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ABSTRACT

Supermassive black hole binaries are one of the primary targets of gravitational wave (GW) searches using pulsar
timing arrays (PTAs). GW signals from such systems are well represented by parameterized models, allowing the
standard Generalized Likelihood Ratio Test (GLRT) to be used for their detection and estimation. However, there
is a dichotomy in how the GLRT can be implemented for PTAs: there are two possible ways in which one can split
the set of signal parameters for semi-analytical and numerical extremization. The straightforward extension of the
method used for continuous signals in ground-based GW searches, where the so-called pulsar phase parameters are
maximized numerically, was addressed in an earlier paper. In this paper, we report the first study of the
performance of the second approach where the pulsar phases are maximized semi-analytically. This approach is
scalable since the number of parameters left over for numerical optimization does not depend on the size of the
PTA. Our results show that for the same array size (9 pulsars), the new method performs somewhat worse in
parameter estimation, but not in detection, than the previous method where the pulsar phases were maximized
numerically. The origin of the performance discrepancy is likely to be in the ill-posedness that is intrinsic to any
network analysis method. However, the scalability of the new method allows the ill-posedness to be mitigated by
simply adding more pulsars to the array. This is shown explicitly by taking a larger array of pulsars.

Key words: gravitational waves – methods: data analysis – pulsars: general

1. INTRODUCTION

Pulsar timing array (PTA) based gravitational wave (GW)
searches are a promising approach for the very low frequency
(∼10−9

–10−6 Hz) regime (Sazhin 1978; Foster & Backer 1990;
Jenet et al. 2005), which is complementary to second-
generation ground-based interferometers, such as Advanced
LIGO (Waldman 2011), Advanced Virgo (Degallaix
et al. 2013), and KAGRA (Somiya 2012) operating at high
frequencies (∼10–103 Hz), as well as complementary to space-
based detectors, such as eLISA (Seoane et al. 2013), proposed
for low frequencies (∼10−4

–10−1 Hz). Unlike man-made
instruments, PTA uses a network of high-precision astronom-
ical clocks, i.e., millisecond pulsars (MSPs), as a galactic-scale
GW detector. Currently, three regional PTAs (NANOGrav5,
PPTA6 and EPTA7) are operating at astrophysically interesting
sensitivities that may lead to the detection of GWs in the near
future. Shared data as well as collaborative and competitive
efforts among individual PTAs bond them as the International
Pulsar Timing Array (IPTA,8 Manchester 2013; McLaughlin
2014). The IPTA uses some of the most advanced radio
telescopes in the world today to regularly monitor about 50
pulsars. Next generation radio telescopes with larger collecting
areas and better backend systems, such as FAST (Hobbs
et al. 2014) and SKA (Smits et al. 2009), will join the global
observation campaign in the future and push pulsar timing to
higher precision and better detection sensitivities.

A promising GW signal for PTA is the stochastic back-
ground formed by the incoherent superposition of weak signals
from a large unresolved population of supermassive black hole
binaries (SMBHBs; Detweiler 1979; Romani & Taylor 1983;
Foster & Backer 1990; Jaffe & Backer 2003; Wyithe &
Loeb 2003; Jenet et al. 2005). The stochastic GW perturbation
will cause noise-like signals in the pulsar time of arrivals
(TOAs) that will be correlated across the pulsars in an array.
The correlation will depend on the strength of the stochastic
background and the pair-wise angular separation between the
pulsars (Hellings & Downs 1983). Upper limits on the strength
of the stochastic background, along with our understanding of
source population, have been improving over the years in
correspondence with improvements in data quality (Jenet
et al. 2006; van Haasteren et al. 2011; Yardley et al. 2011;
Demorest et al. 2013; Shannon et al. 2013).
In addition to the stochastic background, there exists the

interesting possibility of detecting GWs from individual
SMBHB sources (Detweiler 1979; Lommen & Backer 2001;
Jenet et al. 2004; Seto 2009). Simulations covering a range of
massive black hole population models (Sesana et al. 2009;
Sesana & Vecchio 2010) have shown that on average at least
one source may be resolvable against the stochastic back-
ground. In the past few years, interest in analyzing continuous
GW signals from individual SMBHBs has increased consider-
ably (Deng & Finn 2011; Lee et al. 2011; Mingarelli
et al. 2012; Ravi et al. 2015). Correspondingly, searches for
continuous signals in the recent PTA data have been conducted
in parallel with the stochastic background (Yardley et al. 2010;
Arzoumanian et al. 2014; Zhu et al. 2014).
The detection and parameter estimation of continuous waves

from individual sources in a PTA is a challenging data analysis
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task that has led to a number of studies (Corbin & Cornish
2010; Yardley et al. 2010; Babak & Sesana 2012; Ellis
et al. 2012; Ellis 2013; Taylor et al. 2014; Wang et al. 2014;
Zhu et al. 2015). Unlike ground-based and space-based
detectors, the analysis of PTA data must contend with
irregularly sampled time series with possible gaps, and noise
components that must be estimated along with the signal as
well as components that may be non-Gaussian or non-
stationary (Wang et al. 2015). As with any complex data
analysis problem, a wide range of independent and comple-
mentary approaches is needed to build confidence in the final
results.

