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ABSTRACT

If a pulsar orbits a supermassive black hole, the timing of pulses that pass close to the hole will show a variety of
strong field effects. To compute the intensity and timing of pulses that have passed close to a nonrotating black hole,
we introduce here a simple formalism based on two “universal functions,” one for the bending of photon trajectories
and the other for the photon travel time on these trajectories. We apply this simple formalism to the case of a pulsar in
circular orbit that beams its pulses into the orbital plane. In addition to the “primary” pulses that reach the receiver by
a more-or-less direct path, we find that there are secondary and higher-order pulses. These are usually much dimmer
than the primary pulses, but they can be of comparable or even greater intensity if they are emitted when pulsar is on
the side of the hole furthest from the receiver. We show that there is a phase relationship of the primary and secondary
pulses that is a probe of the strongly curved spacetime geometry. Analogs of these phenomena are expected in more
general configurations, in which a pulsar in orbit around a hole emits pulses that are not confined to the orbital plane.

Key words: black hole physics – pulsars: general

Online-only material: color figures

1. INTRODUCTION

Pulsars are rotating neutron stars that emit beams of radiation
that can be detected on Earth. As the star rotates, this beam
sweeps past the Earth, producing regular pulses. The timing of
these pulses is tied to the large inertial moment of a compact
body, making it an extremely stable clock: pulsars have been
found whose pulse arrival times fluctuate by less than 200 ns
(Verbiest et al. 2008). Pulsar timing is thus an excellent probe
of delicate phenomena, including gravity, in the vicinity of the
pulsar. It has been used to detect the tug of planets orbiting a pul-
sar, to observe the gradual loss of orbital energy to gravitational
waves in binary systems containing a pulsar, and has been pro-
posed as a method of detecting cosmological gravitational waves
(Estabrook & Wahlquist 1975; Sazhin 1978; Detweiler 1979).

Pulsar timing may also provide a probe of very strong
gravitational fields. The beam from a pulsar in a binary system
may pass very close to a compact object, a neutron star or black
hole, on its way to a radio telescope. The influence of the strong
field passage will result in observable effects on the pattern of
pulse arrival times.

Aspects of these timing effects were estimated by Gorham
(1986) primarily for X-ray pulsars and by Campana et al. (1995)
with attention to radio pulsars. Goicoechea et al. (1992) carried
out the analysis of timing effects to second order in gravitational
field effects and limited to the beaming in the orbital plane.
Subsequently, Oscoz et al. (1997) extended that analysis to full
strong field calculations, and to beaming not constrained to the
orbital plane. Full strong field timing computations have also
been carried out by Laguna & Wolszczan (1997) with direct
integration of trajectories in the Kerr spacetime.

A rather different astrophysical context for such phenomena
is a pulsar in orbit around a supermassive black hole. Such
black holes are now thought to be ubiquitous in the universe,
residing in the cores of most large galaxies, including our own.
They have masses in the range of millions to billions of solar
masses: our own Galaxy’s black hole has an estimated mass of

4 × 106 M� (Ghez et al. 2005, 2008; Eisenhauer et al. 2005).
The best estimates of its mass come from observing the orbits
of O-type stars in the Galactic nucleus. These observations
have also revealed that the Galactic nucleus is home to a
significant population of young massive stars, contrary to earlier
expectations (Lu et al. 2006). Perhaps the best model for this
population has it forming in situ from the dense molecular
hydrogen disk surrounding the black hole, with an initial mass
function that is strongly tilted toward massive stars (Nayakshin
& Sunyaev 2005; Levin 2007; Maness et al. 2007). The Galactic
nucleus is thus a likely environment for neutron stars to form,
some of which may be pulsars as first suggested by Paczynski
& Trimble (1979). Pfahl & Loeb (2004) recently considered the
data and models for the Sgr A∗ region, and estimated that there
should be on the order of 100 pulsars in the Galactic center
with orbital periods less than 10 years. It is plausible that some
fraction of these pulsars are significantly closer, and that some
are capable of beaming pulses to the Earth on trajectories that
are highly bent by the central black hole.

The systems of interest here will consist of neutron stars
at distances down to within several million kilometers (a few
Schwarzschild radii) of the central black hole. Even at these
close separations, it would take many years for the neutron star
orbit to decay due to gravitational radiation emission, making
it possible to conduct lengthy timing observations of a pulsar
deep within the strong field of a black hole. (By contrast, a pulsar
orbiting within a thousand Schwarzschild radii of a 10 M� black
hole would decay within a year.)

In this system, we consider a pulsar to be in orbit around
a supermassive black hole, and we ask what effects the strong
field of the hole would have on pulsar observations. Such effects
would depend on the details of the hole/pulsar system, and there
are many details: the pulsar orbital elements, the alignment of
the pulsar spin axis and the orbital plane, the pulsar spin rate,
the angle between the pulsar spin axis and the pulse emission
direction, and the black hole spin. (The black hole mass can be
treated as a scaling parameter.)
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Figure 1. Photon path from the radial coordinate r0 to R. The path on the right indicates mild bending of the path due to spacetime curvature. On the left is shown the
highly bent photon path which has an impact parameter near the critical value of photon capture, and a φout, at large R, of 2π .

