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ABSTRACT

We report on an extensive statistical study of single radio pulsar properties, which we undertook to
estimate the decay timescale of pulsar magnetic fields. We synthesized a population of pulsars using
assumed theoretical distributions of age, initial magnetic field, period of rotation, position, luminosity,
and dispersion measure, taking into account the new distance model for pulsars as well as new velocity
estimates. We also took into account the selection effects that characterize pulsar observations. We com-
pared the simulated population with the observed single pulsar population using one- and two-
dimensional Kolmogorov-Smirnov tests to obtain a lower bound of ~160 Myr on the decay timescale.

Subject headings: pulsars: general — stars: evolution — stars: magnetic fields — stars: rotation

1. INTRODUCTION

Ever since the discovery of pulsars and the development
of early theoretical models, there has been much interest
and conjecture about the decay of their magnetic fields.
Strong magnetic fields are essential in understanding the
way pulsars radiate and spin down. Assuming that the
observed spin-down is a result of the energy loss due to
magnetic dipole radiation, it follows straightforwardly that
the surface dipolar fields have a strength of Bg ~ 10'* G in
young pulsars (Taylor & Stinebring 1986). However, there
is no consensus yet on the origin and stability of the mag-
netic fields. The lack of a fundamental understanding of the
pulsar emission mechanism and of the origin of the fields
have led to considerable debate regarding the timescale of
decay of the magnetic field (Sang & Chanmugam 1990).

In their pioneering statistical study of pulsar properties,
Gunn & Ostriker (1970) concluded that pulsar magnetic
dipole fields decay on a timescale of ~10° yr. However, this
conclusion was based on only about a dozen pulsars on
which data were then available. A similar conclusion
regarding the temporal behavior of the magnetic fields can
be reached by comparing their kinetic age with their spin-
down age. The kinetic age is given by 7y ~ z/v,, where z is
their current distance from the Galactic plane, and v, is
their velocity transverse to it. 7y corresponds to the time
since the formation of the pulsar if it is assumed that pulsars
are all formed in the Galactic plane and are ejected with a
high velocity relative to it. The other indicator of the age of
a pulsar is the spin-down time P/2P, where P and P are the
observed period and the period derivative, respectively.
This corresponds to the time since formation if it is assumed
that the initial spin period P; € P and that the magnetic
field is constant. It was noticed that as pulsars aged, the
spin-down age lengthened relative to 7, which can be inter-
preted as a decay of the dipole magnetic field (Helfand &
Tademaru 1977; Lyne, Anderson, & Salter 1982; Lyne,
Manchester, & Taylor 1985). Though a plot, using recent
data, of the kinetic age against the spin-down age does show
this trend, there is a great deal of scatter, and one can say
only that a constant magnetic field definitely seems incon-
sistent with the distribution of points in the kinetic age/
spin-down age plane. Bailes (1989) has subsequently shown
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that the characteristic age of the low-velocity pulsars is not
representative of the time since they acquired the bulk of
their velocities, as at that time they possessed spin periods
of several hundred milliseconds. Thus the evidence for field
decay on the basis of comparison of kinetic and spin-down
ages is discredited. Our ignorance about how far from the
Galactic plane a pulsar was born, as well as the inability to
measure the radial component of the velocity, add to the
uncertainty of the results.

On the theoretical side, it has been suggested (Ostriker &
Gunn 1969) that the magnetic field should decay from the
crust on a timescale of a few million years because of ohmic
dissipation of electrical currents in the neutron star. Calcu-
lations based on the ohmic decay show that the field cannot
decay significantly on the scale of the Hubble time if there is
any penetration of the magnetic field lines into the interior
of the star (Sang & Chanmugam 1990; Sang & Chanmu-
gam 1987). With realistic thermal evolution and conductivi-
ties, isolated neutron stars will maintain large magnetic
fields for more than 101° yr (Romani 1990).

Purely observational evidences have also been significant
in contributing to the controversy. Discovery of very old
neutron stars with substantial field strength in binary
pulsars (Bhattacharya et al. 1992, hereafter B92;
Bhattacharya & Srinivasan 1991; Bhattacharya & van den
Heuvel 1991) and the presence of radio pulsars in globular
clusters indicate that the magnetic field of these neutron
stars cannot continue to decay significantly on the short
timescales discussed in the context of young radio pulsars.

