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Critical Casimir Forces between Spherical Particles in Fluids

A. Hanke,1 F. Schlesener,1 E. Eisenriegler,2 and S. Dietrich1
1Fachbereich Physik, Bergische Universität Wuppertal, D-42097 Wuppertal, Federal Republic of Germany

2Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Federal Republic of Germany
(Received 3 February 1998)

Long-ranged correlations in a fluid close to its critical pointTc cause distinct forces between
immersed colloidal particles and the container walls. We calculate such a force and its temperature
dependence for the generic case of a spherical particle located at a distanceD from a planar wall
and find that the force attains a maximum at a temperatureTmaxsDd above Tc, which facilitates
quantitative experimental tests. The corresponding effective pair interaction between the colloidal
particles themselves, potentially leading to aggregation, is also discussed. [S0031-9007(98)06900-2]

PACS numbers: 64.60.Fr, 64.75.+g, 68.35.Rh, 82.70.Dd

In 1948 Casimir [1] predicted that the confinement of
quantum mechanical vacuum fluctuations of the electro-
magnetic field causes long-ranged forces between two
conducting uncharged plates. Only recently, this so-called
Casimir effect was tested experimentally [2] with high ac-
curacy for the force on a conducting sphere near a con-
ducting planar surface.

Thirty years later Fisher and de Gennes [3] pointed out
that an analogous effect should occur in a thin film of
a binary liquid mixture near the critical demixing point
Tc of the bulk mixture. In this case the confinement of
critical fluctuationsof an order parameter field induces
long-ranged forces between the surfaces of the film [4].
In recent years the so-called “critical Casimir effect” has
attracted increasing theoretical interest [5,6]. In spite of
these efforts—and in contrast to the quantum mechani-
cal Casimir effect—the critical Casimir effect lacks so far
an unambiguous experimental verification. This unsatis-
factory state of affairs persists mainly due to a combina-
tion of two reasons. First, so far most theoretical studies
have been restricted to the special caseT ­ Tc. In this
case the bulk correlation lengthj6 ­ j

6
0 jtj2n, wheret ­

sT 2 TcdyTc _ 0 andn is a standard bulk critical expo-
nent, is infinitely large which cannot be realized experi-
mentally. In practice the divergence ofj is limited, e.g.,
by a finite temperature resolution, spatial inhomogeneities
of T , and external fields such as gravity. In addition, the
knowledge of the temperature dependence of the critical
Casimir force is indispensable for experimental tests in or-
der to be able to subtract the regular background contribu-
tions due to the omnipresent dispersion forces. Second,
most theoretical studies deal with the parallel plate ge-
ometry which happens to be unsuitable for actual mea-
surements because, surprisingly, it turns out that it is too
demanding to keep the plates sufficiently parallel. The
preferential geometry consists of a sphere located near a
planar wall [2] rather than of two parallel plates.

We consider the generic case of a spherical particle with
mesoscopic radiusR immersed in a binary liquid mixture
at a distanceD of closest approach surface-to-surface from

a planar boundary wall. The particle may be regarded
as a freely moving colloidal particle, but it can also model
a sphere attached to the tip of an atomic force micro-
scope. Close to the critical demixing point the forceF
exerted on such a sphere separates into a regular back-
ground contribution and a singular contributionFsing of
universal character, which isattractive if the same of the
two coexisting bulk phases is enriched near the wall and
sphere surfaces. We obtain quantitative results forFsing by
a multipronged approach consisting of a variety of theo-
retical techniques: full numerical analysis of the corre-
sponding mean-field theory supported by renormalization
group arguments, Derjaguin approximation, small sphere
expansion, and suitable incorporation of exact results in
two dimensions.

