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Ab initio single- and multiple-scattering EXAFS Debye-Waller factors: Raman and infrared data

Nicholas Dimakis and Grant Bunker
Illinois Institute of Technology, Chicago, Illinois 60616

~Received 23 January 1998!

The extended x-ray-absorption fine structure~EXAFS! Debye-Waller factor is an essential term appearing in
the EXAFS equation that accounts for the molecular structural and thermal disorder of a sample. Single- and
multiple-scattering Debye-Waller factors must be known accurately to obtain quantitative agreement between
theory and experiment. Since the total number of fitting parameters that can be varied is limited in general, data
cannot support fitting of all relevant multiple-scattering Debye-Waller factors. Calculation of the Debye-Waller
factors is typically done using the correlated Debye approximation, where a single parameter~Debye tempera-
ture! is varied. However, this procedure cannot account in general for Debye-Waller factors in materials with
heterogeneous bond strengths, such as biomolecules. As an alternative procedure in this work, we calculate
themab initio directly from the known or hypothetical three-dimensional structure. In this paper we investigate
the adequacy of various computational approaches for calculating vibrational structure within small molecules.
Detailed EXAFS results will be presented in a subsequent paper. Analytical expressions are derived for
multiple scattering Debye-Waller factors, based on the plane wave approximation. Semiempirical Hamiltonians
and theab initio density functional method are used to calculate the normal mode eigenfrequencies and
eigenvectors. These data are used to calculate all single- and multiple-scattering Debye-Waller factors up to a
four atom cluster. Theseab initio Debye-Waller factors are compared to those calculated from experimental
infrared and Raman frequencies. As an example comparison with experimental EXAFS data from
GeCl4 , GeH3Cl gases are also reported. Good agreement is observed for all cases tested.
@S0163-1829~98!05430-7#

I. INTRODUCTION

X-ray-absorption fine structure~XAFS! spectroscopy1,2 is
a technique used to provide information regarding structural
and electronic composition of a given sample. In XAFS,
long-range order is not required, thus crystalline and amor-
phous materials can be treated on the same basis.

The XAFS Debye-Waller factor is an essential term that
appears, in the simplest case, as an exponential of the form

e22k2s2
in the XAFSx(k) equation, and which accounts for

the structural and thermal disorder of a given sample. The
parameters2 is the mean square variation~MSV! of a given
scattering path. The Debye-Waller factor is ak2-dependent
term; its importance is enhanced ask is increased. Fork
<324 Å21 the effect of this factor on the XAFSx(k) is
usually minimal and often can be ignored. Unless otherwise
stated, in this work, any reference to Debye-Waller factor
refers to thermal component only, and at the small disorder
limit.

Quantitative analysis of EXAFS spectra requires the abil-
ity to determine Debye-Waller factors either experimentally
or computationally. Tremendous progress has been made in
recent years in calculating the electronic single- and
multiple-scattering effects in XAFS.3 However, to date, there
has not been a corresponding improvement in calculating
vibrational properties which are also critical for obtaining
quantitative agreement with XAFS spectra. The focus of this
work is ab initio calculation of Debye-Waller factors, par-
ticularly for situations in which it is impossible to determine
all relevant Debye-Waller factors by fitting data. This poten-
tially extends the range and power of the XAFS technique by

eliminating the need to fit more parameters than data can
realistically support.

When experimental EXAFS data are available, calcula-
tion of the Debye-Waller factor for single-scattering paths is
typically done as follows: experimentalx(k) data are fitted
with computationally simulatedx(k), using scattering ampli-
tudes and phases obtained from compounds of known struc-
ture. Fitting is done by nonlinear least squares methods, and
simulation is obtained using theoretical calculations or em-
pirical standards.

When experimental EXAFS data arenot available, single-
scattering Debye-Waller factors can be estimated by the
FEFF6program,4 using either the Debye or Einstein approxi-
mations. Both are single-parameter models, depending upon
Debye and Einstein temperature, respectively. These models
have advantages and disadvantages, but they can be accurate
enough when bonds of homogeneous strength are involved.

Single-scattering Debye-Waller factors normally are de-
termined from experimental data, but only as an average
over ‘‘shells’’ of atoms. In most cases it is not possible to
determines2 for all individual single-scattering paths. Fur-
thermore the number of important multiple-scattering paths
may number in the hundreds, so it becomes hopeless to de-
termine all of them by fitting. It can be shown that the maxi-
mum number of independent parameters determinable from
XAFS is 2DkDR/p.20–30 whereDk andDR are the use-
ful k- andR-space data ranges.