An important step in understanding the details of strong
field effects on pulsar observations is to understand them in
simple cases. This is what we do here, in two stages. First, we
consider pulses emitted from a pulsar in the neighborhood of a
Schwarzschild (nonrotating) black hole, with no restrictions on
the pulsar orbit, spin, or emission direction. We point out that in
the case of a spherically symmetric hole it is not necessary to do
extensive computing of null geodesics. Rather, it is necessary
only to compute two functions of the emission direction, one
representing the bending of the light path, and the second the
time delay along that path. These two “universal functions” of
emission direction are parameterized only by the distance of the
pulsar from the hole at the emission event. This two-function
approach allows us to explore the systematics of strong field
effects in much greater breadth than with approaches that require
trajectory computations for each set of parameters (Oscoz et al.
1997; Laguna & Wolszczan 1997). The disadvantage of our
technique, of course, is that it does not include black hole spin
effects on the trajectory of the pulsar photons.

The second stage in our analysis is to apply these universal
functions to a particularly simple astrophysical scenario, that of
a pulsar emitting in the orbital plane as it travels in a circular
orbit around a Schwarzschild hole. It turns out that even in
this simplest possible case, there is a rich set of interesting and
potentially observable phenomena. Analogs of these phenomena
could occur also in binary pulsar systems and in binary neutron
star/black hole systems of comparable mass.

The paper is organized as follows. In Section 2, we define
the two universal functions, and we present quantitative results
for them. Next, in Section 3.1, we show how we can use
these functions to find any timing effect in the Schwarzschild
geometry. We then, in Section 3.2, apply this method explicitly
to pulses beamed in or near the orbital plane. These results
are then applied, in Section 4, to the simple case of a circular
orbit and equatorial beaming. In particular, we show effects that
would appear to a distant receiver of the pulse trains. A summary
and a consideration of future applications of this method are
given in Section 5. To allow the main ideas of the paper to be as
clear as possible, several sets of details have been relegated to
appendices. Appendix A gives the details of finding the direction
of emission as a function of time for a pulsar in a relativistic
circular orbit. Appendix B gives the details of the computation
of the universal functions. The relativistic calculations presented
use the notational conventions of the text by Misner et al. (1973);
in particular, we use c = G = 1.

2. THE UNIVERSAL FUNCTIONS FOR DEFLECTION
AND TIMING

In a Schwarzschild hole with spacetime metric

ds2 = − (1 − 2M/r)dt2 + (1 − 2M/r)−1dr2

+ r2(dθ2 + sin2 θ dφ2), (1)

we consider a point at r = r0, φ = 0, in the θ = π/2 equatorial
plane (see Figure 1). At this point, a photon (i.e., a null geodesic)
with 4-momentum pμ is emitted in the equatorial plane. From
the fact that pφ and p0 are constants of motion for the equatorial
photon, it follows that the photon orbit obeys

1

r4

(
dr

dφ

)2

+
1 − 2M/r

r2
= 1

b2
, (2)

where b is the photon impact parameter.
We define φin to be tan−1(rpφ/pr ), the angle with respect to

the outgoing direction, at which the photon is emitted. (Note that
this differs from the angle tan−1(rpφ/

√
grr pr ) that would be

measured in the local frame of a coordinate stationary observer.)
The value φin is a constant characterizing the orbit, and is related
to the impact parameter b by Equation (2) with r set equal to r0:

1

tan2 φin
+ 1 − 2M

r0
= r2

0

b2
. (3)

A critical value of the impact parameter is bcrit = 3
√

3 M;
for b < bcrit, inward going photons will be captured by the hole.
For any r0, capture will occur if |φin| > φcrit where φcrit is the
root, between π/2 and π , of

tan φcrit = −
(

r2
0

27M2
− 1 +

2M

r0

)−1/2

. (4)

For |φin| less than φcrit, our universal functions relate the
description of the photon at very large distance R to its emission
conditions. The first of these functions measures the bending of a
photon trajectory, relative to the radially outgoing direction from
its emission point. To define this function we start by defining
F(φin;R) to be the φ location, at large radius R, of a photon
emitted at radius r0, at angle φin to the outgoing direction. We
then define

F (φin) = lim
R→∞

F(φin;R). (5)

The function F is an odd function of φin; it is parameterized
by r0/M , but has no other dependences. The second universal
function T is related to the coordinate time T (φin;R) required
for the photon to reach asymptotically large R. To have the result
be a finite value, we subtract the coordinate time to reach R with
φin = 0, so that

T (φin) ≡ lim
R→∞

[T (φin;R) − T (0;R)] , (6)

and is an even function of φin; like F, it is parameterized by
r0/M , but has no other dependences.

Plots of F and T are given in Figure 2 for three values of
r0/M . Approximate fits to these curves, good both for small φin
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Figure 2. Universal functions F and T. Curves are labeled with the values of r0/M: 5, 10, and 100. The values of φcrit, from Equation (4) are, respectively, 2.0895,
2.6109, and 3.0896.

(A color version of this figure is available in the online journal.)

and for φin near φcrit, are given by

F (φin) = − sign(φin) log

(
1 − |φin|

φcrit

)
− φin

φcrit
+ φin, (7)

T (φin) = r0 (1 − cos(φin)) − 3
√

3 log

(
1 − |φin|

φcrit

)

− 3
√

3

φcrit
|φin| . (8)

The details of the computation of these curves, and more
accurate analytic approximations to the curves, are given in
Appendix B.