This paper follows an earlier investigation reported in Wang
et al. (2014; hereafter WMJ1), where a Generalized Likelihood
Ratio Test (GLRT; Kay 1998) was constructed along the line of
existing continuous wave signal searches used for ground-
based detectors (Jaranowski et al. 1998; Cutler & Schutz 2005).
The WMJ1 method explicitly includes the pulsar terms in the
signal model and considers them as functions of pulsar phases.
Numerical implementation of the GLRT usually involves a
division of the signal parameters into the so-called extrinsic
ones, over which the likelihood ratio can be maximized
analytically or semi-analytically (including the use of a fast
Fourier transform), and the intrinsic ones for which a pure
numerical optimization is required. However, unlike the
ground-based search, this division of the parameters into
extrinsic and intrinsic is not unique in the case of PTAs.
Following the convention used for the  -statistic (Jaranowski
& Królak 2012), WMJ1 explored the choice that takes the
overall amplitude of the signal, the inclination angle between
the binary orbit and the plane of the sky, and the polarization
angle of the GW as extrinsic and treated the pulsar phases and
remaining parameters as intrinsic. Our results showed that the
pulsar phases are uninformative parameters, indicating that
they are best marginalized or maximized as extrinsic
parameters. A more important motivation to treat pulsar phases
as extrinsic parameters is the fact that their number increases
with the size of the PTA. Treating them as intrinsic parameters
will, therefore, make the numerical optimization task infeasible
at some point. In other words, the approach of treating pulsar
phase parameters as intrinsic is not a scalable one.

This paper presents the first implementation of a method
based on treating the pulsar phases as extrinsic parameters in a
GLRT. Although the idea of semi-analytical maximization over
pulsar phases was presented in Ellis et al. (2012), a concrete
implementation and performance characterization of the
resulting method has not been reported until now. The method
proposed here retains the use of Particle Swarm Optimization
(PSO) to handle the numerical optimization over intrinsic
parameters, but the particular variant of the PSO meta-heuristic
used in this paper is different.

An alternative to maximization over the pulsar phases is to
marginalize over them following a Bayesian framework. This is
the approach that has been studied the most in the PTA
literature so far (Ellis 2013; Taylor et al. 2014). To enable
meaningful comparisons, the performance of the method
presented here is studied on simulated data corresponding to
a PTA configuration adopted in Taylor et al. (2014). We use
signal strengths, measured in terms of the network signal-to-
noise ratio (S/N) ρn, that span a wide range from strong
(ρn= 100) to moderate (ρn= 30) and barely detectable
(ρn= 8). Although useful for testing the performance of the

algorithm, ρn>20 is unrealistic for PTA-based GW detection
in the foreseeable future. Thus the performance of the method
for ρn=8 to ρn=30 serves to bracket the scenario that
is more likely. As in WMJ1, we simulate a large number
of independent data realizations and derive conventional
Frequentist error estimates for the signal parameters.
The results show that this method performs marginally better

than the method in WMJ1 for detection, but the estimation of
the angular parameters is somewhat worse. Specifically, while
the localization of sources in WMJ1 and the Bayesian method
are comparable, shifting to a different split of extrinsic and
intrinsic parameters creates secondary maxima that increase the
scatter of estimated source locations. This is most likely the
result of the well known ill-posedness of the GW network
analysis problem (Klimenko et al. 2005; Mohanty et al. 2006;
Rakhmanov 2006). Ill-posedness in inverse problems, such as
GW network analysis, is marked by an instability or
discontinuity of the inferred solution under small perturbations
in the data. The source of perturbation can be either the noise in
the data or numerical errors from computations. The jumping
of solutions to radically different values can manifest itself as a
large bias or large variance in estimation. For strictly linear
models, such as GW burst searches where the time samples of
the two polarization waveforms directly form the parameters to
be estimated (Rakhmanov 2006), ill-posedness is easily seen to
be rooted in the rank deficiency of the matrix ATA, where A is
the m×2 network response matrix (m is the number of
detectors). The origin of ill-posedness in parameter estimation
presented in this work is not as straightforward because the
signal model is nonlinear in the parameters.
Mitigation of ill-posedness requires regularization in some

form, such as the imposition of constraints on the GLRT
solutions (Greville 1959; Tikhonov & Arsenin 1977). While
some constraints appear naturally in the implementation of
GLRT in WMJ1, they are absent in the formulation of the
method presented here. The effects of ill-posedness are
reduced, in general, by increasing the number of differently
oriented detectors in a network. We demonstrate this by
considering the case of a PTA with 17 pulsars. For this reason,
we do not go deeper into the issue of regularization for PTA in
this paper but leave it for future work to address.
The rest of the paper is organized as follows. In Section 2 we

introduce the data model used in this paper. Section 3 describes
the GLRT for this data model and its implementation, which
involves maximization over pulsar phases analytically by
solving quartic equations. Section 4 characterizes the method
using simulated data and compares its performance with WMJ1
and Taylor et al. (2014). The paper is concluded in Section 5.
Some details about solving the quartic equation have been
relegated to Appendix A.

2. DATA MODEL

The data used for GW signal detection and parameter
estimation in the case of a PTA consist of a set of timing
residuals r r r r, , , ,I I I

N
I

1 2 I
( )= ¼ I=1, 2, K, Np, where Np is

the number of pulsars, NI is the number of observation for the
Ith pulsar. Each timing residual is associated with a time of
observation t T0, ,i

I [ ]Î t t .i
I

i
I

1 >+ The time interval between
two observations can vary typically from several days up to a
few weeks. When there is a signal in the data, r s n ;k

I
k
I

k
I= +

otherwise, r n .k
I

k
I= Here n n n n, , ,I I I

n
I

1 2 I
( )= ¼ and

s s s s, , ,I I I
n
I

1 2 I
( )= ¼ denote the noise realization and the GW

2
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signal, respectively. The models for the signal and the noise
(zero mean stationary Gaussian) remain the same as in WMJ1,
but it is convenient to express the signal in a functional form
that allows the pulsar phases to be easily extracted as extrinsic
parameters in the detection statistic.

