 sec! that statistical cor-
relations should be insignificant and the answer obtained
should be correct. But a one-template formula leads, for the
same strength, to small spacings (;0.020 sec! in which case
it is definitely preferable to use this formula rather than Eq.
~50!.

The probability of adjacent crossings was neglected as
compared to nonadjacent crossings. This is true when
nc!nt

(1) . The values obtained fornc
av clearly satisfy this

condition. Note thatd (1) is large enough for statistical corre-
lations to be negligible and hence Eq.~63! to be valid.

IV. CONCLUSIONS

We have investigated the performance of a two-step hier-
archical search for the detection of Newtonian wave forms
from coalescing binaries. The noise power spectral density
used in the analysis is that of the initial LIGO. A rigorous
formalism to describe a two-step search was presented which
employs the detection probability of a signal in an essential
way to set up the bank of templates and thresholds. The
formulas for detection probability and the false alarm used in
this formalism were obtained under the assumption of statis-
tical independence of time samples in the rectified output of
templates. However, Monte Carlo simulations were used to
study the effect of statistical correlations on these formulas.
We found that, in the absence of a signal, it is straightfor-
ward to incorporate such effects for the case of a single rec-
tified output by the use of aneffective numberof statistically

FIG. 7. The computing power required, as a function ofSmin ,
for an on-line one-step search~top! and an on-line two-step search
~bottom!. For both the curves,ND5256.0 sec,jmax532.0 sec,
Qd,min50.95, andQ0,max57.1031026.
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independent samples. The threshold, for a given false alarm,
was found to be insensitive to correlations.

Statistical correlations, however, affect the detection
probability in a complex manner which makes it difficult to
incorporate these effects in a simple way. Strictly speaking,
neglecting correlations gives us a lower bound on the com-
putational advantage of a two-step search. However, the
bound itself is close to the actual value if the spacing be-
tween templates is not too small~we take this value as
*0.030 sec!.

~i! We find that a two-step search allows a large reduc-
tion, by at least a factor of.8, in the computing power
required for an on-line detection as compared to a one-step
search for Newtonian signals. For an on-line detection of
signals having a strength of;8.8 ~detection probability
.0.95 and an average of one false event per year! the com-
puting power required, for a two-step search, is 167 MFlops
when the range of chirp times is taken asjmin52.0 sec and
jmax5138.0 sec. We expect our results to hold good since
the second-stage spacings are;0.030 sec. For weaker sig-
nals the spacings turn out to be much smaller, in which case
statistical correlations will play a very significant role. The
formula used for the detection probability would then be
suspect. However, if we apply this formula for smaller spac-
ings, the reduction achieved in computational power turns
out to be much larger. This can be seen from Fig. 7. But
these cases merit a more thorough investigation in which
statistical correlations are considered more carefully. For
closely spaced templates the use of two templates in the cal-
culation of the detection probability, Eq.~50!, leads to an
overestimate while the use of a single template leads to an
underestimate. Either of these can be used in the algorithm
that we have presented for a two-step search. If the one-
template formula were used~only in the second stage!, the
minimum strength that would be required to achieve a detec-
tion probability of 0.95, for a second-stage threshold of 7.9,
would increase to 9.5 from the 8.6 obtained with Eq.~50!.
However, the computational advantage of a two-step search,
when the one-template formula is used, again turns out to be
a factor of;10.

~ii ! The one-step search formalism presented here was
restricted to the family of Newtonian wave forms. This fam-
ily has essentially a single important parameter, namely,j.
There is no problem though in extending this formalism to
include multiparameter signal families such as the post-
Newtonian signals. In fact, this is very much required since it
has now been established@9# that the quadrupole approxima-
tion will not furnish templates that are good enough for the
detection of coalescing binary signals.

The extension is straightforward because the key idea in
this formalism, namely, the template placement criteria, is
not restricted to a particular signal family. The same would
hold for the second-stage template placement criteria also. It
may be expected that the computational advantage of a two-
step search would be larger when the number of parameters
increases because we may expect the hierarchical search to
yield an advantage for each parameter independently. The
combined computational advantage would be the product of
the computational advantage for each parameter.

~iii ! The values obtained for the second-stage spacing
(;0.030 sec! imply that, in the middle of two consecutive

templates, the intrinsic ambiguity function has a value of
;0.97. This is consistent with the value used in@8# for a
one-step search.

In terms of detection probability, the argument used in@8#
reduces to assigning a detection probability of unity to sig-
nals having a strength above the threshold and zero to signals
with a strength below it. This is justified since the detection
probability does indeed fall very rapidly as the observed
strength goes below the threshold. For instance, if the thresh-
old were 8.0 then an observed strength of 7.5 corresponds to
a detection probability of 0.55. In terms of distances, a
strength of 8.0 corresponds to;38.0 Mpc while 7.5 corre-
sponds to 40.5 Mpc for a 1.4–1.4M( binary. Thus, the
detectability of events would fall to only half the actual num-
ber of events, within a short distance from that correspond-
ing to the threshold.

It should be noted that the canonical value of 0.9 for the
intrinsic ambiguity function that is usually used for the de-
termination of the spacing is valid only for large signal
strengths~when a detection probability of 0.95 is desired!.
For instance, when the threshold in a one-step search is 7.9,
a signal having an observed strength of 8.6 is detectable with
a probability of 0.95. But if the observed strength is taken as
0.938.6/0.97, the detection probability would fall to 0.80.

In itself, the reduction ofSmin from a value of, say, 10.0 to
;8.8 leads to an increase of the volume in which sources
can be detected by a factor of 1.5. If a one-step search were
used, the computing power required for the detection of the
weaker signals~with Qd50.95) would be much larger than
that for the stronger signals. Therefore, the question arises
whether it is worth devoting a lot of extra resources in order
to obtain such an increase in the volume of detectability.
However, a two-step search would require only a very small
increase in computing power for the same increase in event
rate. Moreover, as mentioned in~i!, it may bring down the
computing requirement significantly in the case of higher
order templates. This may happen even for large strengths
(;10).

~iv! The spacings in both a two-step as well as a one-step
search are primarily governed by the intrinsic ambiguity
function. If the bandwidth of the detector were to be made
larger, as would be the case for the VIRGO and advanced
LIGO detectors, the falloff in the intrinsic ambiguity func-
tion, as the spacing between template and signal chirp times
is increased, would be faster. We believe, however, that the
computational advantage of a two-step search over a one-
step search would still remain the same. This is because the
effect on both the first-stage and second-stage spacings
should be similar. In absolute terms, the computing powers
required may be greater for both the one-step and two-step
search.
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