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Experiments revealed that transient electric field intensities up to 2.5 V/cm were generated during
the initial period of combustion synthesis of the ferromagnetic products before the maximum
temperature was reached. This occurred when the iron particles were partially oxidized and the
reaction product was mainly magnetitesFe3O4d. The electromagnetic field caused spontaneous
magnetization of the product in the postcombustion zone. Magnetic field values up to 4µT formed
after the sample temperature fell below the Curie temperature and the initial reactants were
completely converted to the ferromagnetic phase PbFe12O19. Increasing the volume of the samples
increases the absolute residual magnetic field magnitude after cooling. We present possible
mechanisms of the electromagnetic field generation during the combustion. ©2004 American
Institute of Physics. [DOI: 10.1063/1.1788845]

I. INTRODUCTION

Solid state combustion synthesis is used to manufacture
a wide variety of advanced multifunctional materials.1–3 Sev-
eral experimental studies revealed that the high-temperature
front motion during the combustion synthesis of ferromag-
netic materials generated an electrical voltage and a residual
magnetic field of about 1 V and 10µT, respectively.4–8 A
slowly oscillating field up to 20 nT was generated during the
combustion in oxygen of various pure metals Ti, Zr, Mn, Nb,
Fe, etc.9 Different modes of combustion front motion, i.e.,
spin, pulsating, and planar combustion synthesis of ferrites
generated qualitatively different magnetic field spatial distri-
bution. The average magnetization vector generated by either
planar or pulsating combustion was oriented at a smaller
angle with respect to the pellet axissfø45°d than those
generated by spin combustions60°øfø80°d. The Earth’s
magnetic field had no impact on the spontaneous magnetiza-
tion of the samples.10 At present, simultaneous measure-
ments of the electrical field, spontaneous magnetization,
combustion temperature, and conversion degree are not
available. Also no established mechanism exists which ex-
plains the generation of the temporal electric fields and spon-
taneous magnetization during the combustion of either ferro-
magnetic or nonferromagnetic materials.

To enhance our understanding of these phenomena we
studied the formation and temporal variation of electric and

magnetic fields, temperature and phase transformation during
the combustion synthesis of hard magnetic materials, such as
lead hexaferrite PbFe12O19,

PbsNO3d2 + 5Fe2O3 + 2Fe→ PbFe12O19 + 2NO↑
+ 1/2O2↑. s1d

These data enable us to determine the temperature at which
the local electrical signal forms and decays, as well as the
relation between the temporal voltage/current and the rate of
temperature rise, magnetization, and conversion. We also re-
port the relation between the residual magnetic field(RMF)
of the cooled combustion products and the sample bulk ca-
pacity (diameter and length variation).

II. EXPERIMENT

All the reactants were 99+% pure(Sigma-Aldrich
Chemical Company). The iron oxide and lead nitrate were
dried at 115 °C for 5 h and then mixed with the metal pow-
der for 1 h in aball mill (US Stoneware, Mahwah, NY)
before the combustion. Various cylindrical samples 12, 18,
and 30 mm in diameter and 10, 20, and 30 mm long with
initial porosity of about 50% were made by green charge
pressing. Reaction(1) was conducted in air and was initiated
by an electrically heated coil at the top of the sample. The
electrical current to the coil was terminated immediately af-
ter the ignition to avoid electromagnetic perturbations during
the measurements.

The combustion temperature, voltage, and magnetic
fields were simultaneously measured in the experimental
setup shown in Fig. 1. The temporal electric voltage wasa)Electronic mail: Dluss@uh.edu
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measured between two Pt-electrodessx=0.1 mmd separated
by ,2 mm from each other and located in a cross section of
the sample with one electrode connected to ground. The tem-
peratures in the top, bottom, and middle of the sample were
measured by threeS-type (Pt-Rh) thermocouples(0.1 mm
diameter) inserted close to the sample axis. The thermo-
couple in the middle of the sample was placed near the elec-
trodes, so that the combustion front passed by the thermo-
couple and electrodes at the same time. The electrical signals
were recorded by an Omega Data acquisition board con-
nected to a PC. The impedance during the voltage and cur-
rent measurements was 0.25 MV and 0.1V, respectively.
The temperature distribution of the sample was monitored by
a high-speed IR digital video camera(Indigo Systems).

The spontaneous magnetic field was measured with an
Applied Physics Systems fluxgate magnetometer located
near the middle of the sample. The distance between the
sensor and the sample was about 10 mm. The sensor was
oriented normal to the sample axis, measuring the magnetic
field horizontal componentBhstd (perpendicular to the direc-
tion of front propagation). The data were acquired with a
Labview program after analog-digital conversion and 5 Hz
low pass filtering.

The quenched front method3 was used to determine the
phase transformation and product conversion degree during
the combustion. These experiments were conducted in a
massive copper cylinder 62 mm high with a conical hole 20
mm at the top and 1 mm at its bottom. The cylinder was
made of two separable halves to enable characterization of
the dependence of the chemical composition on position.
Following ignition at the top, the front extinguishes before
reaching the bottom of the cone. The quenching rate was
estimated at 103–104 K/s.