GWs perturb the proper distance between a pulsar and an
observer on the Earth, causing fluctuations of the TOAs of
radio pulses with time. In the TT-gauge associated with a plane
GW, the perturbation in the metric tensor can be written as

h e eh h e , 1k xi tgw( ) ( ) ( )·= + w
+ + ´ ´

-

where ωgw is the GW angular frequency, k is the GW wave
vector, and

e a, 2ˆ ˆ ˆ ˆ ( )a a d d= Ä - Ä+

e b. 2ˆ ˆ ˆ ˆ ( )a d d a= Ä + Ä´

â and d̂ are the unit vectors along R.A. and decl. in equatorial
coordinates. The response of the detector to the GW is given by

s F h t F h t, ; , ; , 3i
I I

i
I I

i
I( ) ( )( ) ( ) ( ) ( )l a d q a d q= D + D+ + ´ ´

where FI
+ and FI

´ are the antenna pattern functions (defined
in Equations (9) and (10) of WMJ1), α and δ are the R.A.
and decl. of the source, θ collectivelyrepresents the
following parameters: (i) ζ, the overall amplitude factor
(defined in Equation (7) of WMJ1); (ii) ι, the inclination angle
between the binary orbital plane and the plane of the sky; (iii)
ψ, the GW polarization angle; (iv) j0, the initial phase of
the binary at the beginning of the observation; (v) parameter

d 1 cos ,I
I I

0
1

2 gw ( )j j w q= - - the pulsar phase parameter
that contains the distance d I from the pulsar to Earth and the
open angle θ I between the lines of sight to the pulsar and the
GW source. Hereafter, we regard the pulsar phases as
independent variables. ,{ } Èl a d q= denotes the set of all
the parameters. The term h t ;i

I
, ( )qD + ´ is the difference of the

GW tensor at Earth and at the pulsar at the observer’s time t ,i
I

h t h t h t; ; ; , 4i
I

i
I

i
I I

, , ,( ) ( ) ( ) ( )q q t qD = - -+ ´ + ´ + ´

where d c1 cosI I I( )t q= - is the time delay of the plane
GWs of the same phase arriving at Earth and at the pulsar.
Hereafter, we assume that the binary system is evolving slowly,
so that in the signal model the orbital frequency in the pulsar
term remains approximately the same as in the Earth term.

The GW signal can be written as

s F F

t

F F

t

t

2 1 cos cos 2 sin 2

sin sin

4 cos sin 2 cos 2

sin cos

sin sin , 5

i
I I I

I I i
I

I I

I I i
I

I I I I i
I

2

0 0

0 0

0 0

( )

( )
( )

( )
( )

( )
( )

( )

( )
( )

( )

( ) ( )

z i y y

j j j j

z i y y

j j j j

j j j j f

= + -

´ - + + F

- +

´ - + + F

= - + + + F

+ ´

+ ´

where t t ,i
I

i
I

gw( ) wF =

F F

F F

4 1 cos cos 2 sin 2

16 cos sin 2 cos 2 , 6

I
I I

I I

2 2 2 2 2

2 2 2

( )
( )

( )
( )

 z i y y

z i y y

= + -

+ +

+ ´

+ ´

and

F F

F F
tan

2 cos

1 cos

sin 2 cos 2

cos 2 sin 2
. 7I

I I

I I2
· ( )f

i
i

y y
y y

=
-
+

+

-
+ ´

+ ´

Here I and fI depend only on , , , , .z i y a d In Equation (5),
we can isolate the jI dependence and get

s cos 2 sin 2 ,

8
i
I

I I I I I I I I( ) ( ) ( )
( )

     j j= - + + + +

where

t t
1

2
sin sin , 9I i

I
I I i

I
0 0( )( ) ( ) ( )  j j f= + + F

t t
1

2
cos sin , 10I i

I
I I i

I
0 0( )( ) ( ) ( )  j j f= - + + F

t t
1

2
sin cos , 11I i

I
I I i

I
0 0( )( ) ( ) ( )  j j f= + + F

t t
1

2
cos cos . 12I i

I
I I i

I
0 0( )( ) ( ) ( )  j j f= - + + F

Note that ,I ,I ,I I are functions of time and the source
parameters rather than jI.

3. GENERALIZED LIKELIHOOD RATIO TEST

In the Frequentist approach, the detection of GW signals
presents a composite hypotheses test problem: given data r, we
need to pick one among a family of hypotheses about the joint
probability density function (pdf) from which r is obtained.
Under the null hypothesis ,0 the data does not contain any
GW signal and the pdf, p(r), governing r is that of the noise
alone. Under the alternative hypothesis Hλ, a GW signal s(λ)
with parameters λ is present in r and the data is a realization
from a governing pdf of the form r r sp p .( ∣ ) ( ( ))l l= - In a
GLRT, assuming that the PDF of the noise p(r) is known, the
test statistic

r
r
r

r r
p

p
GLRT max max LR ; LR ; ,

13

( )( ) ( ∣ )
( )

( )

( )

l
l l= = =

l l


is compared with a threshold to decide in favor of 0 or .l

Here, LR(r; λ) is the likelihood ratio for a given hypothesis and
l is the maximum likelihood estimate (MLE) of the parameters.
The maximizer, ,l of rLR ;( )l in Equation (13) is the same
as that of any monotonic function of LR(r; λ). Its logarithm,
Λ(r; λ), is one such convenient choice for the case of Gaussian
noise.
Unlike the case of a known λ, where the optimal test statistic

(under the Neyman–Pearson criterion) is known to be LR(r; λ),
there is no proof of optimality associated with the GLRT except
in some simple cases. However, it has been shown that it is the
uniformly most powerful (UMP) among all invariant tests
(Lehmann 1959). In practice, and when it is computationally
feasible, the GLRT is often found to be superior to other ad hoc
tests.