3. PULSE ARRIVAL TIMES FROM UNIVERSAL
FUNCTIONS

3.1. General Case

We consider an emission event at the Schwarzschild radial
coordinate r0, and a photon emitted in the direction n. We
let α be the angle, as shown in Figure 3, between the orbital
plane and the plane containing the photon trajectory, i.e., the
plane defined by n and the radially outward direction. (If these
directions coincide, we take α to be zero.)

We introduce a spatial triad of orthonormal vectors ex, ey, ez,
with ex, ey in the pulsar orbital plane, and we define ex ′ , ey ′ , ez′

to be the orthonormal spatial triad that result from a rotation
by α around the outgoing direction ex , so that ex ′ , ey ′ lie in the
plane of the photon trajectory.

To specify the direction of n, we use the spherical polar
angles φ0, β0 with respect to the ex, ey, ez directions. (Note
that for convenience we are using the latitude β, rather than
the more typical colatitude θ = π/2 − β.) From the rotational
transformation between the unprimed and primed triads, we
get

tan α = tan β0

sin φ0
, (9)

cos φin′ = cos β0 cos φ0 . (10)

e x

e y

e z
e y’

e z’ α

φ in' e x

e y

e z

β 0

φ 0

n
r0

n

Figure 3. Triads and angles used to define photon directions.

Here, φin′ is the angle, in the plane of the photon trajectory,
between the photon direction and the radially outgoing direction.
We can, therefore, find φ∞′ , the asymptotic φ direction, from

φ∞′ = F (φin′). (11)

The spherical polar angles, in the ex, ey, ez frame, for the final
photon direction, are then

cos θ∞ = sin α sin φ∞′ , tan φ∞ = cos α tan φ∞′ . (12)

We summarize here the set of equations that give the final photon
direction β∞, φ∞, and relative time of arrival t∞, in terms of the
original photon direction β0, φ0:

cos φin′ = cos β0 cos φ0, (13)

sin β∞ = sin (F (φin′))
sin β0√

sin2 β0 + cos2 β0 sin2 φ0

, (14)

tan φ∞ = tan (F (φin′))
cos β0 sin φ0√

sin2 β0 + cos2 β0 sin2 φ0

, (15)

t∞ = te + T (φin′). (16)

3.2. Special Case: Beaming in the Orbital Plane

If the pulsar beam is emitted into the orbital plane, then β0 = 0
and the relations in Equations (13)–(16) reduce to φin′ = φ0,
and φ∞ = F (φin). The photon remains in the orbital plane, so
β∞ = β0 = 0.
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For the simplest example of strong field effects, we restrict
ourselves to the case in which the receiving antenna is precisely
in the orbital plane of the pulsar. This means that photons
reaching the antenna must have exceedingly small values of β0
(of the order of the antenna size divided by tens of kiloparsecs).
In this case, the initial-to-final transformations in Equations
(13)–(16) can be replaced by approximations valid to first order
in β0:

β∞ = β0
sin (F (φ0))

sin φ0
, (17)

φ∞ = F (φ0) . (18)

In these equations, it is assumed that β0 
 φ0, a condition that
will be violated only by photons directed very nearly radially
outward, and hence experiencing no strong field effects. The
sine function in the numerator of Equation (17) implies β∞ = 0
if F (φ0) = π . This corresponds to the case that all small-β0
photons with the same value of φ0 are focused into the orbital
plane, creating an intensity amplification that would be infinite
aside from diffraction limitation.

Equations (17) and (18) give us the factors by which strong
field effects lead to convergence or divergence of the photon
beam both in the pulsar orbital plane fplane, and perpendicular to
it fperp:

fplane = dF

dφ0
, fperp = sin (F (φ0))

sin φ0
. (19)

The total strong field effect on the cross-sectional area of the
beam reaching the receiver is fplanefperp. The effect on the photon
flux at the receiver will therefore be 1/(fplanefperp). The total
radio intensity reaching the receiver will also depend on the
gravitational redshift of the photons and the Doppler shift due
to the motion of the emitting pulsar. Both effects are of order
M/r0.

4. APPEARANCE AND TIMING OF PULSES

We make another simplifying assumption: the pulsar that
emits its beam in the equatorial plane is moving in a circular
orbit at radius r0. For definiteness, we take the angular location
of the pulsar to be given by φorb = Ωt , where “t,” here and
below, indicates the coordinate time. At a particular emission
time te, it is shown in Appendix A that the angle at which the
photon is emitted is given by

tan (φin(te)) = r0Ω (1 − 2M/r0)−1/2 + cos (γ −1[Ω − ω]te + δ)

γ −1 sin(γ −1[Ω − ω]te + δ)
.

(20)

Here, r0 is the radial coordinate of the circular orbit; Ω =√
M/r3

0 is the pulsar orbital angular velocity (per unit coordi-
nate time); ω is the pulsar spin rate as measured by a comoving
observer; the Lorentz factor γ is 1/

√
1 − 3M/r0 ; and δ is a

phase constant specifying the direction of the beam at te = 0.
If a distant radio receiver is at φrec, then to find the emission

time of photons that are destined to be received, we must solve

Ωte + F (φin(te)) = φrec . (21)

Due to the nature of F near the critical angles φcrit, there are,
in principle, an infinite number of solutions corresponding to
photon orbits that circle the gravitating center zero times, once,

ω

Δφ
primary

Δφ
secondary

Δφ
beam

Figure 4. Pulsar beam sweeping through the narrow range of directions that
connect to the receiver.