Single scattering and two-atom multiple scattering are not
the only types of scattering appearing in the EXAFS spec-
trum. Usually, three- and sometimes four-atom, or even
higher multiple-scattering paths also may be significant. The
relative importance of the multiple scattering depends upon
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the structure of the specific sample. If the scattering angle
defined by the central absorber, the first scatterer, and the
second scatterer is less than 140 ° –150 °, three-atom scatter-
ing is confined predominantly to the near-edge~XANES!
region where, as discussed before, Debye-Waller factors are
usually not important. But as this angle approaches 180°
~linear molecules!, multiple scattering is greatly enhanced
and affects also the EXAFS region. This is called the ‘‘fo-
cusing’’ effect. In highly symmetric systems large angle
multiple scattering may also be important in the EXAFS re-
gion.

Whenever the focusing effect is present, contributions
from multiple-scattering pathsmust be included in the
EXAFS equation. Because of the large number of fitting pa-
rameters that would be required and the limited information
content of EXAFS spectra, multiple-scattering Debye-Waller
factors cannot be obtained by the fitting technique. However,
viable alternatives include calculation of these parameters by
either an approximated model, by a full normal mode analy-
sis, by equation of motion methods, molecular dynamics, or
other methods.

As mentioned before, both Debye and Einstein approxi-
mations are single-parameter models. These methods permit
one to calculate thes2 of a single-scattering path only when
all bonds are equivalent, or may be approximated by a suit-
able average. In appropriate systems these models can pro-
vide accurate results. However, in systems that involve
highly anisotropic bonds, e.g., strong bonds in a plane and
weak bonds along the perpendicular axis, as in aromatic
rings in amino acid residues, or high-Tc superconductors, or
Jahn-Teller distorted transition metal coordination com-
plexes, neither of these models are able to accurately calcu-
late all single-scattering Debye-Waller factors. This is ex-
actly the situation for a typical three-atom multiple-scattering
path: strong bonds~stretching! are vibrationally coupled with
various weaker bonds~bending, and sometimes other defor-
mations!. Therefore neither of these two approximations
should be used for three- and/or four-atom multiple-
scattering Debye-Waller factor calculations in such systems.

One approach to estimate these parameters is by means of
a normal mode analysis using force constants obtained from
various force field models, or better yet, to calculate them for
specific structure under consideration. We have tried some
tabulated force field models and found them to be insuffi-
ciently accurate for our purposes.5 Alternatively, calculation
of force constants can be done by a variety of self-consistent
quantum chemical methods that are available, which is the
approach used in this work. These methods may be divided
into two main categories: theab initio and the semiempirical
approaches. The essential difference betweenab initio and
semiempirical methods is that, in the latter, some of these
integrals are approximated using experimental results for
calibration. This makes semiempirical methods much faster,
approximately 103 times, thanab initio, but also less flexible
and accurate.

A question that arises here is why theFEFF7program can-
not be used to perform a molecularab initio normal mode
analysis. The answer is simple:FEFF7is not a molecular self-
consistent field method and cannot be used to provide any
information regarding the chemical structure of a molecule.
This is why FEFF7, in order to calculate Debye-Waller fac-

tors, uses the Debye model which does not require any ex-
tensive force constant calculation beforehand, except for a
single force constant~Debye temperature! provided by the
user. Ideally force constants would be generated by a SCF
version of the multiple scattering EXAFS codes. Until such
codes become available, the approach presented here is prac-
tical for molecular systems.

In this work quantum-mechanical molecular calculation
of force field constants and normal mode analysis is done by
the use of the semiempirical Hamiltonians AM1~Ref. 6! and
MNDO ~Ref. 7! and theab initio density functional method
~DFT!.8 These, among others, calculate the normal mode
eigenfrequencies and eigenvectors of a particular molecule,
which in turn is used for calculation of MSV parameters.
Semiempirical methods donot work well for every material,
but they can be accurate enough for the same purposes when
they are applied to organic samples. Since their execution
time is only a fraction that of anyab initio method they can
be used on large organics, e.g., biomolecules, where a DFT,
on ordinary 1997 era workstations, may be impractical. We
expect this limitation to disappear as the cost of computing
power decreases. If the speed of computers doubles every
two years and the time of execution scales asN3, whereN is
the number of atoms in the cluster, then the cluster size prac-
tically will double every six years. Algorithmic improve-
ments are also feasible.