3
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3.1. The Network Likelihood Ratio

For a PTA of Np pulsars, the log-likelihood ratio is

r r

r r s s s

; ; ,

;
1

2
, 14

I

N

I

I
I I

I
I I

I

1

p

( ) ( )

( ) ( ) ( ) ( ) ( )

ål l

l l l l

L = L

L = -

=

where I· ∣·á ñ is the noise weighted inner product, C ,I
T1( · ) ( · )-

with CI being the covariance matrix of the noise process in
the Ith pulsar. It is assumed here that the cross-covariances of
noise between r I and r J are ignorable for I J.¹ Inserting
Equation (8) into (14) we have

r r X r Y

r Z

X X Y Y

X Y

X Z Y Z

Z Z

; cos 2

sin 2

1

2
cos 2 sin 2

2 sin 2 cos 2

2 cos 2 2

sin 2 ,

15

I
I

I I I
I

I I

I
I

I I

I I I I I I I I

I I I I I

I I I I I I I

I I I I

2 2(

)

( )

( )

⎡⎣

⎤⎦

l j

j

j j

j j

j

j

L = +

´ +

- +

+

+ +

´ +

where X ,I I I = - Y ,I I I = + and Z .I I I = +
The calculation of the GLRT can be seen as a nested

maximization problem,

r rGLRT max max ; . 16
i e

( ) ( ) ( )l= L
l l

This split is meant to indicate that the whole model
parameter set λ can be divided into disjoint subsets classified
as extrinsic (inner maximization) ,e I{ }l j= and intrinsic
(outer maximization) , , , , , , .i gw 0{ }l a d w z i y j= Usually,
the separation is made such that the former can be maximized
using analytical (or semi-analytical) methods, while the latter
requires computationally expensive numerical optimization. It
should be emphasized that the classification of parameters as
extrinsic (computationally trivial) and intrinsic (computation-
ally non-trivial) pertains to their role in the numerical procedure
adopted for their estimation rather than their role in defining the
the astrophysical signal.

3.2. Maximization Over Extrinsic Parameters

The inner maximization of the GLRT over the extrinsic
parameters (Equation (16)) leads to,

c c c csin 2 cos 2 sin 4 cos 4 0,

17

I
I

I
I

I
I

I
I1 2 3 4

( )
j j j j+ + + =

where

c r X X Z a, 18I I
I I I I I1 ( )= - +

c r Y Y Z b, 18I I
I I I I I2 ( )= -

c X X Y Y c
1

2
, 18I

I I I I I I3 ( ) ( )= -

c X Y d. 18I
I I I4 ( )= -

By defining y cos 2 ,Ij= Equation (17) can be transformed
into a set of Np quartic equations

ay by cy dy e 0 194 3 2 ( )+ + + + =

where

a c c a4 , 203
2

4
2( ) ( )= +

b c c c c b4 , 201 3 2 4( ) ( )= +

c c c c c c4 , 201
2

2
2

3
2

4
2( ) ( )= + - +

d c c c c d4 2 , 201 3 2 4 ( )= - -

e c c e. 204
2

1
2 ( )= -

Here, we have suppressed the pulsar index I in Equations (19)
and (20) for clarity.
A convenient numerical algorithm for solving quartic

equations involves computing the eigenvalues of the 4×4
companion matrix (Press et al. 2002)

D

b

a

c

a

d

a

e

a
1 0 0 0
0 1 0 0
0 0 1 0

. 21( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
=

- - - -

It is an upper Hessenberg matrix, for which the characteristic
polynomial is Equation (19) with y as the eigenvalue. Hence,
the set of its eigenvalues constitutes the roots of the quartic
equation.
It is possible to get multiple real solutions (two or four)

depending on the coefficients in Equation (20). Out of these
solutions, we first select the ones whose absolute values are less
than unity (since y cos 2 I( )j= ) and then select the one for
which ΛI is greatest. This ensures that the solutions for jI

found above also maximize the network log-likelihood ratio
since it is just the sum over ΛI.
If no valid solution is found, then there is no turning point

for ΛI in Equation (15). For this case, the maximum of ΛI will
appear at the boundary of the allowed region, i.e., y=1
(jI= 0) and y=−1 (jI= π/2). We then evaluate ΛI at the
boundary points and pick the one that gives the largest value.

3.3. Maximization over Intrinsic Parameters

The outer maximization of the GLRT over the intrinsic
parameters (Equation (16)) requires a search for the global
maximum over the remaining 7D intrinsic parameter space

, , , , , , .i gw 0{ }l a d w z i y j= This function is highly multi-
modal due to the presence of noise in the data and degeneracies
among the parameters. Deterministic local optimization fails to
locate the global optimum in such a case and a brute force grid
search is computationally prohibitive for such a large number
of parameters. The only feasible approach is to use algorithms
that employ some type of a stochastic search scheme. As
demonstrated in WMJ1, PSO (Eberhart & Kennedy 1995;
Wang & Mohanty 2010; Mohanty 2012a, 2012b) provides a
relatively straightforward approach to successfully addressing
this problem.
PSO searches for the global optimum of a given fitness

function using a stochastic sampling scheme. The sample
points, called “particles,” are iteratively displaced according to
the PSO dynamical equations. Relevant details of the PSO
algorithm are provided in WMJ1. Since the present

4
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optimization problem has a much lower dimensionality, one
would expect that the same PSO algorithm as used in WMJ1
would work here too. However, our initial tests showed that
some tweaks were needed to achieve satisfactory performance.
In order to describe these modifications, let us first recapitulate
the PSO dynamical equations.