Given the uncertain observational and theoretical situ-
ation, it is useful to approach the problem of magnetic field
decay from a statistical consideration of the large pulsar
database that is now available. The idea here is to simulate
a population of pulsars from assumed theoretical distribu-
tions of various quantities and to subject this set of pulsars
to the same observational selection effects as were in oper-
ation when real pulsars were discovered in different surveys.
This filtered set of pulsars can then be compared with the
real population to see whether the simulated and real popu-
lations have similar distributions of various parameters
such as period, magnetic field, position around the Galaxy,
and so on. Parameter values that best reproduce observed
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distributions are most likely to be those that occur in the
real population. One of the parameters that can be fixed in
this manner is the decay timescale for the magnetic field.

A statistical approach of this kind was taken by Narayan
& Ostriker (1990), who found that the magnetic field decays
on a timescale of ~1 Myr. However, in a detailed investiga-
tion using the same approach, Bhattacharya et al. (1992)
came to the different conclusion that the decay timescale
must be at least as long as ~ 100 Myr. Recently Hartman et
al. (1997) have obtained a similar result from the simulation
of the birth and evolution of radio pulsars throughout the
Galaxy. While it has been usual to consider a simple expo-
nential decay model in these calculations, several authors
have also performed pulsar statistics with a nonexponential
decay model of the magnetic field (Narayan & Ostriker
1990; Wakatsuki et al. 1992). However, such models did not
prove to be a marked improvement over the exponential
decay model in obtaining a good fit between the observed
and simulated data.

In the present paper we closely follow the approach of
Bhattacharya et al. (1992) in order to reexamine the issue of
the field decay timescale. The new aspects of our study are
as follows.

1. We incorporate the most recent catalog of pulsars
(Taylor et al. 1995) from the Princeton database, which
contains data on 706 pulsars. First, a large database is
always helpful in drawing stronger inferences in statistical
studies of this nature. More importantly, many of the
missing P values in the older pulsar catalog (as used in B92)
can be obtained in the new catalog.

2. We use a new distance model (Taylor & Cordes 1993)
that provides estimates accurate to ~25% or better. The
Princeton catalog incorporates the Taylor & Cordes (1993)
distance model to calculate the distances of the pulsars.

3. We use the most recent estimate of the mean pulsar
birth velocity from direct pulsar proper motion measure-
ments (Lyne & Lorimer 1994).

4. We adopt the Galactic potential discussed in Carlberg
& Innanen (1987). This is a three-component axisymmetric
model representing the disk/halo, nucleus, and bulge mass
distribution in the galaxy (Lorimer 1995).

5. We use two-dimensional Kolmogorov-Smirnov (K-S)
tests to compare the distributions of pulsars in the magnetic
field—period plane and the period—dispersion measure sin b
plane. This has some advantages in sensitivity over the pre-
viously used one-dimensional K-S tests, which we also
introduce for comparision with previous work.

6. Our simulations span a greater range of values; for
example, we vary the decay timescale from 10 Myr to a few
hundred million years so that the parameter space is thor-
oughly tested.

7. We carry out a large number of independent simula-
tions to test the level of statistical noise and the repro-
ducibility of results.

In the following sections we discuss the simulation pro-
cedure, the statistical tests involved, and, finally, the results
obtained from the analysis.

2. ASSUMPTIONS AND SELECTION CRITERIA USED IN
SIMULATIONS

The simulation process for evolving a pulsar from the
time of its birth to the present time is based on choosing
initial conditions such as the age of the pulsar, the initial

surface magnetic field, and the period and the initial posi-
tion coordinates from appropriate distributions. All other
essential properties, such as the magnetic field, luminosity,
and flux, can then be calculated from these initial conditions
using evolution equations. In the present study, we synthe-
size a population of single radio pulsars from the assumed
theoretical distributions of the properties using Monte
Carlo techniques. This is followed by application of selec-
tion procedures similar to those that were in effect in the
surveys in which pulsars were discovered. The population of
these selected pulsars is then compared with the observed
population of single radio pulsars.

2.1. Assumptions

Age—The age of a pulsar can be chosen from a uniform
distribution between zero and the Hubble time, under the
assumption that pulsar birthrate is constant (B92).
However, a maximum of 5 times the magnetic field decay
constant t suffices, as any pulsar older than this would
evolve beyond the death line. Thus,

t~ U0, 57, ey
i.e,, the age is chosen from a uniform distribution between 0
and 5t. However, the assumption that the pulsar birthrate is
constant is not a foolproof one. This will be discussed in § 6.

