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Non-Hermiticity-induced flat band

Hamidreza Ramezani*

Department of Physics and Astronomy, University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
(Received 19 January 2017; published 5 July 2017)

We demonstrate the emergence of an entire flat band with no complex component embedded in dispersive
bands at the exceptional point of a PT -symmetric photonic lattice. For this to occur, the gain and loss parameter
effectively alters the size of the partial flat band windows and band gap of the photonic lattice simultaneously.
The mode associated with the entire flat band is robust against changes in the system size and survives even at
the edge of the lattice. Our proposal offers a route for controllable localization of light in non-Hermitian systems
and a technique for measuring non-Hermiticity via localization.

DOI: 10.1103/PhysRevA.96.011802

Controllable and yet robust confinement of light, or
simply localization, is vital for many applications such as
quantum simulation of nondispersive states, diffractionless
long-distance light propagation, enhancement of nonlinear
effects, stop light, and imaging. Various approaches have been
proposed to achieve localization; among them are impurity in
periodic systems [1–3], quasiperiodic systems [4–6], Ander-
son localization [7], nonlinear self-trapping [8,9], bound state
in continuum (BIC) [10,11], and flat bands [12,13]. In flat
bands, localization occurs due to a destructive interference of
the geometric phases and observed recently in Lieb photonic
lattices [12,13]. Interest in flat bands is not limited to optics
[14,15] or photonics [12,13,16,17] and has been studied in
graphene [18], superconductors [19,20], quantum Hall effect
[21–24], and exciton polariton condensates [25–27].

Nevertheless, all these achievements are limited in view of
studying the properties of flat bands using Hermitian potential
[28]. Thus, many of these studies cannot be used in active
systems, such as coupled laser cavities and metal-dielectric
structures, where gain or loss exists naturally. Moreover, none
of the aforementioned studies can control the generated flat
band and the localized modes. In other words, entering to the
delocalization regime on demand and at different propagation
coupling length or time needs fabrication of different samples.
Overcoming these limitations will not only enrich the conven-
tional research in flat bands but also offer new methods for con-
trollable localization and imaging technologies. It is therefore
extremely desirable to investigate and propose architectures
with flat bands that incorporate gain and loss mechanisms.

Here we show that by altering the degree of non-Hermiticity
in a PT -symmetric lattice one can control the flat band
formation and effectively control the localization of light.
More specifically, we show that an entire flat band can
be obtained at the exceptional point of a PT -symmetric
lattice which results in nondiffracting beam propagation with
constant intensity. Below (above) the exceptional point, as
we reduce (increase) the gain and loss parameter, the flat
band shrinks and form partial flat bands. The exceptional
point-induced flat band is located, with no gap, in between the
dispersive bands and therefore composed of infinite BIC-like
states in complex lattices. While in the exact phase partial flat
bands are separated from each other with a gap and therefore

*hamidreza.ramezani@utrgv.edu

are not BIC-like states, in the broken phase the partial flat bands
are in between the dispersive bands with no gap and thus can
be considered as BIC-like states. Furthermore, we show that
localized state associated with the bulk is robust against system
size and remains localized at the edge of the lattice. Our results
provide a scheme for generation of controllable flat bands and
BIC states in synthetic non-Hermitian lattices.

To show how an exceptional point can induce an entire flat
band, we consider a quasi-one-dimensional (quasi-1D) PT -
symmetric waveguide array depicted schematically in Fig. 1.
The unit cell of the waveguide array is a trimer (indicated with
a box in Fig. 1) that consists of a gain waveguide (A) with gain
parameter γ , a passive waveguide (B) with no gain or loss,
and a loss waveguide (C) with loss parameter −γ . Each of
the waveguides supports only one mode. In the A-B-C units,
the gain and loss waveguides are evanescently coupled to the
passive waveguide with coupling strength t . In our model,
gain (loss) waveguides are coupled to nearest neighbor loss
(gain) waveguides with coupling strength k > t . Interestingly,
it has been shown that the unit cell of our array can act as a
unidirectional laser or absorber [29,30].