Density functional methods are preferred over the
Hartree-Fock method9,10because they account approximately
for both electron exchange and correlation terms. They re-
quire almost the same amount of CPU time as the Hartree-
Fock method, but the inclusion of the electron correlation
term and its various nonlocal density approximations make it
suitable for a broad range of materials. Even when very weak
bonds are present, e.g., hydrogen bonds, the addition of a
term dependent on the derivative of the electron density to
the molecular energy will systematically improve the results.
This is one example of what are called nonlocal corrections
but, with the exception of theF2 molecule, are not used here.
In general, for weak bonds or high temperatures, anharmonic
effects will be important and the methods described here
would need to be extended. For the systems of primary con-
cern here, which involve strong covalent bonds, anharmonic
effects are neglected. Other means of approximating an an-
harmonic potential is by the use of the quasiharmonic
method and is not discussed here. DFT provides a good bal-
ance of accuracy, flexibility, and execution speed. It is also
preferred over the more accurate but much slower second or
fourth order Møller-Plesset perturbation methods referred to
as MP2 and MP4, respectively.11

The accuracy of the density functional method used here
depends, as almost otherab initio methods, on the basis
functions. In this work, the more extensive Gaussian basis
set, where available, has been used.

A variety of inorganic and organic molecules were chosen
to estimate the accuracy of the various quantum chemistry
codes used. Diatomic molecules are examined first, triatomic
and tetra-atomic inorganic structures follow. Aromatic and
nonaromatic organic structures are examined separately since
they usually appear in biomolecules, e.g., in amino acids and
nucleotides, which are of particular interest to us. In this
work we have continued on attention to noncrystalline mo-
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lecular systems, but the method should also work in crystals,
using appropriate programs.

Theoreticalx(k) data usings2 from semiempirical and
density functional methods are matched with computation-
ally calculateds2 using experimental infrared and Raman
spectra. This is because the accuracy of thes2 depend
mainly on how well the normal mode frequencies are esti-
mated. Future work also include comparison with experi-
mental EXAFS data. The density functional method proves
to be a broadly applicable material method whereas semi-
empirical AM1 and MNDO are limited to organic materials
only. Some exceptions to this statement are also described.

The multiple-scattering Debye-Waller factor problem rep-
resents an attempt to directly address the problem by means
of a self-consistent approach. Recently Poiarkova and Rehr12

presented an alternative method using the ‘‘equation of mo-
tion’’ method, which involves Fourier transformation of the
time dependence of the molecular dynamics. They usetabu-
lated force constants to calculate the correspondings2. The
accuracy of this method depends on how well the tabulated
force constants resemble the actual ones. Clearly, reliance on
tabulated force constants lacks self-consistency, so that, by
its nature, chemical differences in bond strength are not ac-
curately taken into account. The normal mode frequency var-
ies among different structures containing a particular bond.
Because tabulated bond strengths depend solely on the par-
ticular type of atom-atom bond, they cannot account for
chemical variation in bond strength.

II. THEORY

A. Two-atom multiple scattering

The EXAFS equation, in the plane wave approximation,
accounting for the two atom multiple scattering is written as

x~k!5(
l 51

`

x2l~k!, ~1!

wherex2l(k) denotesnlegs52l scattering. Generally speak-
ing any 2l scattering will produce a backscattered wave of
the form

~2!

whereT2l(k) is the scattering amplitude for the 2l path. The
exponential term includes all phase factors that account for
the variation of the atomic potential. The instantaneous dis-
tancesR8W i are defined as

RW i85uW i2uW 01RW i , ~3!

whereuW i are the displacement vectors from the equilibrium
positionsRW i , uW 0 is the displacement vector of the central
absorber. DistancesR8W i that occur in the denominator of Eq.
~2! may be replaced with the corresponding equilibrium val-
uesRW i . The magnitude of the instantaneous vector position
RW i8 is approximated as

uRW i8u.uRW i
212R̂i~uW i2uW 0!/uRW i uu1/2.uRW i u1R̂i~uW i2uW 0!,

~4!

where R̂i denotes the unit vector in the direction ofRW i .
Therefore the exponential factor in Eq.~2! may be written as

e2ikW iR
W

i8.e2ikRie2ikR̂i ~uW i2uW 0!. ~5!

and by thermally averaging the second exponential factor we
have

^e2i lkR̂i ~uW i2uW 0!&5e22k2l 2^~R̂i ~uW i2uW 0!!2&. ~6!