(A color version of this figure is available in the online journal.)

twice, etc. It will be useful to refer to these received pulses as
primary, secondary (once around the gravitating center), tertiary,
and so forth. We shall see, however, that these distinctions can
become ambiguous.

The observationally important questions are the timing and
appearance of the pulses that show strong field effects. We start
by arguing that the effect on the pulse shape will be negligible
if the rotation period (seconds or less) of the pulsar is much
smaller than the pulsar orbital period (1000s of seconds to years,
depending on r0/M and on the mass of the central supermassive
black hole). Figure 4 shows the geometry of beam emission,
with Δφbeam indicating the inherent angular width (in the orbital
plane) of the pulsar beam, and with Δφprimary and Δφsecondary
indicating (but exaggerating) the receiver acceptance directions,
i.e., the range of photon directions that connect to the distant
radio receiver. The angular size of Δφprimary is approximately the
ratio of the receiver diameter to the receiver distance. The much
smaller angular size Δφsecondary is further divided by dF/dφin,
a large number. For tertiary and subsequent beams, the same
description applies except that the value of dF/dφin is even
larger.

If the pulsar were at a fixed coordinate position, and rotating
at ω, then the shape of the received pulse can be viewed as
the result of the narrow cones of receiver acceptance sweeping
through the Δφbeam beam profile. This viewpoint makes it clear
that the time profile of the primary, secondary, etc. beams would
have the same shape. The pulsar, of course, is not coordinate
stationary, but is orbiting with orbital speed Ω. This means that
there will be a small change in the nature of dF/dφin during
the passage of the beam width through the receiver acceptance
cones, since the value of φin for received photons will change
slightly during beam reception. To estimate this effect, we can
consider the change ΔF during the change in pulsar orbital
location Δφorb:

dF

dφin
Δφin ≈ dF

dφin
Δφorb

Ω
ω

≈ eF 2π
Ω
ω

. (22)

(The second approximation assumes that φin ≈ φcrit and that
F is large.) For a secondary beam, F must be of order 2π ; for
a tertiary beam, F must be order 4π , etc. Thus, in the case
of high-order beams or for exceptionally large values of Ω/ω,
there could be some distortion of received pulse shapes. This
possibility will not be considered further in the current paper.

Figure 5 shows a schematic of pulses emitted from a pulsar
orbiting at a distance 30 × GM/c2 from a supermassive black
hole of mass M. The pulsar rotation rate has been chosen to
be very low, only 20.2 times the orbital frequency, in order to
show clearly some of the phenomenology of the pulse arrival
times. For a 4×106 M� black hole, this means an orbital period
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Figure 5. Factor 1/fplane for photon capture events from a pulsar with orbital radius 30 × GM/c2, and the pulsar rotation rate 20.2 times the orbital rotation rate.
Events for several orbits are shown on the left. Details are shown on the right for the orbital epoch during which the pulsar is on the far side of the hole.
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Figure 6. Prograde and retrograde photon trajectories. The pulsar is shown orbiting in the counterclockwise direction around a much more massive black hole. The
leftmost cartoon shows that the observing radio telescope receives a primary (P) direct pulse and a highly bent secondary (S) pulse. The subsequent panels show
trajectories as the pulsar continues its orbital motion. The primary trajectory has increased bending and the secondary less, until the pulsar is directly opposite the
receiver and the two trajectories are symmetric. The following panels show how the prograde trajectory then becomes the primary (less bent) trajectory.
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Figure 7. Relative intensity of pulses for the system shown in Figure 5.

of 2π × 303/2 × GM/c3 ≈ 20, 000 s and a pulsar rotation
period around 1000 s; an actual observed pulsar would likely be
rotating hundreds or thousands of times faster. The horizontal
axis represents the pulse arrival time (relative to an arbitrary
start time), while the vertical axis gives the attenuation factor
1/fplane due to horizontal spreading of the beam. Using this
factor as a tag on the pulses is useful in the discussion of the
pulse sequences. The factor gives a rough indication of relative
pulse strengths, though the full amplification or attenuation of
the beam requires the complete spreading factor 1/fplanefperp,
and will be discussed below.

Initially, the taller set of pulses represents pulses that arrive
at the detector from the pulsar along a more-or-less direct path.
The initially weaker but strengthening set represents pulses that
arrive from a path that is bent around the black hole in a sense
prograde to the orbit. Figure 6 illustrates how this secondary
path “unwinds” and becomes more direct as the pulsar moves

along its orbit. The effective photon path length 
 also shortens
with time, giving rise to a shorter (blueshifted) pulse period
P = P0(1 + 
̇/c). Around time 600 ×GM/c3, the pulsar passes
behind the black hole (the middle panel in Figure 6). After this,
the prograde path becomes the more direct path, while what was
formerly the more direct path now gets wound around the black
hole in the retrograde sense, causing its pulses to weaken and
the period of the pulses to redshift. The pulse timing near the
time of this orbital phase is shown in greater detail in the second
panel of Figure 5, where the prograde-wound pulses are shown
in gray to distinguish them from the other pulses. The process
repeats itself one orbit later. The ragged pulses at the bottom of
the two graphs are pulses from paths with higher order windings
around the black hole; some of these will eventually unwind to
become, for a time, the most direct path.