Let f(x) be a fitness function (i.e., the log-likelihood ratio Λ
(r; λ) in our case), where x S nÎ Ì and S is called the search
space and it is generally assumed to be a hypercube,
S a b a b a b, , , .[ ] [ ] [ ]= Ä Ä ¼ Ä Let xi (k), i=1, 2,K,
Npart, be the position of the ith particle in a swarm of Npart

particles at the iteration step k. The coordinates corresponding
to xi(k) are x k x k, , .i i n,1 ,( ( ) ( ))¼ Associated with each particle
is the location, pi(k), called pbest (“particle best”), where the
best fitness was found in its history.

f p k f x jmax . 22i
j k k

i
, 1, ,0

( ) ( )( ) ( ) ( )=
= - ¼

Associated with the swarm is the location, g(k), called gbest
(“global best”), where the best fitness was found by the swarm.

f g k f p kmax . 23
j N

j
1, , part

( )( ( )) ( ) ( )=
= ¼

Given xi(k), pi(k) and g(k), the following equations are used to
evolve the swarm.

x k x k v k1 ; 24i i i( ) ( ) ( ) ( )+ = +

v k y k v v1 min max 1 , , , 25i j i j, , max max( )( )( ) ( ) ( )+ = + -

m

m

y k w k v k p k x k

g k x k

1

. 26

i i i i i

i i

,1

,2

( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

+ = + -

+ -

Randomness in the sampling is introduced through
mi,p,p=1,2, a diagonal matrix, m mdiag , , ,p i p i n, ,1 , ,( )¼ such
that m U c0,p i k p, , [ ]~ is drawn from a uniform distribution
over [0, cp]. The parameters cp, p=1, 2 and the prescribed
deterministic sequence w(k) determine the extent to which
continuing exploration of the search space is balanced by
exploitation and focusing of the search around a good value at a
given iteration step. We set w(k) to be a linearly decaying
sequence starting at 0.9 and ending at 0.4 at termination. At the
termination of PSO, the highest fitness value found by the
swarm, and the location of the particle with that fitness, make
up the solution to the optimization problem.

As in WMJ1, we use a modified form of the above iteration
equations where gbest is replaced by the best location, lbest, in
a local neighborhood of each particle. We use the ring topology
to determine the neighborhoods: the particle indices are put on
a circle and the neighborhood of each particle consists of
(m− 1)/2 particles on each side, with m being the user-
specified size of each neighborhood.

The settings for the parameters of the PSO algorithm
outlined above are retained from WMJ1: Npart=40,
c1=c2=2.0, m=3, vmax=(b−a)/5, v b a 2,max ( )¢ = -
w k k N0.9 0.5 1 ,iter( ) ( ( ))= - - where Niter=2000 is the
total number of iterations. In addition to fixing the PSO
parameters, the behavior of particles crossing the boundary of S
is handled using the “let them fly” boundary condition in which
the fitness of the particle is simply set to-¥ while it is outside
S. The main modification to the PSO algorithm in this paper is
the introduction of a local optimization of the gbest position,

using the Nelder–Mead algorithm (Press et al. 2002), that is
performed only when gbest changes. We believe that the
maximization over the pulsar phases leaves behind a fitness
function that has ridge-like features in it. This expectation is
based on similar behavior of the fitness function, after initial
phase maximization, in the case of compact binary inspiral
signals for ground-based searches. The use of local optimiza-
tion then moves the gbest location along these long ridges to
better values more efficiently than a pure random move.
However, a systematic study of these ideas is postponed to a
future work.
To increase the probability of successfully converging to

within a sufficiently small neighborhood of the global
maximum, multiple independent runs of PSO are made on
the same data segment. Being mutually independent, these runs
can be executed using simple parallelization on a multi-
processor machine. Unlike the case of WMJ1, where the
computational cost of evaluating the fitness function was
relatively higher and only one run of PSO per data realization
was feasible, we are able to execute eight independent runs for
each data realization in the present case.
For simulated data, it is possible to gauge successful

convergence to the global maximum by comparing the best
fitness found with its value at the true signal location:
the former should always be higher than the latter. This
test is passed by PSO in all the cases discussed in the next
section.

4. APPLICATIONS

We illustrate the above algorithm (hereafter referred to as
MaxPhase) using simulated data corresponding to a PTA
configuration adopted in Taylor et al. (2014; see the paper
and the references therein for ephemerides of the nine
pulsars in the network). In all of the cases considered
below, the source is an SMBHB in a circular orbit that is
located at R.A. α=1.0 rad (3 hr 49 minute) and decl. δ=
0.5 rad (28°.7). The orbital angular angular frequency
ω=1.96rad yr−1 ( 3.93 rad yrgw

1w = - ), the initial phase
j0=2.89rad (165°.6), the inclination angle 0.5 radi =
(28°.6) and the polarization angle ψ=0.5rad (28°.6) are also
set to be the same values as in Taylor et al. (2014). The span of
the simulated observation is 14.9 years, with uniform bi-weekly
cadence leading to the same number of samples NI=389 for
each pulsar. The signal induced by this GW source is calculated
for each pulsar in the PTA following Equation (8). Independent
realizations of white Gaussian noise are added to the signal for
each pulsar, with the noise standard deviation σ I for a given
pulsar set as equal to its timing residual rms (we used the same
level of noise as in WMJ1). To characterize the strength of the
signal in the data, we use the network SNR of the signal
defined as

s s
s
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We choose ρn=100, 30, 8 to represent the strong, moderate,
and weak signal scenarios, respectively. For each scenario, 200
independent realizations of data are generated. The results from
each scenario are discussed in the following sub-sections.
Although not required from the point of view of signal analysis,
these S/N choices can be associated with astrophysical
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parameters for concreteness. For example, the S/N values
above in descending order could arise from an SMBHB system
that has a chirp mass M10 ,c

9 »  an orbital period of
P=3.2 years, and that is located at a distance approximately
10, 30, and 125Mpc from Earth, respectively. As already
mentioned in Section 2, we ignore the evolution of the binary
orbital frequency, which is a reasonable assumption for the
purpose of studying the performance of the algorithm, although
this assumption can become invalid in the late stage of the
SMBHB evolution.

Figure 2 compares the log-likelihood ratio found by the
MaxPhase algorithm with its value for the true signal
parameters. For each of the three network S/Ns, we can see
that the former is greater than the latter for all realizations. This
is the least one expects from any viable estimation algorithm
and we see that the MaxPhase algorithm passes this basic test.