Therefore the two-atom multiple-scattering Debye-Waller
factor for any nlegs52l is written in terms of thes i ,SS

2

single-scattering factor Debye-Waller factor as

s i
2~2l !5 l 2s i ,SS

2 . ~7!

B. Three-atom multiple scattering

Consider a three atom cluster and anlegs5 l multiple
scattering path withnlegs5a from the absorber 0 to atomi ,
nlegs5b from i to j , andnlegs5g from j back to 0, such
that

l 5a1b1g. ~8!

Following a similar discussion as in Sec. II A the backscat-
tered wave amplitude of such a path is proportional to

T~u i ,f i !T~u j ,f j !

kuRW 0i uauRW 0 j uguRW i j ub
e~ iakW i•RW i81 igkW j •RW j81 ibkW i j •RW i j8 !. ~9!

Using Eq.~4! the exponential factor in the last equation be-
comes

e~ iakW i•RW i81 igkW j •RW j81 ibkW i j •RW i j8 !

.eik~auRW i u1guRW j u1buRW i j u!

3eik[aR̂i ~uW i2uW 0!1gR̂j ~uW j 2uW 0!1bR̂i j ~uW i2uW j !] . ~10!

A thermal average of the second exponential factor leads to
the MSV s2, expressed as

s25
1

2(n
@ap0i8 ~n!1bpi j8 ~n!1gpj 08 ~n!#2^Qn

2&, ~11!

wherepi j8 (n) are defined by

pi j8 ~n!5
R̂i j •eW i~n!

Ami

2
R̂i j •eW j~n!

Amj

. ~12!

e i(n) are the normal mode eigenvectors,mi mass of thei th
atom in the cluster, and̂Qn

2& is

^Qn
2&5

\

2vn
cothS \vn

2KBTD . ~13!

C. Four-atom multiple scattering

Four-atom multiple scattering is generally the highest
cluster multiple scattering to be examined. This is because a
path involving more than three scattering atoms tends to be
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of a much lower probability due to larger effective path
length involved. When focusing effect takes place, four-atom
multiple scattering up tonlegs56 can be observed not only
in the XANES but also in the EXAFS region of the spec-
trum. A general formula for a four-atomnlegs5 l multiple
scattering is given by

s25
1

2(n
@ap0i8 ~n!1bpi j8 ~n!1gpjk8 ~n!1dpk08 ~n!#2^Qn

2&,

~14!

wherea1b1g1d5 l .

III. PROCEDURE

With the exception of the GeCl4 , GeH3Cl all other
model samples being presented in this work were built using
the MOLECULAR EDITOR Ver. 3.8 by CAChe Scientific, now
part of Oxford Molecular Group. Their structure was opti-
mized by minimizing the quantum-mechanically calculated
energy using either the AM1, MNDO~MOPAC package by
CAChe!, or DFT method~MULLIKEN package by IBM!. Nor-
mal mode analysis, using the same methods, was also per-
formed. GeCl4 , GeH3Cl were built and analyzed with
UNICHEM version 4.0 by Oxford Molecular Group.UNICHEM

has the option of using a double zeta~DZ! ~Ref. 20! basis set
that tend to give more accurate results than the Popple basis
set used by Mulliken. Auxiliary basis setA1 was also used.

A program written by the authors reads normal mode
eigenfrequencies and eigenvectors and calculatess2 for all
single- and multiple-scattering paths up to eight number of
legs. Since the number of multiple-scattering paths might be
in the hundreds, our program reads a path.dat and a files.dat
file produced byFEFF7for the same structure, assignss2 for
the corresponding path, and automatically saves them on the
files.dat file. By rerunningFEFF7using this new files.dat file
x(k) data that include Debye-Waller factors are obtained.

IV. RESULTS AND DISCUSSION

In this section results from DFT and semiempirical meth-
ods are compared with results from IR and Raman frequen-
cies. The experimental Debye-Waller factors, shown in the

tables, were derived by substituting the corresponding IR and
Raman frequencies to aMOPAC file.