Figure 7 shows the same system, but with the vertical axis
now showing the full pulse amplification (or attenuation) factor
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Figure 8. Same plot as in Figure 5, but for a more relativistic system, with orbital radius 10 × GM/c2, and with rotation rate 47 times the orbital frequency.

1/fplanefperp. Around the same time as the “primary” and
“secondary” pulse trains swap roles, both sets of pulses go
through a spike of amplification due to strong lensing around
the black hole.

It should be understood that the “intensity” in Figure 7 and
below refers to the photons received per unit time. The true
energy intensity would include the effect of Doppler shifts
due to the orbital motion. These effects, of order r0Ω/c, are
significant—around 20% for an orbit with r0 = 30 ×GM/c2—
but are omitted to emphasize the photon path effects.

The details of the pulse timing and amplification phenomenol-
ogy depend on the orbital radius. To illustrate this, Figure 8
shows the same information as Figure 5 but for a more relativis-
tic system, where the pulsar orbital radius is only 10 × GM/c2.
Again, the pulsar rotation rate is taken to be artificially slow
(only 47 times the orbital frequency) in order for the figure
to show distinct pulses. In this more relativistic system, the
pulse period shift, beaming asymmetry, and “tertiary” (multiply
wound) pulse paths are more apparent.

Figure 9 shows the pulse trains that a radio astronomer might
actually see from the r0 = 30 × GM/c2 system of Figures 5
and 7, but assuming a more realistic pulsar rotation rate that is
thousands of times faster than the orbital frequency. For such a
sufficiently fast rotation rate, the pulsar orbital position changes
negligibly during the emission of a set of a few pulses. The pulse
intensity, determined by F (φin), and dF/dφin, and the redshift/
blueshift in the period, determined by 
̇, therefore are fixed, once
the orbital phase is fixed. This means that we can show pulse
intensity and primary versus secondary phase shifts without
specifying any one pulsar rotation rate. For this reason, Figure
9 does not specify units of the horizontal axis; it is understood
that the spacing between direct pulses is the period of pulsar
rotation. The time that is specified for each panel is the time that
determines the orbital position when the set of pulses is emitted.

The vertical axis represents the pulse power relative to an
undeflected beam, and each pulse is given a Gaussian shape.
Panel (a) is a segment of the pulse train when the pulsar is on the
near side of the black hole, and only a single train of direct pulses
is visible. Panel (b) is a segment from the orbital phase during
which the pulsar is passing behind the black hole: a secondary
train of prograde-bent pulses, with blueshifted period, starts to
appear. In panel (c), the prograde path has become the more
direct path, and the pulses from what was originally the direct
path are weakening, and their period redshifting, as the path
becomes a bent retrograde one around the black hole (though
both sets of pulses are amplified due to lensing). In panel (d),
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Figure 9. Appearance of received radio pulses for several orbital epochs of a
pulsar orbiting with radius 30 × GM/c2. The pulsar rotation rate is assumed to
be much greater than the orbital frequency.

the original pulse train has disappeared almost entirely, leaving
only the pulses from the newly unwound path.

We note that when the most-direct path shifts from passing
retrograde around the hole to prograde around the hole (see
Figure 6), there is a sudden jump in the frequency of the
strongest pulse train, as the derivative of the effective path
length 
̇ switches from lengthening to shortening. (Equivalently,
in this geometry, a train of high-frequency “secondary” pulses
rises up and replaces the low-frequency “primary” pulses.)
This is the strong field analog of the well-known cusp in the
Shapiro time delay curve, where the time delay switches from
increasing to decreasing; since the observed pulse period is
multiplied by 1 plus the time derivative of the time delay
Pobs = P0(1 + dTShapiro/dt), this corresponds to a discontinuous
jump in period. Unlike the case of the “standard” Shapiro delay,
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Figure 10. Orbital motion of the pulsar at frequency Ω, the parallel transported
spatial direction V μ, and the pulsar beam direction Wμ rotating at frequency ω

relative to V μ, as observed in a frame comoving with the pulsar.

the discontinuity is finite even for a perfect alignment, since the
deflecting mass is a black hole of finite size. There is also a slight
asymmetry due to the special relativistic beaming (headlight
effect) of the pulsar in its orbit.

5. SUMMARY AND CONCLUSIONS

We have introduced the problem of black hole effects on
pulses from an orbiting pulsar. We have shown that in the
case of a spherically symmetric (i.e., nonrotating) hole, the use
of two “universal functions” removes the need for extensive
computation of null geodesics. The universal function approach
to computation has been used for a first exploration of the
phenomena that might be encountered with pulses from a
pulsar–hole system. This first exploration investigates pulse
emission in the orbital plane, for a pulsar in circular orbit around
a nonrotating hole.