Magnetic field—The initial magnetic field strength B, is
chosen from a normal distribution in log B,;, i.e.,

1
\/2/71:0'10g Bo

— R 2
xexp[ (log B, — log By)

p(log B)d(log B;) =

262

]d(log B). (2
log Bo

The mean value and the dispersion that define the distribu-
tion are to be determined from the comparision of the simu-
lated and observed populations as described below.
Following general practice, we assume that the magnetic

field has an exponential time dependence:

B(t) = B; exp (— %) . )

Period—The period of rotation is calculated from its
relation to the magnetic field using the standard dipole
rotator model (Gunn & Ostriker 1970):

. 8n’R° _,

PP T B*, (€]
where R = 10° cm is the radius and I = 10*° g cm? is the
moment of inertia of the neutron star. The initial period is
taken to be fixed at a value P; = 0.1 s because, as explained
in Bhattacharya et al. (1992), pulsars with an initial period
less than this value evolve to it on a timescale negligible
compared to the age of the pulsars as considered in this
simulation.

Beaming fraction— For a pulsar to be observable, the
pulsar beam should intersect the line of sight to an observer
on Earth. The fraction of the sky covered by a pulsar beam
depends on its period of rotation. We have used the
beaming function f; as modeled by Narayan & Vivekanand
(1983) and Rankin (1990). It is given by

f, ~ P12 o)

for P > 0.1 s. We have independently done the calculation
relating f, and P using nonlinear regression methods to
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re-establish the P~1/2 dependence and determine the con-
stant of proportionality in the process. The expression
obtained by us is given by

fb = 0.36075 x Pp—0-45928 (6)

for P > 0.1 s. For pulsar periods that led to f, < 0.2, we set
f, = 0.2. Using other laws (Lyne & Manchester 1988) to
relate f, and P does not significantly affect our results.

Position—The radial position R; of a pulsar in the
Galactic plane, in Galactocentric coordinates, is chosen
from a normal distribution (Narayan 1987) given by

1 —R?
ex -~ JdR; .

/2nR3 P <2R%> l
The Galactocentric radius of the Sun is assumed to be 8.5
kpc, and the disk scale length R, is 4.8 kpc. Only those
pulsars were retained in our simulation for which the helio-
centric distance was found to be less than 3 kpc. This is
done in order to keep the selection effects in our simulation
similar to those of B92 for comparison of results. Increasing
this distance adds just a few observed pulsars to the sample,
when all other selection criteria are applied (see below),
while considerably increasing the required computing time.

The initial height of the pulsar above (or below) the
Galactic plane is chosen from an exponential distribution
with scale height h of the pulsar progenitors (Mihalas &
Binney 1981):

pP(R)dR; =

@

1 |z]
p(z))dz; 7 exp |: p :|dz, . (8)
Following B92, we have chosen k = 0.06 kpc.

The initial velocity, v, of the pulsars in the vertical direc-
tion was chosen from a Gaussian distribution with mean
{v,, = 0) and dispersion ¢, = 200 km s ! (Lyne & Lorimer
1994, 1995):

1 102
p(UZi)dUZi = E €Xp |:— 5 0'_5:|dvzi . (9)

New determinations of proper motion (Harrison, Lyne, &
Anderson 1993) and the new electron density model of
Taylor & Cordes (1993) have led to a re-estimation of the
velocities of pulsars. The present estimate of g, = 200 km
s~ ! exceeds the value of 110 km s~ ! used by B92 because
the old distance model (Lyne et al. 1985) used in their paper
underestimated the distance to nearby pulsars and also
because of the discovery of a number of young and higher
velocity pulsars in recent astrometric surveys (Harrison et
al. 1993; Fomalont et al. 1992).

The simulated pulsars were allowed to move under the
Galactic potential given by Carlberg & Innanen (1987) (see
Lorimer 1995). This is a three-component, axisymmetric
model representing the disk/halo (®py), nucleus (®,,.), and
bulge mass (®,,) distribution in the Galaxy. The total
Galactic potential is the sum of these three contributions:

Dy = Ppy + Py + Py - (10)
The disk/halo potential is given by
GM
e+, B+ )T + b2+ R
(1)

Opy(R, 2) =
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where M is the disk/halo mass, a and h are the scale length
and scale height of the disk, respectively, and b is the core
radius of the halo. The summation refers to old disk, dark
matter, and young disk contributions. The f§; are pro-
portionality factors. For the nucleus and the bulge contri-
butions, the scale height terms are set equal to zero so that
the form of the potential for these contributions becomes

GM
(I)nuc = q)bulge = T T (12)

/ b2 + RZ

The values of a, b, h, and the §; are obtained from Table A.1
in Lorimer (1995). The Galactocentric radius, R, is taken to
be equal to (x* + y*)? and is generated from a normal
distribution as described above. The circular rotation speed
on the Galactic plane, v,,,, is obtained from the centrifugal
force per unit mass and the gravitational force per unit mass
experienced by a test particle in a gravitational field. It is
given by

P 12
Urot(R) = I:R ﬁ (Dgal(R’ 0)i| . (13)

The circular rotation speed, v,,,, is vectorially added to the
components of velocity generated from the normal prob-
ability distribution described above. For the present study,
only the vertical motion of the pulsar is followed keeping x
and y constant, as will be explained in more detail in § 5.