The composition profile within the reaction zone was
determined by X-ray diffraction(XRD) analysis(Siemens
D5000; CuKa radiation source). The patterns were recorded
in the range of 20°ø2uø70° with 0.1° min−1 steps. The

average combustion front velocity was determined from the
time that the temperature wave moved through the sample.

III. RESULTS AND DISCUSSION

Figure 2(a) shows the temporal voltage and temperature
generated by the combustion front. The electrical signal ap-
peared when the temperature was,520 °C. The maximum
voltage and current of about 0.45 V and 15 mA were attained
when the temperature was 1040 °C. The electrical voltage
rise time was about 0.5 s and it decayed in,0.9 s. The
voltage vanished at a temperature of 1100 °C, before the
maximum combustion temperature of 1150 °C was attained.
The maximum electrical field intensity and current density
was 2.5 V/cm and 5 A/cm2, respectively.

The temporal combustion temperatures at the top,
middle, and bottom of the sample(measured by thermo-
couples) and the corresponding magnetic field are shown in
Fig. 2(b). The combustion front motion generated a slowly
increasing magnetic field with a maximum value of about 4
µT. The spontaneous magnetic field started to form after the
temperature at the ignition location decreased to about
450 °C, which is the Curie temperature of lead ferrite. The
spontaneous magnetization rose slowly during the long cool-
ing. The characteristic time of the spontaneous magnetization
was about 250 s.

Figure 3 shows the dependence of the peak RMF of the
cooled combustion products on the initial samples volume.

FIG. 1. Schematic of the experimental setup used for simultaneously mea-
suring temporal temperature, intrinsic electrical signal, and spontaneous
magnetization generated by combustion synthesis of ferrites.

FIG. 2. (a) Temporal temperature and electric voltage generated by a com-
bustion front during the combustion synthesis of lead hexaferrite. Distance
between two electrodes 2 mm;(b) Three temporal combustion temperature
of the sample in the topsT1d, middle sT2d, bottom sT3d and spontaneous
magnetic field near one side of the sample measured during solid combus-
tion of lead ferrite,(TC — Curie temperature). Distance between sample
surface and sensor is 10 mm.
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Note that for all samples the maximum RMF corresponded
to the longitudinal component of magnetic field intensity Bl,
was measured on top of the cylindrical samples with the
south pole always at the ignition location. The horizontal
field component Bh measured on the middle of the sample
side was always less than longitudinal component of mag-
netic field intensity,Bl .Bh. This is consistent with the ori-
entation of magnetic dipole moments along the main com-
bustion axis with smaller radial field components depending
on the combustion mode and the resulting anisotropies. The
absolute value of the RMF increases almost linearly with
increasing sample length while increasing the sample diam-
eter 2.5 times increases the RMF less than twice. The RMF
should be proportional to the square of the sample diameter
(for uniform magnetization), which was not observed. This
may be explained in part by a nonuniform current density
through the porous media during the combustion. Also we
expect transient magnetic fields to be larger, on average,
closer to the cylindrical surface. Note that a uniform current
density along the pellet axis would generate a magnetic field
that is zero at the center, maximal at the surface that falls off
with the square of the distance from the center, outside the
pellet.

X-ray diffraction patterns of quenched products at differ-
ent distancex from the top the copper cone are shown in Fig.
4. The transformation of the reactants to the ferromagnetic
lead hexaferrite PbFe12O19 was completed in the postcom-
bustion zone. The combustion temperature attained its maxi-
mum value about 3 s after ignition as shown in Fig. 2(a), and
the average combustion velocity was about 0.5 mm/s. Thus,
we estimate the width of the total preheating and reaction
zone,1.5 mm. The XRD pattern shows that the magnetite
phase Fe3O4 (cubic Fd3m space groupa=8.396 Å, andZ
=8) was mainly present in the combustion front zone atx
=1.5 mm. A small amount of the reactant Fe2O3 and inter-
mediate phases PbFe4O7 and PbO were also present. This
suggests that partial iron oxidation and total decomposition
of the lead nitrate occur in this zone. The formation of the

hexagonal phase PbFe12O19 (with lattice parametera
=5.872 Å andb=23.125 Å) began in the post combustion
zone at a distance of about 8.0 mm behind the maximum
temperature location but before the Curie temperature(450
°C) was reached. The conversion of the reactants to ferro-
magnetic phase PbFe12O19 was maximal when the tempera-
ture reached the Curie point at the postcombustion zone.
These data agree with previous reports of phase transforma-
tion during the combustion synthesis of lead ferrites where,
instead of lead nitrite, the initial reactant was either PbO or
PbO2.

11,12

A transient electric field up to 2.5 V/cm was generated
during the initial stage of the combustion of lead ferrite,
before the maximum combustion temperature was attained
and when the reaction product was mainly magnetite Fe3O4.
This suggests that the electrical field formed while the iron
was partially oxidized. The magnetite hasn-type electrical
conductivity and is a ferrimagnet below 578 °C.13,14 Using
the combustion model for products which haven-type
conductivity,15 the high-temperature reversible iron oxidation

Fe↔ Fev+ + ve− s2d

occurs on the iron-oxide interface(a thin exterior oxide layer
usually exists on metal particles stored in air).