To obtain the threshold for detection or to set upper limits,
the distribution of the detection statistic under 0 is required.
This involves finding the distribution of the maximum of the
log-likelihood ratio Λ. We use a Monte-Carlo simulation with
500 independent noise-only realizations of data to directly
estimate this distribution. Figure 1 shows the distributions of
the detection statistic GLRT(r) under the noise-only case and
under the three different signal scenarios. The histograms for
the 0 and ρn=8 cases can be fitted well by the log-normal

distribution ln , .( ) m s The distribution converges to a normal
distribution ,( ) m s as the signal strength increases.

4.1. Strong Signal

In this case, the network S/N ρn=100. Figure 3 shows a
typical realization of the simulated timing residuals for the nine
pulsars (thin gray line). The magnitude and the phase of the
noise-free timing residual (black dashed line) depend on the
location and distance of the source and pulsar in the array. In
this strong signal scenario, the signal in most of the pulsars is
comparable to or even stronger than the respective noise. The
reconstructed signal is obtained by Equation (5) or (8) in which
the input extrinsic and intrinsic parameters are the ones
estimated by MaxPhase.
As seen from Figure 3, the estimated signal is indistinguish-

able from the injected signal for all of the pulsars except PSR
J1744–1134 (separation angle is 150◦), which contains the
weakest signal and contributes insignificantly to the detection
statistic. Figure 1 shows the distribution of the detection statistic
values under the null ( 0 ) and alternative (l) hypotheses.
Comparing the distributions for null and ρn=100, it is clear
that the detection probability Qd is nearly unity if the threshold
for claiming a detection is chosen as the highest value for the
null case. Since we have used 500 realizations for ,0 the false
alarm probability for this choice is approximately 2×10−3.

Figure 1. Histograms of the detection statistic normalized by the total number of trials. The histogram in the upper left panel is for the 0 case; the histogram in the
upper right panel is for the ρn=8 case; the histogram in lower left panel is for the ρn=30 case; the histogram in the lower right panel is for the ρn=100 case. The
red curve in each panel shows the best-fit distribution. These are ln 2.89, 0.12 ,( ) m s= = ln 3.67, 0.23 ,( ) m s= = 463.7, 31.2 ,( ) m s= = and

5055.3, 95.8( ) m s= = , respectively.
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Figure 4 shows the distributions of estimated parameters
, , , , , gw{ }a d z i y w that are astrophysically interesting. The

distributions were estimated from 200 independent data
realizations. For the sky localization, most of the estimated
locations are very close to the true one. However, for 43 out of
the 200 realizations, the estimated locations appear to fall on
some secondary maxima located along an arc. Similarly, the
scatter for ι and ψ is larger than expected. In contrast, the true
values of ωgw and ζ are well within the one-sigma uncertainty
of 2.9 10 rad yr3 1´ - - and 6.11×10−7 s, respectively, calcu-
lated from the 200 realizations.

4.2. Moderate Signal

Figure 5 shows a realization of the simulated data for a
network S/N ρn=30. The noise is now seen to be stronger
than the signal in most of the pulsars. The recovered signal
continues to agree with the injected one quite well. Note that
for PSR J1744–1134, J1713+0747, and J1640+2224, the
deviation from the true signals is mainly in the amplitude,
while the offset in phase is not significant. From the
distribution of the detection statistic in Figure 1, the detection
probability is still practically unity for a detection threshold
with an approximate false alarm probability of 2×10−3. In

Figure 2. Log likelihood ratio values obtained from MaxPhase vs. Log likelihood ratio for the true signal. From left to right, the panels correspond to the network S/N
ρn=100, 30, 8 scenarios, respectively. There are 200 data realizations for each scenario.

Figure 3. Data realization showing the simulated timing residuals (thin gray line) and signals (dashed black line) for all pulsars. The network S/N ρn=100. The
reconstructed signals are shown as solid curves. For most pulsars, except for J1744–1134, the true and reconstructed signals are almost indistinguishable from each
other. For PSR J1744–1134, we have zoomed into the noise so that the signal can be seen clearly.
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Figure 6, we see more clearly that the sky locations are
centered on the same secondary maxima as in the ρn=100
case (Figure 4), but with an increased scatter around each. We
also note that the bias in the estimation of the inclination and
polarization angle is increased. The 1σ uncertainties for ωgw

and ζ increase to 0.01rad yr−1 and 8.63×10−7 s, respec-
tively. The increase in the errors is roughly consistent with their
expected linear dependence on the network S/N.

4.3. Weak Signal

In this case, the network S/N ρn=8 corresponds to a weak
and barely detectable signal. This is also the network S/N used
in Taylor et al. (2014). Figure 7 shows one of the realizations of
the simulated timing residuals. In this scenario, the noise
dominates the signal in all pulsars. This illustrates the most
likely situation with the current level of timing precision
obtained in PTAs. Even though the noise is loud, the recovered
signals have deviations mainly in the amplitude (usually biased
toward a larger value), while the offset in the phase is tolerable.
In Figure 8, the scatter of the sky location becomes larger, but
the presence of secondary maxima seen in the previous cases is
still discernible. However, now the true location attracts the
least number of trial values. The bias in the estimation of
the inclination and polarization angle is now much clearer.
The uncertainties in ωgw and ζ are 0.036rad yr−1 and
2.11×10−6 s, again roughly consistent with the expected
linear dependence on the network S/N. From Figure 1, the
detection probability is Qd;0.86 if we choose the detection
threshold to be the largest value of the noise-only distribution.

In this case, the signal is still large enough to be detected,
although it cannot be localized at all.