Even for this highly simplified configuration we have found a
number of interesting phenomena: (1) “Primary” pulses (pulses
that travel from the pulsar to the receiver with relatively little
gravitational bending) are continually accompanied by higher
order (secondary, tertiary, . . .) pulses emitted during earlier
pulsar orbits. (2) As would be expected, the primary pulses
do not have a constant period, but rather have a period that is
modulated by orbital motion. (3) The period of primary and of
higher-order pulses is not precisely the same, thus the higher-
order pulses arrive with a phase shift, relative to the primary
pulses, that varies from one pulse to the next. (4) Strong field
effects dominate the pulsar observations when the pulsar is on
the far side of the hole, the side opposite that of the receiver.
In this case, the emitted pulse can reach the receiver only by
a highly bent path. (5) During the epoch of emission from
the far side, the sequence of primary pulses and the sequence
of secondary pulses exchange roles. One consequence is that
there is no clear distinction of primary and secondary for pulses
emitted when the pulsar is close to the middle of its passage
through the far side of the hole. (6) For emission during most of
the pulsar orbit, the secondary pulses have much lower intensity
than the primary pulses. As the pulsar moves toward the dark
side, however, the secondary pulses increase in intensity and the
primary pulses decrease. (7) Among the pulses emitted from
the dark side are pulses that are amplified by strong field effects
analogous to gravitational lensing.

The simple configuration studied would be expected to
exaggerate strong field effects when compared to a more
realistic configuration in which pulse emission is directed
well out of the orbital plane. For example, if the pulsar spin
axis is perpendicular to the orbital plane (as in our simple
configuration), and emission is not close to the orbital plane
(contrary to our simple configuration), the pulse trajectory will
never cross the orbital plane, and hence never come sufficiently
near the hole for strong field effects to be significant. More
interesting is the case in which the spin axis and beaming

details are such that the beam does cross (or pass close to) the
orbital plane. Particularly noteworthy would be a configuration
in which the receiver receives no primary pulses, and receives
pulses only with the aid of strong field bending. It is also of note
that some of the phenomena we have described, especially the
existence of higher-order pulses, can also occur in principle in
binary pulsar systems, and pulsar–hole binaries of comparable
mass.

Work is underway on investigating configurations with out-
of-orbit beaming. An exploration of the large parameter space
will be feasible with the efficiency provided by the universal
function approach, so we are, at least at first, restricting attention
to nonrotating supermassive holes.
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APPENDIX A

EMISSION DIRECTION AS A FUNCTION OF TIME

In the orbital plane, we let the angular position of the pulsar
be φ = Ωt , with t the Schwarzschild coordinate time and the
pulsar’s 4-velocity components are

U 0 = γ, Uφ = γ Ω, (A1)

where

γ = 1√
1 − 2M/r0 − r2

0 Ω2
= 1√

1 − 3M/r0
. (A2)

We let V μ be a 4-vector that is spatial (that is, orthogonal
to Uμ), that has no component out of the equatorial orbital
plane, and that is parallel transported around with the pulsar,
as indicated in Figure 10. (Since the pulsar worldline is a
geodesic, this is the same as Fermi–Walker transporting V μ.)
It is straightforward to show that the components of such an
“inertial direction” are

V r = γ −1r0K sin (γ −1Ωt + δ), V φ = K cos (γ −1Ωt + δ),

V 0 = r2
0 Ω

1 − 2M/r0
K cos (γ −1Ωt + δ), (A3)

where K is a scaling constant and δ is a phase factor determining
the direction in which V μ is pointing at t = 0. We let Wμ

be a spatial vector, in the equatorial plane, that points in the
direction of the pulsar beam. We let ψ be the angle, measured
in the positive sense (the positive sense for Ω) from V μ to Wμ.
In terms of the proper time τ measured by the pulsar, we define
the locally observed pulsar spin rate ω by

ψ = ωτ = ωt/γ . (A4)

From WμUμ = 0 and cos ψ = WμVμ/V W , we get

Wr = A

γ
sin (γ −1[Ω − ω]t + δ),

Wφ = A

r0
cos (γ −1[Ω − ω]t + δ),

W 0 = r0ΩA

1 − 2M/r0
cos (γ −1[Ω − ω]t + δ) . (A5)
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In the comoving frame of the pulsar, the spatial direction of
the photon beam is Wμ, thus the photon 4-momentum must have
the form �p = κ �U + �W . The value of κ follows from pμpμ = 0
and we find

�p = A

γ
√

1 − 2M/r0

�U + �W, (A6)

from which we get the components

p0 = A√
1 − 2M/r0

+
r0ΩA

1 − 2M/r0
cos (γ −1[Ω − ω]t + δ),

(A7)

pφ = AΩ√
1 − 2M/r0

+
A

r0
cos (γ −1[Ω − ω]t + δ), (A8)

pr = γ −1A sin (γ −1[Ω − ω]t + δ). (A9)

This tells us that the photon starts out its journey with

pr

pφ
= dr

dφ
= r0γ

−1 sin(γ −1[Ω − ω]t + δ)
r0Ω√

1−2M/r0
+ cos (γ −1[Ω − ω]t + δ)

, (A10)

with

pr

p0
= dr

dt
= γ −1 sin(γ −1[Ω − ω]t + δ)

1√
1−2M/r0

+ r0Ω
1−2M/r0

cos (γ −1[Ω − ω]t + δ)
,

(A11)
and with

pφ

p0
= dφ

dt
=

Ω√
1−2M/r0

+ 1
r0

cos (γ −1[Ω − ω]t + δ)
1√

1−2M/r0
+ r0Ω

1−2M/r0
cos (γ −1[Ω − ω]t + δ)

.

(A12)
Equation (20) follows from Equation (A10) and from the
definition of tan φin as the initial value of rdφ/dr .