Two reversible reactions occur on the particle surface:
the adsorption of oxygen and its reduction to active anions

2e− + n + 1/2O2 ↔ nO2− s3d

and a reaction between the oxygen anions and the metal cat-
ions

2Fev+ + vnO2− → Fe2Ov + vn. s4d

The total number of surface sitesnt is

FIG. 3. Dependence of the peaks RMF of the cooled combustion products
sPbFe12O19d on the initial sample length and diameter(h, • for x
=12 mm;h, x for x=30 mm). Bl — longitudinal component of the mag-
netic field measured on top of a cylindrical samples; Bh — horizontal com-
ponent measured on the side of a cylindrical surface surrounding the
samples.

FIG. 4. X-ray powder diffraction plots obtained during combustion synthe-
sis of lead hexaferrite in an air. Patterns detected using the quench front
method from locations at a distancex from top of the cone.sx=0 mmd green
charge;sx=1.5 mmd preheated and combustion zone;(x=8 and 30 mm) post
combustion zone. Key:s+dPbsNO3d2; s−dFe;s* dFe2O3; s=dPbO;sˆdPbFe4O7;
s#dFe3O4; ssdPbFe12O19.
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nt = n + nO2−, s5d

wheren is the number of adsorption free sites andnO2− is
the number of sites on which oxygen absorbed;v is stoichio-
metric coefficient. Simultaneously, electron-hole pairs are
generated via thermal ionizatione−+h+↔nil.

At temperatures below 520 °C[the temperature at which
the electric signal appeared, Fig. 2(a)] the particles are
heated by the approaching temperature front. During this ini-
tial period both positive and negative charge carriers are pro-
duced on the particles surface. The total concentration of the
surface positive and negative charges is very small due to the
low combustion temperature. A very small potential differ-
ence exists between the surface and the interior of the par-
ticle. As the particle heats up, the intrinsic reaction rate and
the concentrations of the moving charge carriers increase
rapidly and the slow rate of the metal ion diffusion becomes
the rate controlling step and the reaction proceeds by the
shell progressive mechanism. The different diffusion rate of
charge carriers across the growing oxide shell creates an
electric double layer. The electrical voltage, its polarity, and
amplitude depend on the different charge carrier diffusion
velocities. Further interactions in the postcombustion region
between Pb2+ and iron oxides form lead ferrite but no electric
field.

Spontaneous magnetization occurred in the postcombus-
tion zone after the temperature decreased below the Curie
temperature and the products were mainly ferromagnetic
phases magnetite and lead hexaferrite. We used IR images to
follow the temperature during long magnetization process.
Several characteristic video pictures at different stages of the
reaction are presented in Fig. 5. They show that the tempera-
ture of the whole sample was below the Curie temperature
about 160 s after ignition. The magnetization curve[Fig.
2(b)] had an inflection point at about that time. We conjec-
ture that the spontaneous magnetization was caused by the
orientation of magnetic dipole moments by intrinsic electric
fields, which were generated by the differential diffusion of
charge curriers through the product layer and by transient
magnetic fields during combustion. The magnetic domains
orient themselves along the residual field of the bulk material
during the long cooling process. Magnetic domains oriented
along the applied residual field grow at the expense of do-
mains with random orientation, which shrink. Further mag-
netic saturation may result from chemisorption, as the ad-
sorption of oxygen molecules on the boundary of a
ferromagnetic phase can change the magnetization of the
solid.16 Enhanced dipole moments in intermediate products
may be due to the large ionic moments of Fe2+ and Fe3+. If
the adsorption process involves appreciable electronic inter-
action and the ratio of surface to volume in the adsorbent is
large, then the fractional change of magnetization becomes
substantial. We conclude that the spontaneous magnetization
rate and the absolute magnetic field value depend on the
cooling temperature and ferromagnetic phase formation.

IV. CONCLUSIONS

Transient electric field intensities of up to 2.5 V/cm and
current densities of about 5 A/cm2 formed during the initial

stage of combustion synthesis of lead ferrite, before the
maximum combustion temperature was reached. This oc-
curred before the iron oxidation was complete and reaction
product mainly consisted of magnetite Fe3O4. The RMF up
to 4 µT was associated with spontaneous magnetization in
the postcombustion zone in which the conversion of the re-
actants to ferromagnetic phase PbFe12O19 was completed.
The characteristic RMF saturation time of about 250 s was
much longer than the duration of the electrical signal, 1–2 s.
The RMF saturation may be created by three different
mechanisms:(i) orientation of magnetic dipole moments by
internal electrical field force,(ii ) dipole self-orientation
along existing residual field of the bulk material during the
cooling, and(iii ) via chemisorption of O2 molecules on the
ferromagnetic surface. The maximum longitudinal magnetic
field component Bl was at the top of the cylindrical sample
with the south pole being the ignition location. An almost
linear increase of the RMF as a function of sample diameter
was probably due to a nonuniform electrical current density
in the cross section of the porous medium during the com-
bustion.
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