4.4. Comparison with Other Algorithms

In Figure 9, we show the log-likelihood ratio from MaxPhase
versus the ratios from WMJ1 for a subset of 100 data
realizations chosen randomly from the set used for the
simulations reported above. We can see that for most
realizations, in each of the three signal strength scenarios, the
former can find a marginally larger (better) log-likelihood ratio
than the latter, which suggests that MaxPhase can achieve a
greater detection probability than WMJ1 for a given detection
threshold.
Comparing parameter estimation performance, Figure 10

gives the estimated sky locations from WMJ1. For the
ρn=100 case, the sky localization is very similar to the
corresponding one in Figure 4, except that there are no
secondary maxima. With the decreasing of ρn to 30 and 8, the
sky localization scatter increases but it still appears as uni-
modal and concentrated around the true value.
Comparing our results for MaxPhase and WMJ1 with those

of the Bayesian method (Taylor et al. 2014), we make the
following observations. From the receiver operating character-
istics (ROC) curve reported in Figure 6 of Taylor et al. (2014),
the detection probability appears to be close to unity for ρn=8
case at the lowest false alarm probability of 0.01 used in that
paper. The corresponding detection probability from MaxPhase
is 97.5% (and rapidly approaches unity for higher FAP). Thus,
the detection performance of MaxPhase is comparable to that

Figure 4. Two-dimensional scatter plots (top) and histograms (bottom) of estimated parameters for network S/N ρn=100. The star and the red vertical line mark the
true values of the parameters. The dashed vertical line marks the mean value, and the shaded area covers the 1σ region around the mean. The total number of trials
is 200.
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Figure 5. Data realization showing the simulated timing residuals (thin gray line) and signals (dashed black line) for all pulsars. The network S/N is ρn=30. The
reconstructed signals are shown as solid curves. For some pulsars, such as PSR J1744–1134 and J1857+0943, we have zoomed into the noise in the subplots so that
the signal can be seen clearly.

Figure 6. Two-dimensional scatter plots (top) and histograms (bottom) of estimated parameters for network S/N ρn=30. The star and the red vertical line mark the
true values of the parameters. The dashed vertical line marks the mean value, and the shaded area covers the 1σ region around the mean. The total number of trials
is 200.
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Figure 7. Data realization showing the simulated timing residuals (thin gray line) and signals (dashed black line) for all pulsars. The network S/N is ρn=8. The
reconstructed signals are shown as solid curves. For most pulsars, we have zoomed into the noise in the subplots so that the signal can be manifested.

Figure 8. Two-dimensional scatter plots (top) and histograms (bottom) of estimated parameters for network S/N ρn=8. The star and the red vertical line mark the
true values of the parameters. The dashed vertical line marks the mean value, and the shaded area covers the one-sigma region around the mean. The total number of
trials is 200.
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of the Bayesian method. The distribution of the estimated
parameters in the Frequentist case can be compared more
reliably with the distribution of the maximum a posteriori value
of the parameters in the Bayesian method. We have picked the
same source parameters as in Taylor et al. (2014), so the
comparison is straightforward. Although there are differences
between the two analyses, such as the use of irregularly versus
regularly sampled data, they should not impact the comparison
too much. From Figure 8 (MaxPhase), Figure 10 (WMJ1) in
this paper, and Figure 5 (Bayesian) in Taylor et al. (2014), we
see that for ρn=8 case (the only case considered in Taylor
et al. 2014), the estimated sky location by MaxPhase is inferior
to the Bayesian method, while the results from WMJ1 and the
Bayesian method are qualitatively comparable.

Regarding computational costs, MaxPhase takes 6.7 minute
on average to complete one PSO run for each data realization
on a single processor core, while the WMJ1 algorithm takes
89 minutes. As far as obtaining point estimates of the signal
parameters is concerned, the reported computational cost of the
Bayesian algorithm appears to be significantly higher than
either of the Frequentist methods. For example, 48 cores are
used in Taylor et al. (2014) to run a parallelized implementa-
tion of the MultiNest algorithm (Feroz et al. 2009) and the
analysis is reported to typically take up to 45 minutes to
complete at a network S/N ρn=10. However, it should be
noted that the Bayesian method also maps out the posterior

probability distribution of parameters, which may provide
useful information in an analysis. Interestingly, it has been
demonstrated in the context of CMB analysis that a fitting
procedure may be combined with PSO to map out the
likelihood function locally around the point estimate (Prasad
& Souradeep 2012). Thus, it may be possible to similarly
extend MaxPhase (or WMJ1) to obtain information similar to
that of a Bayesian method. This will lead to a corresponding
increase in the computational cost of MaxPhase.

4.5. Effect of Increasing the PTA Size

As we noticed in the strong signal scenario, the maximiza-
tion over the pulsar phases leaves behind a log-likelihood ratio
that has strong secondary maxima, a feature that is absent if the
pulsar phases are treated as intrinsic parameters. If these
secondary maxima are comparable to the global maximum in
value, they become attractors for stochastic search algorithms
and reduce their effectiveness in locating the global maximum.
With a decrease in S/N, the probability of the locations of such
secondary maxima becoming the global maximum increases.
Both these effects worsen parameter estimation, as we see in
the moderate and weak signal cases.
This situation can be substantially improved by adding more

pulsars in a PTA. Unlike the ground-borne and space-borne
laser interferometers, adding more detectors (millisecond

Figure 9. In each panel, log-likelihood ratio values from MaxPhase algorithm vs. WMJ1 algorithm are shown for three scenarios with ρn=100, 30, and 8,
respectively. The number of independent data realizations is 100. In almost all trials, the log-likelihood ratios are seen to be higher for the MaxPhase algorithm.

Figure 10. In each panel, blue circles show the estimated sky locations for the source, which are obtained from the WMJ1 algorithm for a PTA consisting of nine
pulsars. A red star marks the true location of the source used in the simulation. The x-axis represents R.A. and the y-axis represents the decl. The total number of
independent data realization is 100. The panel on the right may be compared with Figure 5 of Taylor et al. (2014).
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pulsars) in a PTA is technically easier and cheaper in terms of
costs. Here, we demonstrate this by using the NANOGrav
configuration (Demorest et al. 2013), which consists of 17
pulsars in the catalog. We keep the network S/N ρn the same
for each scenario as in the analysis reported in Sections 4.1–4.4
with nine pulsars. Accordingly, the overall amplitude ζ of the
GW is scaled down. This implies that the signal amplitude for
individual pulsars becomes significantly lower.