Figures 1 and 2 summarize our results for the case in
which the critical demixing point is approached from the
one phase region by varying the temperatureT towards the
critical temperatureTc ­ Tcspd at fixed pressurep and
with the concentrationx fixed at its critical valuexcspd.
The results forFsing can be cast in the form

FsingsT , D, Rd ­
kBTc

R
K1

µ
Q ­

D
j1

, D ­
D
R

∂
(1)

with a universal function K1 using kBTc as the energy
scale and expressing the dependence onT 2 Tc in terms
of the corresponding bulk correlation lengthj1. We take
j1 as thetruecorrelation length governing the exponential
decay of the order parameter correlation function in the
bulk. The most striking feature ofFsingsT , D, Rd is the
appearance of a maximum as a function ofT with D
and R fixed. The maximum occurs atTmaxsD, Rd . Tc

given by

TmaxsD, Rd 2 Tc

Tc
­

∑
QmaxsDd
Dyj

1
0

∏1yn

, (2)

where Qmax is the position of the maximum in Fig. 1.
The nonuniversal bulk amplitudej1

0 ­ j
1
0 spd is known

experimentally for numerous fluids with values ranging
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FIG. 1. Scaling functionK1sQ, Dd in Eq. (1) normalized
with the corresponding function atT ­ Tc vs Q ­ Dyj1 ­
tnDyj

1
0 for fixed length ratiosD ­ DyR. Shown are the

limiting casesD ­ 0 [Derjaguin approximation (4)] andD ­ `
[small sphere expansion (6) and (7)]. The line forD ­ 1 has
been calculated numerically. The dots indicate the maxima.
Results are given both for the physical dimensiond ­ 3 and
for d ­ 4. The inset showsK1s0, Dd as used for normalization
[for d ­ 4 we actually show the finite limit ford % 4 of
s4 2 ddK1]. There the dashed lines have the same meaning as
in Fig. 2(b) below. The lines ford ­ 2 display exact results
[see J. L. Cardy, Nucl. Phys.B275, 200 (1986)].

between 2 and 4 Å. The universal dependence ofQmax
on D ­ DyR and the corresponding universal maximal
values ofK1 in Eq. (1) are shown in Fig. 2.

The critical fluctuations of the fluid inducing the effec-
tive interaction are described by the standard Hamiltonian

H hFj ­
Z

V
dV

Ω
1
2

s=Fd2 1
t

2
F2 1

u
24

F4 2 hF

æ
(3)

for a scalar order parameterFsrd in cylindrical coordinates
r ­ sr, zd [ Rd supplemented by boundary conditions
F ­ 1` at the wall and sphere surfaces corresponding
to the critical adsorption fixed point [7]. The volumeV
consists of the half-spacez $ 0 except for the volume oc-
cupied by the sphere. The fieldh is conjugate to the de-
viation of the concentration from the critical composition.
When the binary liquid mixture isat the critical composi-
tion, i.e.,h ­ 0, the singular contributionsdfdsing to the
free energy of interaction between the wall and the sphere
in units ofkBTc depends onj, R, andD in terms of the uni-
versal scaling functionssdfdsing ­ f6sDyj6, DyRd for
T _ Tc. This impliesK1 ­ R

d
dD f1 [see Eq. (1)].

We have carried out extensive numerical calculations in
order to minimizeH hFj for fixed D, R, andt . 0 [8].
Ford % 4 this mean-field solution withj1 ­ t21y2 leads
to theexactresult for the order parameter profileFsrd and
for the scaling functionK1sQ, Dd. The numerical analysis
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FIG. 2. (a) ValuesQmaxsDd in Eq. (2) of Q ­ Dyj1 for
which K1sQ, Dd in Eq. (1) attains its maximum forD ­ DyR
fixed and (b) the behavior ofK1sssQmaxsDd, Dddd vs D [for d ­ 4
we show the limitd % 4 of s4 2 ddK1]. The solid lines show
the Derjaguin approximation (4) and the small sphere expansion
(6) and (7) in leading order (LO) and including the next-to-
leading order (NLO). The dashed parts of these lines indicate
where they start to fail. The dotted lines ford ­ 4 have been
calculated numerically.

is complemented by the following analytic considerations
for the asymptotic behavior ofK1sQ, Dd for D ! 0 and
D ! `.