A. Diatomic gases

In order to make a first test regarding the accuracy of the
semiempirical AM1, MNDO, and theab initio DFT method,
ten diatomic molecules are examined. Diatomic molecules
have only one normal vibrational mode, which is a purely
stretching vibration, and therefore their single-scatterings2

comes only from one frequency. Therefore the accuracy of
each method depends only on how well this normal mode
frequency approaches the experimental value.

Single-scatterings2 of five A-A type diatomic molecules
Br2 , O2 , N2 , F2 , Cl2, and five A-B molecules are pre-
sented in Table I. All experimental frequencies13 do include
anharmonicity, and have been recorded by spectrometers.
This anharmonicity shifts the harmonic frequency by a few
cm21 but special attention has to be given to theF2 where a
downshift of approximately 180 cm21 has been observed.
In order to overcome this difficulty, a Becke nonlocal cor-
rection was included on the DFT runs. There was no equiva-
lent correction for the semiempirical methods. All other mol-
ecules are treated without nonlocal corrections.

By examining Table I, in theA-A case, DFT relative error
ranges from 10.8%(Cl2) to 1.6%(F2) where in theA-B case
the corresponding range is from 10.6% (ClBr) to
1.3% (FCl). Therefore in case of diatomic gases, with the
exception of CO whereas semi-empirical methods also pro-
vide accurate results, for best accuracy, single-scattering
Debye-Waller factors should be calculated using the DFT
method. Since all multiple-scattering paths on two atom sys-
tems depend on this one normal mode frequency, the above
statement is relevant for their multiple-scattering Debye-
Waller factors as well.

B. Single scattering

1. Triatomic and tetraatomic molecules

The triatomic F2O, CO2, SO2 and the tetraatomic
SO3, O5CCl2 , S5CF2, O5CClF are the next to be

TABLE I. Calculated single-scattering EXAFSs2 for diatomic
gases.

s2, 10233Å2

Molecule AM1 MNDO DFT Exp

Br2 1.345 1.286 2.281 2.064
O2 1.007 0.851 1.497 1.356
N2 0.871 0.878 1.067 1.033
F2

a 1.303 1.048 2.227 2.191
Cl2 1.261 1.416 2.215 1.974
CO 1.083 1.031 1.118 1.147
FCl 1.288 1.317 1.873 1.848
NO 0.932 0.867 1.150 1.202
ClBr 1.334 1.343 2.171 1.940
BrF 1.363 1.217 1.873 1.710

aBecke nonlocal correction has been used.

TABLE II. Calculated single-scattering EXAFSs2 for triatomic
and tetra-atomic molecules.

s2, 10233Å2

Molecule AM1 MNDO DFT Exp

F2O 1.724 1.230 2.255 2.314
CO2 1.110 1.074 1.170 1.214
SO2 1.613 1.138 1.296 1.250
SO3 1.367 1.245 1.281 1.230
OvCCl2

a 1.216 1.135 1.326 1.364
b 2.264 2.858 2.641 2.528
SvCF2

c 1.820 1.475 1.512 1.529
d 1.595 1.398 1.863 1.913
OvCClF a 1.209 1.160 1.262 1.306
d 1.581 1.402 1.916 1.926
b 2.162 1.918 2.537 2.467

aCvO.
bCuC.
cCvS.
dCuF.
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examined.13 From now on, discussion of the single scattering
is separated from the multiple scattering. As the number of
atoms in a molecule is increased, an accurate single-
scattering Debye-Waller factor doesnot guarantee accurate
multiple-scattering Debye-Waller factor, as in the case of
diatomic molecules. This is mainly due to the fact that in the
three- and four-atom multiple scattering, various stretching
and bending modes appear in the spectrum. In order to obtain
accurate results forall scattering paths, only a ‘‘variety’’ of
frequencies is actually needed. By ‘‘variety’’ we mean that a
precise description of the complete spectrum of poluatomic
molecule isnot always necessary.

Wherever referenced carbon is taken to be the central ab-
sorbing atom. This is mainly for the following reason: since
the main purpose of this work is to treat organic rings similar
to aminoacid side groups, we examine the behavior of how
well bending and/or stretching of organic bonds is estimated
using the semiempirical or DFT method. In practice carbon
is rarely chosen as an absorbing atom in an EXAFS experi-
ment. This is because itsK edge is 284.2 eV relatively low
compared to the keV range of most of the experiments done
today. Also in case of an organic sample with anunknown
geometry, since more than one C atom will be absorber and
scatterer, there is no way of determining positions or angles
of atoms in such a molecule.