With a very good approximation diffraction of the electric
field amplitude at the nth unit cell, �n = (An,Bn,Cn)T is given
by

ci
dAn

dz
= iγAn − tBn − k(Cn + Cn−1),

i
dBn

dz
= −t(An + Cn),

i
dCn

dz
= −iγCn − tBn − k(An + An+1). (1)

Above z is the propagation direction in the unit of couplings
and we assumed that the real part of the refractive index of all
the waveguides are zero. A nonzero real part shifts the whole
dispersion relation. Adopting momentum representation in
Eq. (1) �n = 1

2π

∫ π

−π
dqψqe

inq , with ψq = (a,b,c)T , results
in the following Schrödinger equation for each value of q

iψ̇q = Hqψ ; Hq =
⎛
⎝ iγ −t −k − ke−iq

−t 0 −t

−k − keiq −t −iγ

⎞
⎠, (2)

where · is derivative with respect to z.
In Fig. 2, we plotted the dispersion relation of the Hq

for different values of the gain and loss parameter. Specifi-
cally, Figs. 2(a)–2(d) depict the dispersion for the Hermitian
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FIG. 1. Schematic of a quasi-one-dimensional (quasi-1D) PT -
symmetric array of coupled waveguides with a flat band at the
exceptional point. The unit cell of the array (identified in a cuboid)
composed of a gain waveguide (A), a passive waveguide (B), and a
loss waveguide (C). The passive waveguide in the unit cell is coupled
to the gain and loss waveguides with coupling strength t . The gain
and loss waveguides are coupled with coupling k.

case with γ = 0, exact phase with γ < γPT = 0.95γPT ,
exceptional point with γ = γPT , and broken phase with
γ = 1.05γPT . In the Hermitian case, we observe that the
dispersion relation of the lattice has three bands separated
by two gaps. All the bands are partially flat at the center and
edges of the Brillouin zone, which is expected for Hermitian
lattices. Figure 2(b) shows that by increasing γ , the bands
come close to each other and the gaps become tighter. At
the same time, the flat band windows of the middle band,

FIG. 2. Real (blue curves) and imaginary (red dots) part of the
propagation constant β of the PT -symmetric structure in Fig. 1 vs
the Bloch wave vector q with k = 1 and t = 0.5. (a) Hermitian case
with γ = 0. The imaginary parts of the propagation constants are
zero. Three bands are separated by gaps. The bands are partially
flat at the edge and center of Brillouin zone. (b) Exact phase with
γ = 0.95γPT . The imaginary parts of the propagation constants are
zero. By increasing the γ , the bands approach each other, namely
the gaps become smaller. For the two upper bands, the window for
which the bands are partially flat expands. (c) Exceptional point with
γ = γPT ≈ 0.66. The two upper bands touch each other at q ≈ 2.77,
and the partial flat bands of each one combine and form an entire
flat band. Still imaginary parts are zero. The flat band is embedded
in between the two dispersive bands, forming an infinite number of
BIC-like states. (d) Broken phase with γ = 1.05γPT . The two upper
bands start merging for γ > γPT . The flat band loses its flatness at
the windows of the wave vector for which the bands are merged. The
propagation constant of the merged parts becomes complex (red dots
with nonzero values).

at the center of Brillouin zone, and the upper band, at the
edges of the Brillouin zone, become wider. As depicted in
Fig. 2(c), at the exceptional point the upper and lower bands
touch each other at q ≈ ±2.77. Thus, the two partial flat bands
created by non-Hermiticity combine and form an entire flat
band embedded between the rest of their dispersive bands. This
entire flat band has a zero group velocity and infinite effective
mass, which is a new BIC-like state. By definition, modes
in dispersive bands should disperse. However, sometimes
by means of symmetries a mode (BIC mode) might not
diffract, although it belongs to the dispersive band. Thus, a
flat band in between two dispersive bands with no gap is a BIC
state [12,13].

Eigenmodes of PT -symmetric systems are biorthogonal,
which makes the total norm nonconservative. Furthermore, at
any exceptional point of a non-Hermitian system, at least two
eigenvalues and eigenvectors coalesce and become degenerate
[31–33], which makes the corresponding Hamiltonian to be de-
fective [34]. Thus, while it is excepted that an entire flat band of
a Hermitian system allows the formation of compaction states
with no diffraction [35], it is not obvious that our proposed flat
band at the exceptional point supports nondispersive modes
with constant intensity. In the following, we show that although
at the exceptional point the Hilbert space of our system
collapses, the system supports localized nondispersive modes
with constant intensity. In the broken phase with γ > γPT
[Fig. 2(d)], the parts of the bands that are merged lose their
flatness while the unmerged part of the middle band remains
flat. This partial flat band, which shrinks as we increase the
gain and loss parameter, is in between the dispersive bands
and the modes associated with it are BIC-like states. This is
in contrast to previous studies [31,36,37]. Specifically, while
the lattice supports a partially flat band, the merged parts of
the bands are not flat. It should be noted that for very large
values of gain and loss parameter and deep in the broken phase,
ultimately all the bands merge and form a flat band [31,36,37].
Such flat bands have eigenmodes with entirely degenerate
real and asymmetric nondegenerate imaginary components.
Consequently, the modes associated with these bands will
amplify or decay exponentially in a nonuniform fashion [38],
which makes them less appealing for applications.