Derjaguin approximation.—When R is much larger
thanD it is reasonable to apply the Derjaguin approxima-
tion [9], which replaces the sphere by a pile of immersed
parallel plates with local distancesLsrd ­ D 1 r2ys2Rd
from the wall. The force on thesphereis expressed in
terms of the attractive forcek1sLyj1d sd 2 1dL2d per
unit area in units ofkBTc between twoparallel platesat
distanceL, wherek1s yd is the corresponding universal
scaling function. Ford ­ 3 and4 this leads to

K1sQ, D ! 0d ­ vsddD2sd11dy2

3
Z `

0
da ad22s1 1 a2y2d2d

3 k1sss y ­ s1 1 a2y2dQddd (4)
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with vs3d ­ 4p andvs4d ­ 12p. Equation (4) has been
shown to hold forT ­ Tc [6] and is expected to hold also
for T . Tc. Indeed our numerical results forK1sQ, Dd
corroborate Eq. (4) (see Figs. 1 and 2). The Derjaguin
approximation is, of course, also applicable ford ­ 3.
Since at presentk1s y . 0d is available ford ­ 2 [10]
and d ­ 4 [5(c)] we interpolate these results suitably in
order to obtain predictions ford ­ 3 [11] (see Fig. 3).

Small sphere expansion.—When on the other hand the
radiusR —albeit large on the microscopic scale—is much
smaller than D and j, the statistical Boltzmann weight
e2dHS characterizing the presence of the sphere centered
atrS can be systematically expanded in terms of increasing
powers ofR [6], i.e.,

e2dHS ~ 1 1 cF
" R xF FsrSd 1 cF2

" R xF2 F2srSd 1 . . . ,
(5)

wherexF ­ byn andxF2 ­ d 2 n21 (with the bulk criti-
cal exponentsb and n) are the scaling dimensions of
C ­ F, F2. The ellipses stand for contributions which
vanish more rapidly forR ! 0. The coefficientscC

"

are fixed by cC
" ­ AC

" yBC , where AC
" and BC are,

2.0 4.0 6.0 8.0 10.0
y

1.0

2.0

k
+
(  y

 ) 
   

  

  0.326

  1.796

π/48

d = 4

d = 3

d = 2
0

FIG. 3. Scaling functionk1s yd [compare Eq. (4) and the
preceding text; for d ­ 4 we show the limit d % 4 of
s4 2 ddk1]. The results ford ­ 2 [10] and d ­ 4 [5(c)]
are used for a pointwise interpolation tod ­ 3. The values
k1s0d ­ 2D"," determine critical Casimir amplitudes.

respectively, amplitudes of the half-space (hs) profile
kCszdl "

hs, T­Tc
­ AC

" s2zd2xC at the critical point of the
fluid for the boundary condition" corresponding to critical
adsorption, and of the bulk two-point correlation function
kCsrdCs0dlb, T­Tc ­ BC r22xC [6]. We apply Eq. (5) to
K1sQ, Dd and obtain in lowest order iń ­ 4 2 d [12]

K1sQ, D ! `d ­
18
´

Q2 coshQ

sinh2 Q
D22 1

9
´

Q2

sinh2 Q

3

∑
22Q sinhQ 2

4Q

sinhQ
1 6 1 f12 lnsD21d 2 12 ln 2 1 34gQ cothQ 1 QsQd

∏
D23 1 O sD24d ,

(6)

where QsQd ­ QWsQd cothQ 2 QW 0sQdy2 and WsQd ­ 223 1 12CE 1 12 ln Q 1 16p2C1sQd sinh2 Q with
Euler’s constantCE . For the lengthy expression of the functionC1 we refer the reader to Eq. (24) in Ref. [7(a)].
With the help of Eq. (6) we are able to extend the numerical results for´K1sQ, Dd for d ­ 4 to the limiting case
D ! ` (see Figs. 1 and 2). Similar to the Derjaguin approximation, the expansion (5) can also be applied tod ­ 3.
In this case we obtain

K1sQ, D ! `d ­ 2
a

c1

QxF11

2xF
P0

1sQdD2xF21 1
a2

c2
1

Q2xF11

22xF
P1sQdP0

1sQdD22xF21 1 O sD2xF2 21d . (7)

Since 2xF ø 1.036 is smaller thanxF2 ø 1.41, Eq. (7)
does indeed include the two leading contributions. The
universal scaling functionP1szyj1d ­ kFszdl "

hs, t.0 y
kFlb, 2t,0 and the universal amplitudec1 governing the
behavior P1sz ! 0d ! c1z 2xF [7(b)] characterize the
order parameter profile atT . Tc for critical adsorption
on a planar substrate [7]. The ratioa ­ sAF

" d2yBF is
also universal [6]. Ford ­ 3 we use the valuesa ø 7.73
[13], c1 ø 0.717 [7(c)], and inferP1 from the values in
Table II in Ref. [7(c)].