Similarly, as in the diatomic molecules, by examining
Table II, the DFT relative error ranges from 4.27% (O
5CCl2 , C-Cl assignment! to 0.52%(O5CClF, C-Cl as-
signment!. Therefore regarding inorganic molecular samples
~at least up to tetra-atomic molecules!, DFT is accurate
enough for the calculation of the single scattering and two-
atom multiple-scattering Debye-Waller factors whereas the
use of semiempirical methods is discouraged. This is a gen-
eral statement and exceptions to this rule, as in case of the
MNDO calculation of the Debye-Waller factor in SO3, might
occur.

2. Nonaromatic molecules

Organic nonaromatic molecules are next to be examined.
Organic molecules are the main purpose of this work, espe-
cially aromatic molecules that appear on protein structure.
Aromatic structures are examined in Sec. III B 3. Single scat-
tering s2 of five nonaromatic molecules CH3Cl, HC

[CH, H3CCN, H2C5C5O, and H2C[CCH3, are pre-
sented in Table III. For the same reasons as explained in the
last section, carbon is taken as the central absorbing atom.
When multiple carbons appear on a molecule the first carbon
from the left is the absorber.

Inspection of the normal mode frequencies14,15shows that
C-H stretching modes occur in a range 300023500 cm21,
thus consisting of a ‘‘group’’ of frequencies for this particu-
lar vibration. This can also be confirmed for other types of
vibrations. If a C-H stretching frequency is set to approxi-
mately 3000 cm21, then the corresponding absolute error
induced on the single scatterings2 for any C-X path ~ex-
cluding hydrogens! is negligible. This statement is also valid
for multiple scattering. This is because MSV’s depend
mainly on modes~stretching, bending, or combination of the
two! that involve atoms which belong to the same path of
interest. Therefore only a certain ‘‘group’’ of the whole spec-
trum will contribute to the particular Debye-Waller factor.

By examining Table III, MNDO and AM1 provide far
more accurate results than for the inorganic case. Specifi-
cally, MNDO errors range from 25.34% (CH3Cl) to
7.91% (HC[CH), and AM1 errors range from
24.04% (H3 CCN, second shell! to 9.7% (HC[CH). This
is fully expected due to the parametrization of these two
semiempirical methods. On the other hand, DFT is still far
more accurate but at the cost of much higher CPU time. DFT
relative error ranges from 5.17% (H3CCN, second shell! to
0.2% (H2C5C5O, second shell!.

Therefore, with regard to organic nonaromatic molecular
samples, DFT is an accurate approach for the calculation of

TABLE III. Calculated single-scattering EXAFSs2 for organic
nonaromatic samples.

s2, 10233Å2

Molecule AM1 MNDO DFT Exp

CH3Cl 2.268 2.075 2.586 2.601
HCwCH 1.205 1.220 1.289 1.322
H3 CCNa 1.800 1.830 2.086 2.175
b 2.017 2.070 2.379 2.502
H2CvCvO a 1.458 1.507 1.675 1.702
b 1.729 1.746 1.950 1.954
H2CwCCH3

d 1.196 1.208 1.298 1.329
b 2.122 2.157 2.486 2.547

aFirst C is the central absorber.
bSS second shell, where all hydrogens are ignored.

TABLE IV. Calculated single-scattering EXAFSs2 for aro-
matic samples. Central absorber is the upper left carbon for the first
ring and the upper right for the second ring. Rows denote shells.
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the single-scattering and two-atom multiple-scattering
Debye-Waller factors. The semiempirical methods can be
used to provide a fast first estimation of thes2s.

3. Aromatic molecules

Next we examine aromatic~ring! molecules under the
single-scattering scheme. Two five member rings and one six
member~benzene! are discussed.

Nonplanar normal mode vibrations15,16 tend to play no
significant role in the Debye-Waller factor calculation. This
is because these modes do not contribute to the planar MSV
s2 single or multiple scattering, thus allowing us, arbitrary,
to set them equal to any nonzero value. This is also true for
some nonaromatic molecules on Sec. IV D but special care
must be taken there since there sometimes is no clear defi-
nition of a molecular plane.