In our lattice, obtaining the entire flat band can be a
measure for which the system reaches to exceptional point.
Assuming that the propagation constant of the lattice at the
flat band is denoted by β = β0, we can find the corresponding
nondispersive mode. In the momentum space and using Eq. (2),
we can calculate the dispersionless mode associated with
wave vector q. Indeed, one can find that this mode is given by
ψq = [1 − t

β0
(1 + ξ )ξ ]T or ψq = [1 − t

β0
(1 + 1/ξ ∗)1/ξ ∗]T ,

where ξ = (β0 − t2

β0
− iγ )[ t2

β0
− k(1 + e−iq )]−1 and ∗ means

complex conjugation. As both expressions at the exceptional
point denote the same mode, they should be equal. Therefore,
one can find the gain and loss value for which we attain the

exceptional point, γPT =
√

2β0(k2+t2)+2k cos(q)(kβ0−t2)−2kt2−β3
0√

β0
.

In general, the dispersion relation of the PT symmetric
Hamiltonian in Eq. (2) does not have a closed form. However,
at the exceptional point, using the expression of the γPT ,
one can find a closed form for the dispersion relation of the

011802-2
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FIG. 3. Localization of the light at the exceptional point. (a) Beam dynamics in an array of 150 waveguides. We excited the mode associated
with the flat band, namely passive waveguide no. 73, loss waveguide no. 74, gain waveguide no. 75, and passive waveguide no. 76. Although
the system is not Hermitian, the original excitation does not show any dynamics and the intensity remains constant. [(b), (c)] The same as part
(a) with 18 waveguides and two unit cells, namely 6 waveguides, respectively. The system size does not affect the mode associated with the
flat band of infinite lattice.

waveguide array

β = β0,−β0

2
±

√
β2

0

4
+ 4kt2 cos2 q

2

β0
. (3)

Moreover, at the exceptional point the two bands coalesce,

which occurs at q = ± cos−1( β3
0 −kt2

kt2 ). This wave vector can
be used to obtain the value of the gain and loss pa-
rameter for which we have the exceptional point γPT =√

2kβ3
0

t2 + 2t2 − 3β2
0 . Further analysis shows that the propa-

gation constant of the flat band is given by β = β0 = t2/k,
which can be used to obtain the γPT :

γPT = t

√
2 − t2

k2
. (4)

Using Eq. (4) and Hq=0 we can show that only for |k| � | t
4√2

the entire flat band is generated at the exceptional point.
We can calculate the flat band mode in the spatial

representation by taking the inverse Fourier of the eigenmode
associated with the flat band in the momentum representation.
We find that five sites need to be excited. More precisely,
in unit cells nth and nth − 1, we need to excite one gain
waveguide and one passive waveguide with amplitude one,
− k

t
, and one loss waveguide and one passive waveguide with

amplitude k2

k2−t2−ikγPT
, − k

t
× k2

k2−t2−ikγPT
, respectively.

To verify our analytical results, we perform numerical
simulation for propagation distance L = 40 coupling units.
In our simulation in Fig. 3(a), we consider 150 waveguides
arranged according to Fig. 1. We excite the gain waveguide
no. 75 with amplitude 1, waveguide no. 76 with amplitude −2,
waveguide no. 74 with amplitude ≈e0.72i , and waveguide no.
73 with amplitude ≈ −2e0.72i . We see that initial excitation
propagates without any diffraction and the light remains
localized in the original excited waveguides. Furthermore, the
initial intensity of excited waveguide remains constant and
consequently the total norm associated with this excitation in
the system is conserved.

In order to find the properties of the flat band generated
by the exceptional point, we assumed that the PT symmetric
waveguide array has infinite size. Therefore, we were able to
find the dispersion relation of the lattice in Eq. (3). However, in
the above numerical simulation we used only 150 waveguides,
which tells us that the compacton-like mode associated with
the exceptional point might be robust against the changes in the

system size. Hence to verify our conjecture, in Fig. 3(b) we
perform numerical simulations for array of 18 waveguides,
which are composed of 6 unit cells. We observe that the
diffractionless dynamics stays unchanged. In Fig. 3(c), we
decrease the array size to the smallest number of unit cells
that allows us to excite the dispersionless mode, namely
6 waveguides composed of only two unit cells. Numerical
simulation in Fig. 3(c) clearly shows that the compacton-like
solution remains unaffected by changing the system size.