Luminosity at 400 MHz—It is possible to determine the
luminosity of a pulsar from its period and period derivative.
A model to determine the 400 MHz luminosity has been
provided by Proszynski & Przybycien (1984) and Narayan
(1987) and is given by

1
3

where the units of luminosity are mJy kpc?. In an alterna-
tive model by Stollman (1986), the expression relating the
variables is

p
log (L4o0)y¢ = 6.64 + - log 3 (14)

B
log (Lagodo = (—10.05 + 0.84) + (0.98 + 0.03) log —; ,

log % <13 (15)
and
B
log {L400y0 =2.71 £ 0.60, log P2 >13. (16)

These relations are based on the distribution of observed
luminosity and provide the mean luminosity of a popu-
lation. The observations, and therefore the mean, are,
however, biased toward the higher luminosities. The dis-
tribution of the intrinsic luminosity around the mean has
been modeled by Narayan & Ostriker (1990) and is given by

p(A) = 0.54%*, 17
where
Lyoo >
A=allog—"—"—+b]), 18
< Laoo>o %)

with a = 3.6 and b = 1.8 for Proszynski & Przybycien’s law
and a = 3.0 and b = 2.0 for the Stollman luminosity law.
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The procedure adopted in the simulations is to determine
the mean luminosity given P and P and then to pick at
random a luminosity from the distribution around this
mean. Both of the luminosity laws were used for the
goodness-of-fit tests that followed the simulations.

Determination of flux—The flux in mJy received from a
pulsar at 400 MHz is given by

L
S400 = ﬁ . (19)

Calculation of the limiting flux—Corresponding to the
observation in a given direction in a given survey, there is a
limiting flux S, ;, below which the detection of the pulsar is
not guaranteed. In order to ensure completeness of the
survey, it is necessary to retain only those pulsars that have
flux greater than S,,;,. This limiting flux, S,;,, is a function
of period, dispersion measure, and instrument-specific
parameters. We have used the detection criteria of one of
the four major pulsar surveys conducted at 400 MHz: the
Jodrell Bank survey (Davies, Lyne, & Seiradakis 1972), the
University of Massachusetts—NRAO survey (Damashek,
Taylor, & Hulse 1978), the University of Massachusetts—
Arecibo survey (Hulse & Taylor 1974), and Second Mol-
onglo survey (Manchester et al. 1978).

The dispersion measure can be calculated from the dis-
tance of the pulsar and the electron density at that specified
location. We have adopted the new distance model (Taylor
& Cordes 1993) that incorporates the effects of Galactic
spiral arms, the shapes and locations of which are derived
from the radio and optical observations of H 11 regions. The
model also includes the electron densities of the outer and
inner axisymmetric components and of spiral arms, with
appropriate scale lengths and fluctuation parameters used
to relate the dispersion and scattering contributions of the
features. Owing to its large angular size and proximity, the
Gum Nebula is also a significant contributing factor to the
dispersion measure.

The electron density of a specified Galactic location is
defined as the sum of contributions from each of the four
components:

2
n(x, y, z) = ). n;g{r) sech? <h£> + n, sech? <h£>
i=1 .

4
X '21 f}ga(r, sj) + nGum gGum(u) H (20)
j=

where r = (x*> + y*)!/2. The summation is taken over the

four spiral arms. The f; are scale factors connected to the

spiral arms. The functions g, ¢,, g,, and gg,, signify posi-

tion dependences of the model. The values of the param-

eters of the model can be found in Taylor & Cordes (1993).
The dispersion is obtained from the relation

d
DM = f n.ds . (21)
o

We have used the Fortran subroutine provided by Taylor
& Cordes (1993) to calculate the dispersion measure.

The contribution of scatter broadening to the pulse width
is given by

—4.62+0.52+(1.14+0.
T =10 4.62+0.52+(1.141+0.53) log DM

scatt

+ 10—9.22i0.62+(4.4610.33) log DM (22)
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The cumulative distribution of A log 7 is represented very
well by the function {1 + exp [(x, — A log 7)/a,]} ~*, with
Xo = 0.04 and a, = 0.342 (B92).