Semiempirical methods, as in the last section, provide
very good results for the aromatic molecules as well. In
Table IV, the MNDO error ranges from 12.1%~second ring,
first shell! to 3.07% ~benzene, first shell!, and AM1 error
ranges from 14.4%~first ring, second shell! to 1.7% ~first
ring, third shell!. The DFT method errors ranges from 3%
~second ring, third shell! to an extremely small 0.05%~sec-
ond ring, second shell!. A peculiar result, as in Sec. IV C,
also appears here: the semiempirical AM1 provides a better
result than theab initio DFT for the third shell of the second
ring. For reasons similar to these discussed before, such a
peculiarity might also occur for other molecules.

All Debye-Waller factors calculated in this work, refer to
nominal ‘‘room’’ temperature, i.e.,T5300 K. The methods
used are expected to be adequate at temperatures for which
interatomic potentials are harmonic, including temperatures
at which the dominant contribution is quantize zero-point
motion.

C. Multiple scattering

Similar to single scattering, double scattering MSV’s for
all triatomics and tetraatomic inorganic molecules, are given

in Table V. In the CO2 molecule, one of the two oxygens is
set as the absorbing atom, while carbon was the absorber
when single scattering was considered. Such a change intro-
duced a shadow effect that, as discussed before, enhances
multiple scattering. The DFT relative error is from
6.96% (SO3) to 0.98% (O5CClF, C– F– O– C path!.

All organic molecules with more than two heavy atoms
presented before are also examined. Since, for linear struc-
tures, double scattering MSV coincides with the correspond-
ing second shell single scatterings2, MSV’s for nonaro-
matic molecules are not repeated here. For contrast, MSV’s
for aromatic molecules are given by Table VI. The corre-

TABLE V. Calculated double-scattering EXAFSs2 for tri-
atomic and tetra-atomic molecules.

s2, 10233Å2

Molecule AM1 MNDO DFT Exp

FO2 2.276 1.606 2.715 2.868
CO2 1.426 1.373 1.552 1.581
SO2 2.585 2.015 2.666 2.542
SO3 2.444 2.553 2.442 2.272
OvCCl2

a 2.185 2.020 2.399 2.348
b 2.490 2.671 2.185 2.242
SvCF2

c 2.100 1.828 1.854 1.898
d 2.037 1.724 2.223 2.257
OvCClF a 2.199 2.687 2.294 2.225
e 1.780 1.642 1.828 1.810
f 2.297 2.128 2.141 2.083

aCuCluOuC.
bCuCluCluC.
cCuFuSuC.
dCuFuFuC.
eCuFuOuC.
fCuFuCluC.

TABLE VI. Calculated double-scattering EXAFSs2 for aro-
matic molecules.

TABLE VII. Single-scattering EXAFS MSVs2 for GeH3Cl
and GeCl4 Gases.

s2, 10233Å2

Molecule AM1 MNDO DFT Exp.

GeCl4 2.203 2.299 2.052 2.070a

GeH3Cl 2.037 2.351 2.833 3.00b

a60.3310233Å2.
b60.4310233Å2.
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sponding DFT error forall organic molecules is from
5.17% (H3CCN) to 0.0%~benzene!.

Relative error ranges for the double-scattering case, for
either the semiempirical or DFT approximations, remain
similar to the corresponding error ranges for the single-
scattering case. It is evident that there might be a case in
which a method predicts stretching better than bending

modes or, vice versa, causing single-scattering MSV’s to be
predicted accurately enough, but double and some higher
order scattering Debye-Waller factors mightnot be in the
same error range as the single-scattering ones. Since single
scattering is more affected by stretching, and large angle
double scattering by bending modes, an acceptable predic-
tion of both guarantees thatall other three-atom multiple-
scattering paths will also be properly predicted.

FIG. 1. ~a! Four Fourier-transformed experimental EXAFS
scans for GeCl4 gas are plotted to show reproducibility of spectra.
Mean experimental~dotted line! vs DFT ~dashed line! and s250
~solid line! for GeCl4 gas ~b! radial distribution and~c! filtered
x(k).

FIG. 2. ~a! Four Fourier-transformed experimental EXAFS
scans for GeH3Cl gas are plotted to show reproducibility of spectra.
Mean experimental~dotted line! vs DFT ~dashed line! and s250
~solid line! for GeH3Cl gas ~b! radial distribution and~c! filtered
x(k).
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V. COMPARISON WITH EXPERIMENTAL EXAFS DATA

As an example the methods described above are com-
pared with EXAFS experimental scans. These data refer to
GeCl4 and GeH3Cl, both gases, taken by Bouldinet al.17 at
the National Synchrotron Light Source~NSLS! using the
X9-A beamline. Due to the structure of these molecules,
multiple scattering is only significant in the XANES area
~‘‘wide-angle’’ multiple scattering!. Therefore only single
scatterings2, which corresponds to the Ge-Cl path, is re-
ported. Hydrogen scattering in the GeH3Cl molecule is ig-
nored.