APPENDIX B

COMPUTATION OF THE UNIVERSAL FUNCTIONS

B.1. Integral for φ∞

For a photon beamed in the equatorial plane, we assume that
we know its initial radial location r0 and its initial direction, as
specified by the angle measured with respect to the outgoing
radial direction

φin = tan−1 (r0dφ/dr) . (B1)

The equation for the photon orbit is

1

r4

(
dr

dφ

)2

+
1 − 2M/r

r2
= 1

b2
. (B2)

From the known initial values of r and of dr/dφ, we solve
Equation (B2) for the impact parameter b, a constant of motion
for the orbit. We proceed with the following steps to find φ∞. In
the following, we describe as “delicate” any integral that has a
divergent integrand, and for which special techniques, described
in Appendix B.3., must be used.

1. Suppose cos (φin) > 0, so that the photon is emitted going
generally outward. In this case the photon will be moving
only to larger r, but it may be moving to larger or smaller φ,
and we must separate this case into two subcases depending
on the initial value of dr/dφ:

(a) If initially dr/dφ > 0, then we use

φ∞(t) = Ωt +
∫ ∞

r0

dr√
r4/b(t)2 − r2 + 2Mr

. (B3)

(b) If initially dr/dφ < 0, we use

φ∞(t) = Ωt −
∫ ∞

r0

dr√
r4/b(t)2 − r2 + 2Mr

. (B4)

In both these cases, the integrands do not diverge, and no
special techniques are needed to carry out the integration.

2. If cos φin = 0, it means that the photon is emitted on
a trajectory tangent to the pulsar orbit. In this case, we
must check whether the photon is going in the direction of
increasing or decreasing φ:
(a) If sin φin > 0, then we use Equation (B3).
(b) If sin φin < 0, then we use Equation (B4).
In the cos φin = 0 case, either of the integrals is “delicate”
since the integrand diverges at r = r0.

3. If cos (φin) < 0 and if b2 > 27M2, then there will be a value
of r, less than r0, at which dr/dφ = 0, i.e., at which the
denominator of the integrand in Equation (B3) vanishes.
Call that value rmin. Then we need to consider the usual
subcases:
(a) If sin (φin) > 0, then

φ∞(t) = Ωt + 2
∫ r0

rmin

dr√
r4/b(t)2 − r2 + 2Mr

+
∫ ∞

r0

dr√
r4/b(t)2 − r2 + 2Mr

. (B5)

(b) If sin (φin) < 0, then

φ∞(t) = Ωt − 2
∫ r0

rmin

dr√
r4/b(t)2 − r2 + 2Mr

−
∫ ∞

r0

dr√
r4/b(t)2 − r2 + 2Mr

. (B6)

4. If cos (φin) < 0 and if b2 < 27M , then the photon will be
captured by the black hole and there is no meaning to φ∞.

B.2. Integral for Time to Infinity

We need to find the coordinate time it takes for a photon
to reach “infinity.” The calculation must be divided into two
subcases depending on whether the photon starts going outward
(cos (φin) > 0) or inward (cos (φin) < 0). In both cases, the
calculation is based on the equation for dr/dt for the photon
motion (see Misner et al. 1973, Equations (25.64) and (25.66)):

dt

dr
= 1

b(1 − 2M/r)

1√
1
b2 − 1

r2 + 2M
r3

≡ J (r). (B7)

1. If the photon starts its trajectory at time te, with cos (φin) >
0, then the photon will always be traveling outward and

t∞ = te +
∫ ∞

r0

J (r)dr . (B8)

In this case, the integral is not delicate.
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2. If the photon starts its trajectory with cos (φin) = 0, then
Equation (B8) again applies, but now the integral is delicate,
since J (r0) is infinite.

3. If the photon starts its trajectory with cos (φin) < 0, then let
rmin have the same meaning as in Equations (B5) and (B6).
The time of arrival of the pulse is now given by

t∞ = te + 2
∫ r0

rmin

J (r)dr +
∫ ∞

r0

J (r)dr . (B9)

The first integral is delicate since J (rmin) is infinite.

B.3. Computational Details for Integrals

The integrals for φ∞ and t∞ cannot in general be expressed
as elementary functions, and must be handled by numerical
methods. If there is no singularity in the integrand, such as in
the case cos(φin) > 0, we use adaptive Simpson quadrature with
an absolute error limit set at 10−6.

In the case that the integrand does diverge, the divergences
occur at a root of the polynomial r3 − b2r + 2Mb2. For
b2 > 27M2, this polynomial has a negative root and two positive
roots. We denote the largest root as rmin since it is the minimum
radius the photon trajectory will reach. We then write

r4/b2 − r2 + 2Mr = (r − rmin)f (r), (B10)

where f = r2(r + rmin)/b2 − 2Mr/rmin does not vanish in the
intervals of integration that are considered.

The use of this is illustrated for one of the integrals occurring
in Equations (B5) and (B6):

I ≡
∫ r0

rmin

dr√
r4/b2 − r2 + 2Mr

=
∫ r0

rmin

dr√
r − rmin

√
f (r)

(B11)

=
∫ r0

rmin

dr√
r − rmin

√
f (rmin)

+
∫ r0

rmin

dr√
r − rmin

[
1√
f (r)

− 1√
f (rmin)

]

=
∫ r0

rmin

dr√
r − rmin

√
f (rmin)

+
∫ r0

rmin

dr√
r − rmin

×
[

f (rmin) − f (r)(√
f (rmin) +

√
f (r)

)√
f (rmin)

√
f (r)

]
.