Figure 11 presents the estimations of R.A. and decl. of the
GW source for 100 independent data realizations with the
ρn=100, 30, and 8 cases. Clearly, the scatter and the
secondary maxima in the sky localization are effectively
suppressed compared to the ones in Figures 4 and 6 for the
strong and moderate signal cases. For the weak signal case,
although the localization is still inferior compared to WMJ1
and the Bayesian algorithm, the bias appearing in Figure 8 is
gone and the distribution becomes quite uniform.

5. SUMMARY AND CONCLUSIONS

Combined with WMJ1, this paper completes the first step in
the program of implementing a purely Frequentist detection
and parameter estimation approach for continuous wave GW
signals using PTAs. There exists a dichotomy in how a GLRT
can be implemented for this problem and this paper addresses
the approach where pulsar phases are treated as extrinsic
parameters that are maximized semi-analytically. Maximizing
over pulsar phases is attractive compared to the alternative
where they are treated as intrinsic parameters because the
GLRT becomes scalable with the size of a PTA. The
maximization over the pulsar phases leaves behind a 7D
numerical optimization problem irrespective of the number of
pulsars in a PTA. We find that the latter problem is effectively
handled using PSO, as was the case in WMJ1, without
requiring much tuning. Computational costs of PTA data
analysis methods will become especially important for
analyzing the IPTA data set that includes about 50 pulsars.

The approach based on the analytical maximization over
pulsar phases has the merit that it does not involve the type of
constrained maximization that appeared in WMJ1. This greatly
simplifies the implementation and boosts the computation
speed of the method. However, our results indicate that the
performance of the method is not as good as far as estimation
of the source location and some of the other angular parameters
is concerned. The increased errors appear to stem from
secondary maxima. The fact that these secondary maxima
disappear when the PTA size is increased, suggests that they
are likely to be the result of not taking the ill-posedness of the

GW network analysis problem—well known in the context of
ground-based detector networks (Klimenko et al. 2005;
Mohanty et al. 2006)—into account.
Mitigation of ill-posedness can be achieved by regularization

of the inverse problem in some form (Greville 1959; Tikhonov
& Arsenin 1977; Rakhmanov 2006). However, unlike ground-
based networks of large-scale detectors, we have the simple
option in the case of PTAs to increase the number of
independent detectors (i.e., pulsars). In fact, the NANOGrav
collaboration is adding 3–4 new MSPs, discovered from the
ongoing major pulsar surveys at Arecibo Observatory and
Green Bank Telescope (e.g., PALFA and GBNCC), in the
observation campaign every year. As known for the ground-
based case, this should reduce the effect of ill-posedness. That
this is so is shown explicitly by taking a PTA with a larger
number of pulsars. However, although increasing the number
of pulsars is an obvious way to mitigate the problem of ill-
posedness, the results for the weak signal case—the realistic
one for the current PTAs—show that it cannot be completely
ignored and must be addressed properly. We leave a deeper
look at the problem of ill-posedness and regularization to
future work.
The results reported here were obtained under the following

limitations. The simulated data were evenly sampled, whereas
real data will have irregular sampling. However, our method
works entirely in the time domain, and no major changes are
needed to accommodate irregularly sampled data. In fact, if the
irregularly sampled data have identically and independently
distributed noise samples, no change in the algorithm is
required. If, as some studies point out, the noise is not Gaussian
or stationary, the actual covariance matrix for the given data
will need to be modeled (or estimated; Wang et al. 2015;
Wang 2015). Regarding non-Gaussianity, it is worth noting
that Finn (2001) shows that coherent techniques, such as
MaxPhase and WMJ1, are generally robust against non-
Gaussianity in the noise components.
The timing residuals for real data are obtained by fitting,

using weighted least squares, a timing model to the data and
subtracting it out. The timing model contains a set of
parameters specific to the pulsar whose pulse arrival times
are being fitted. The fitting procedure can affect the signal form
as well as the statistics of the noise in the residual. When
analyzing observational data, a common practice is to use the
projection matrix R suggested by Demorest et al. (2013). A
nice feature of R is that it only depends on the fitting model and
the weighting matrix used, not the data itself. The influence of
fitting can be easily taken into account by operating R on the
timing residuals in the algorithm.

Figure 11. In each panel, blue circles show the estimated sky locations of the source, which are obtained from the MaxPhase algorithm for a PTA consisting of 17
pulsars. A red star marks the true location of the source used in the simulation. The x-axis represents R.A. and the y-axis represents the decl. The number of
independent data realizations is 100.
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In constructing the GLRT, we assumed that the noise
parameters are known a priori or can be estimated indepen-
dently of the GW analysis. A more sophisticated approach
would include the noise parameters as part of the estimation
procedure. Since these additional parameters would be intrinsic
in nature, directly including them in the GLRT would increase
the search space dimensionality for PSO significantly. For
example, the number of dimension increases from 7 to 52 for
a PTA with 9 pulsars. Although such large dimensional
optimization problems appear frequently in the PSO literature,
it remains to be seen how the increase in dimensionality will
pan out in the case of PTA data analysis. Some dimensional
reduction scheme, of which fixing the noise model parameters
a priori is an extreme example, will probably need to be
implemented.

Finally, our signal model does not include the ellipticity or
the evolution of binary orbit during the period of observation.
However, these modifications will only lead to a few more
intrinsic parameters that are specific to the GW signal and not
associated with the pulsars. A study of the GLRT approach for
more sophisticated signal models will be carried out in future
works.
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