The robustness of the flat band localized mode at excep-
tional point vs system size helps us to explain how the entire
flat band is generated at the exceptional point. In Fig. 4(a) in
our numerical simulation, we coupled four waveguides, two
passive waveguides at the edge and two active waveguides
at the middle, where one has gain and the other has loss
(B-C-A-B). This arrangement is the smallest waveguide num-
ber that accommodates the dynamicless mode. We observe that
the initial excitation propagates in the waveguides without any
changes, which indicates that such excitation is an eigenvector
of the system. This clearly explains why the infinite lattice
has a flat band at the exceptional point. By connecting these
four waveguides through the dark states (loss waveguides with
amplitude zero), a nondiffracting state with real propagation
constant is generated. On the other hand, such nondiffracting

FIG. 4. Localization of the light at the edge of the lattice. (a) Four
coupled waveguides composed of two passive waveguides, one loss
waveguide, and one gain waveguide forming B-C-A-B type coupled
waveguides. The excited mode propagates without any oscillation.
Such a dynamic shows that the mode associated with the flat band
of an infinite lattice at the exceptional point is an eigenmode of the
coupled four waveguides. (b) Beam dynamics in six PT -symmetric
unit cells coupled from the left to a passive-loss (B-C) dimer. Although
the total system is not PT symmetric and has at least one complex
propagation constant, the excited edge mode is not affected and
remains at the edge with constant intensity.

011802-3
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beam requires a flat band with no complex part. As the system
originally does not have such a band, the only option for the
lattice is to find a flat band at the exceptional point.

Furthermore, the robustness brings about the question of
having the localized mode at the edge of the lattice. However,
if we want to have the mode at the edge, then at least one unit
cell should miss one waveguide (A or C), which makes the
total system not be PT symmetric anymore. Moreover, from
Fig. 4(a), we infer that the localization can exists at the edge
of a truncated lattice as depicted in Fig. 4(b). In Fig. 4(b), the
simulation is performed in a waveguide array composed of six
PT -symmetric unit cells coupled from the left to a passive-
loss (B-C) dimer. So in this case the total system is not PT
symmetric anymore and has at least one complex propagation
constant. We clearly observe that the mode propagates at the
edge of the lattice without any diffraction.

Participation ratio R = (
∑

n |φn|2)2/
∑

n |φn|4, where
φn is the field in the nth waveguide, is a measure of the
degree of localization. Participation ratio takes value 1 for
a state localized at one waveguide and N for a completely
delocalized state. In our case, where 4 sites are populated, the
participation ratio is R < 3, which indicates that we have an
extremely localized state.

Our proposed structure can be demonstrated experimentally
in numerous different systems [38–42]. For instance, in
photonics, one can use the femtosecond direct writing method
[43] to realize an array of passive-lossPT symmetric photonic
coupled waveguide without using actual gain. In another
approach, one can use the time reversed of the passive-loss
PT waveguides, namely coupled laser cavities, to demonstrate
non-Hermitian flat bands with the advantage of an exponential
growth in nondiffracting super mode of coupled cavities. In
the case of passive-loss (-gain) PT structure, there are three
sites in the unit cell of the periodic array: one with no net loss
(gain), the second one with loss (gain) value γ (−γ ), and the
third one with loss (gain) value 2γ (−2γ ). The Hamiltonian

of the system in the momentum representation in these cases
is written as

Hq =
⎛
⎝ 0 −t −k − ke−iq

−t −i(−)γ −t

−k − keiq −t −2i(−)γ

⎞
⎠. (5)

If we make a transformation of the form ψq = e−(−)γ zφq then
the dynamics of the system in the new variable will be given
by

iφ̇q = Hqφq ; Hq
′ =

⎛
⎝ i(−)γ −t −k − ke−iq

−t 0 −t

−k − keiq −t −i(−)γ

⎞
⎠.

(6)

The above Hamiltonian Hq
′ has the same form as the one in

Eq. (2). Thus, our previous results are valid with the only
difference that the mode amplitudes are multiplied by an
exponential decay (growth) factor.

In conclusion, we demonstrated that altering non-
Hermiticity in our PT -symmetric system can change the
flatness of bands. The ultimate robust flatness occurs at the
exceptional point of the system where two bands combine to
form an entire flat band embedded between the dispersive
bands. The importance of our results is twofold; first, it
provides a controllable localization and BIC states, and second,
it shows that localization can be used as a measure for the
degree of non-Hermiticity. Our proposal gives rise to new
possibilities in imaging via gain and loss elements, quantum
computing in the presence of complex entities, systems with
intrinsic amplification or absorption mechanism such as cou-
pled laser cavities and lossy metamaterials where Hermiticity
is no longer valid, and long-distance communication.

H.R. gratefully acknowledge support from the UT system
under the Valley STAR award.
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