The exact numerical calculation ford ­ 4 combined
with the Derjaguin approximation and the small sphere ex-
pansion are sufficient to estimate the global behavior of
K1sQ, Dd in d ­ 3 (see Figs. 1 and 2). The numerically
calculated curves ford ­ 4 interpolate smoothly between
the behavior forD ! 0 and D ! ` as implied by the

Derjaguin approximation and the small sphere expansion,
respectively. This provides a check of these approxima-
tions and, in addition, gives an impression of their range of
validity. The small sphere expansion including the next-
to-leading order as given by Eqs. (6) and (7) is reliable
in a much largerD-range than in leading order. The in-
terpolating curves ford ­ 3, which have been obtained
by a suitable interpolation between the limiting behaviors
as suggested by the corresponding lines ford ­ 4, are
expected to constitute reasonable quantitative estimates.
The results shown in Figs. 1 and 2 facilitate experimen-
tal tests of the critical Casimir force, which is character-
ized by its maximum atsQmax, Dd and thus forms acurved
“ridge” in the “landscape”K1sQ, Dd. The correspond-
ing maximum force can be measured and compared with
Fig. 2(b) with no need of a high temperature resolution of
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the experimental setup and without knowledge of the cor-
relation lengthj in the binary liquid mixture. Upon in-
serting valuesR ø 1026 m andD ø 1028 m typical for
atomic force microscopes andTc ø 300 K one infers from
Fig. 2(b) Fsing ø 10210 N for the critical Casimir force,
which is experimentally accessible. The corresponding
van der Waals forceFydW ­ 2Ayf3RD2sD 1 2d2g with
the typical valueA ø 10220 J for the Hamaker constant
yields FydW ø 10211 N. We conclude that nearTc the
critical Casimir force evendominatesover the background
dispersion forces.

Regarding the flocculation of colloidal particles in a
binary liquid mixture close to its critical point [14] we also
consider the Casimir force between a pair of spheres with
equal radiiR and a distance vectorr between their centers.
This system is again described by Eq. (3) and boundary
conditions at the sphere surfaces corresponding to critical
adsorption [4,15]. We include the case in which the binary
liquid mixture is off the critical composition, i.e.,h fi 0
in Eq. (3). When Eq. (5) is applied to the free energy of
interaction one obtainsK

pair
6 ­ R

d
dr f

pair
6 with the univer-

sal functionf
pair
6 sryj6; Ryj6, Mb j

xF

6 d ­ 2aR2xF Cb 3

f1 2 2
p

a RxF Mb 1 O sRxF2 2xF dg. Here Mbst, hd ­
kFlt,h y

p
BF is a convenient measure for the deviation

of the bulk composition from its critical value and
Cbsr; t, hd ­ kFs0dFsrdlcum

t,h yBF is a bulk cumulant.
The first term in square brackets gives rise to an attractive
effective force which isincreasedby the second term if
Mb is negative, i.e., if the binary mixture is poor in the
component preferred by the colloids, and vice versa [16].
This is consistent with—but may not yet explain—the
asymmetry in the shape of experimentally observed
flocculation phase diagrams [14]. If the flocculation of
the colloids was driven by the critical Casimir forces
close to the critical point of the binary liquid mixture the
corresponding aggregation lines would exhibit auniversal
form in terms ofRyj6 and Mbj

xF

6 . Thus it would be
interesting to investigate experimental systems in which
other aggregation mechanisms, such as screening effects
[17], are absent or can be neglected.

The work of A. H. and S. D. has been supported by the
German Science Foundation through Sonderforschungs-
bereich 237Unordnung und große Fluktuationen. We
thank T. Burkhardt, M. Krech, and B. Götzelmann for
helpful discussions.
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