In order to calculate the single-scattering Debye-Waller
factor accurately by means of experimental EXAFS scans,
more than one scan is required to permit at least a rudimen-
tary statistical analysis. This means that experimentals2 will
lie on an interval; the less the variation among the scans, the
smaller this interval will be. Four experimentalm(E) scans
for each sample are used in this example.

Experimental data analysis is performed as follows. The
background is subtracted from them(E) scans.18 The
EXAFS x(k) data are calculated from the equation

x~k!5
m~k!2m0~k!

Dm
. ~15!

The background spectrum is normalized by the absorption
edge jumpDm rather than the smooth backgroundm0 . This
normalization is done in order to avoid severe distortions in
the amplitude of the experimental data. However, since the-
oretical spectra are always normalized by the energy-
dependentm0(k), experimentalx(k) data must be divided
by the factor

Dm th~k!

Dm th~k50!
. ~16!

This adjustment is called the McMaster correction. The next
step is to Fourier transform thex(k) data. Any Fourier range
can be chosen in this step, but the largest possible is pre-
ferred. Any noise contributions due to a larger range can be
accounted for later. An optimum range for GeCl4 is k
.4 Å21–k.12 Å21 while that for GeH3Cl is k
.4 Å21–k.14 Å21.

The first and only shell~low frequency contributions for
hydrogens are excluded from the Fourier transform! is then
isolated from any other radial components by an inverse
transform. The range of the inverse transform was just suf-
ficient to isolate the desired shell. TheoreticalFEFF6 filtered
x(k) data were matched with experimentalx(k), using the
ratio method19 and single scatterings2 is obtained. It should

be mentioned that theoreticalx(k) were shifted by
29.5 eV for GeCl4 and26.3 eV for GeH3Cl. This simply
reflects monochromator calibration and is of no fundamental
significance. This shift was inducedbefore the background
subtraction and Fourier transform was made; also a Gaussian
damping compatible to the experimentals2 was introduced
in the theoreticalx(k) data to reduce systematic errors due to
Fourier-filtering distortions. Absence of this factor causes a
sudden drop of the amplitude of thex(k) at the high window
end, inducing an absolute error ofDs2.0.231023 Å 2 for
both samples.

A. The GeCl4 case

GeCl4 is examined first. EXAFS experimental Fourier-
transformedx(k) scans are presented in Fig. 1~a!. Since
Dm th(k50).0.62 the McMaster correction is recom-
mended. The effect of the McMaster correction can be as
high as 11% at largek. The inverse-transform range is taken
from R51.31 Å to R52.14 Å. Experimental and compu-
tationally calculateds2 are given by Table VII. A graphical
comparison of these results by means of the radial distribu-
tion and filteredx(k) is given by Figs. 2~b! and 2~c!, respec-
tively. The DFT method, under the DZ basis set andA1
auxiliary set provide an accurate estimation of thes2.

B. The GeH3Cl Case

GeH3Cl is also examined. SinceDm th(k50).1, the Mc-
Master correction is not necessary. Experimental EXAFS
Fourier-transformedx(k) are presented in Fig. 2~a!. Similar
to GeCl4 the inverse-transform range is taken fromR
51.20 Å toR52.15 Å. Experimental and computationally
calculateds2 are given by Table VII whereas the Fourier-
transformedx(k) by Fig. 2~b! and the filteredx(k) by Fig.
2~c!. The agreement here is even better than expected.

VI. CONCLUSION

Single and multiple-scattering EXAFS MSV’ss2 were
calculated using the semiempirical AM1, MNDO, and theab
initio density functional method for a variety of organic and
inorganic samples. Expressions for various EXAFSs2

multiple-scattering paths were derived from first principles.
An ab initio calculation of the single and multiple scattering
s2 is demonstrated and confirmed. This work achieved its
goal: to calculateab initio the complete EXAFS spectra in-
cluding both the electronic and the vibrational aspects via
methods presented here of the EXAFS equation. The meth-
ods developed are practical for molecular systems and may
be generalizable to condensed matter and biological systems.
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