The numerator in the second integrand is

f (rmin)−f (r) = − 1

b2
(r−rmin)

(
r2+2rminr+2r2

min−2b2M/rmin
)
,

(B12)
so that the evaluation of I is reduced to

I = 2

√
r0 − rmin√
f (rmin)

− 1

b2
√

f (rmin)

×
∫ r0

rmin

√
r − rmin

(
r2 + 2rminr + 2r2

min − 2b2M/rmin
)
dr

(
√

f (rmin) +
√

f (r))
√

f (r)
.

(B13)

The remaining integral is nonsingular and can be evaluated, e.g.,
with an adaptive Simpson’s routine.

An additional complication arises if b2 is very close to 27M2.
In this case, the two positive roots of f (r) approach each other,
and the integral becomes very large. To deal with this case we
introduce the notation r2 for the smaller positive root and r3 for
the negative root, and we write

I ≡
∫ r0

rmin

dr√
r4/b2 − r2 + 2Mr

= b

∫ r0

rmin

dr√
rmin(rmin − r3)(r − rmin)(r − r2)

+ b

∫ r0

rmin

[
dr√

r(r − r3)(r − rmin)(r − r2)

− dr√
rmin(rmin − r3)(r − rmin)(r − r2)

]

= b√
rmin(rmin − r3)

{∫ r0

rmin

dr√
(r − rmin)(r − r2)

−
∫ r0

rmin

√
r − rmin(r + rmin − r3) dr(√

rmin(rmin − r3) +
√

r(r − r3)
)√

r(r − r3)(r − r2)

}

= b√
rmin(rmin − r3)

{
2 log

(√
r0 − rmin +

√
r0 − r2√

rmin − r2

)

−
∫ r0

rmin

√
r − rmin(r + rmin − r3) dr(√

rmin(rmin − r3) +
√

r(r − r3)
) √

r(r − r3)(r − r2)

}
.

(B14)

The remaining integrand is well behaved at r = rmin and is
straightforward to evaluate numerically.

To get asymptotic approximations for φin near φcrit we take
b2 = 27M2 + ε, and we find that rmin ≈ 3M +

√
ε /3 and

r2 ≈ 3M − √
ε /3. If we set φin = φcrit − Δφ, and assume

positive φin then from Equations (3) and (4) we find that Δφ ∝ ε
and hence Δφ ∝ (rmin − r2)2. The logarithmic dependence in
Equation (B14) becomes

log(1/
√

rmin − r2 ) ≈ log Δφ ≈ − 1
4 log(1 − φin/φcrit). (B15)

The prefactor of the logarithm in Equation (B14) is evaluated
to 2 when the approximations b = 3

√
3 M , rmin = r2 = 3M ,

r3 = −6M are used, and we get the asymptotic approximation
− 1

2 log (1 − φin/φcrit). The first term in Equation (7) follows
from using this asymptotic approximation for Equation (B14)
in Equation (B5) and modifying the result to make it an odd
function of φin. The remaining terms are added to Equation (7)
to give F (φin) ≈ φin for small φin. Equation (7), therefore, gives
the right qualitative behavior of F (φin) both for φin → 0 and
φin → φcrit.

The approximation for T (φin) in Equation (7) follows from
similar considerations with the addition of a Roemer time delay
r0(1 − cos φin), the time it takes the pulsar signal (with c = 1)
to cross the orbit on its way to the receiver. The appearance of
this effect is clear in the r0 = 100M curve for T (φin) in Figure
2.

It has been useful to have more accurate approximations to
the universal functions than the expressions in Equations (7)
and (8). To that end we have fit the errors (differences from the
numerical integrals) in Equations (7) and (8) with even-order
Chebyshev polynomials. The following polynomials give better
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Table 1
Coefficients of the Residual of Universal Functions F and T

r0(M) φcrit f2 f4 f6 f8 t2 t4 t6 t8 t10

5 2.0895 0.0634022 −0.0707841 0.0160038 −0.000411158 −0.86385 0.930642 −0.160082 0.00547166 0.0
10 2.6109 0.0171645 0.00324181 −0.000180664 0.000315048 −0.263976 0.599057 −0.115977 0.00609665 0.0
30 2.9677 −0.0352832 0.0569467 −0.0110258 0.000910931 −0.414603 0.786804 −0.212809 0.0236697 −0.00100843

100 3.0896 −0.128706 0.134169 −0.0274787 0.00192051 −0.884133 0.929001 −0.23247 0.0249892 −0.00103073

than 1% fits to the numerical calculations when used with the
coefficients in Table 1:

F (φin) = − sign(φin)

[
log

(
1 − |φin|

φcrit

)
+ f2φ

2
in + f4φ

4
in + f6φ

6
in

+ f8φ
8
in

]
− φin

φcrit
+ φin, (B16)

T (φin) = r0(1 − cos φin) − 3
√

3 log

(
1 − |φin|

φcrit

)
− 3

√
3

φcrit
|φin|

+ t2φ
2
in + t4φ

4
in + t6φ

6
in + t8φ

8
in + t10φ

10
in . (B17)
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