The final width of the broadened pulse is given by
(Narayan 1987)

W2 = WZ + Tszamp + T]2)M + Tszcatt H (23)

where 7,,,, is the broadening caused by the finite sampling
time of the data, 7, is due to dispersion smearing, and W, is
the width of unbroadened pulse. The variable tpy =
Cpm DM, where Cpy, is a constant. The values of Cpy and
T.amp 10T the pulsar surveys used in the present study are
given in Narayan (1987). The minimum flux is then
obtained from

T+ T. PW 172
Smm=so( Pt )[ } . @

T W(P—W)

where S, is the survey flux limit, T, is the receiver excess
noise temperature, T, is the sky background temperature,
and T, is a normalization constant. All the parameter
values can be obtained from Haslam et al. (1982), Dewey et
al. (1984), and Narayan (1987).

2.2. Selection Criteria

After a pulsar is generated with parameters chosen at
random from their known distributions, one has to make
sure that the pulsar would actually be observed in at least
one of the surveys used in forming the observed ensemble of
pulsars that is used in the comparision. For it to be
detected, a pulsar must have the right combination of
period and field strength so as to lie above the death line
and should be beamed toward the Earth. Also, the flux
measured should lie above a limiting flux as described
above. Our simulated pulsars were subjected to the selec-
tion criteria described below, so that the accepted set resem-
bles the set of observed pulsars as closely as possible. A
comparision between simulated and observed populations
then becomes meaningful, since both the populations suffer
from the same selection effects.

First selection criterion—A pulsar is retained in the simu-
lation only if it lies above the death line (Ruderman &
Sutherland 1975; Rawley, Taylor, & Davis 1986), ie., it
satisfies the condition

B
57> 017 x 102 G52, (25)

Second selection criterion—We have seen in equation (6)
how the fraction of the sky covered by a pulsar beam is
related to its spin period. We have to make sure that for a
pulsar to be a part of the observed sample, the beam inter-
sects the line of sight. For a randomly oriented pulsar, the
probability that this happens is proportional to the beam-
width. Having obtained f, from P, we selected a random
number u (say), and if the condition u < f, was satisfied, we
retained the pulsar in the simulation; otherwise, we rejected
it. This ensures that, of the pulsars that we begin with, we
retain only the fraction warranted by the beamwidth.

Third selection criterion—We have used observed
pulsars that have been found in at least one of the four
major surveys conducted at 400 MHz, viz. the Jodrell-Bank
survey, the University of Massachusetts—Arecibo survey,
the Second Molonglo survey, and the University of
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Massachusetts—"NRAO survey. Every simulated pulsar that
is included in the sample should therefore be detectable in
at least one of these surveys and meet the selection criterion
for completeness, i.e.,

$400 = Spmin - (26)

3. SAMPLE SELECTION FROM REAL PULSARS

The data for real pulsars were obtained from the catalog
of 706 pulsars from the Princeton database (Taylor et al.
1995). We dropped binaries, supernova remnants, and
X-ray and y-ray pulsars and isolated a subset of 511 single
radio pulsars. An additional 43 pulsars had to be dropped
from the population because of missing P values. The
remaining population of pulsars was then passed through
the same selection effects as those used for the simulated
population, since the models and survey parameters used
for the calculation of S,;, in § 2 give only an approximate
minimum flux for which the surveys were reasonably com-
plete, rather than an absolute minimum flux (B92). This led to
the retention of only 97 pulsars from the observed sample.
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Figure 1 shows the distribution of the age, vertical com-
ponent of dispersion measure, flux, magnetic field, period,
and period derivative of the observed set of 478 pulsars
(dotted lines) and of the selected pulsars (solid lines).

4. STATISTICAL TESTS

The simulated population depends on a number of
assumptions and values for parameters. However, the most
important parameters in our simulation are just three: the
decay timescale 7, log B, and the variance o7, 5,. For a
given simulation, we assume a luminosity law and generate
a sequence of populations by allowing log B, o7, 5,, and t
to vary in suitable steps.

For each choice of parameters, we have used the
Kolmogorov-Smirnov test in its standard one-dimensional
form and a generalization to two dimensions to compare
the simulated and observed populations. We run through
the range of parameters, generate a simulated and selected
sample for each set of parameter values, and make the com-
parision. The aim of this procedure is to determine the
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FiG. 1.—Distribution of various pulsar properties before and after selection. The dotted lines show the distribution for all observed single radio pulsars for
which we have all the required data, and the solid lines show the distribution after selection criteria are applied to the observed population, as explained in

the text.
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parameter values for which we get the best match between
the simulated and the real populations. The value of t for
which we get this match gives an estimate of the magnetic
field decay timescale for the population of single radio
pulsars.

4.1. The One-dimensional Kolmogorov-Smirnov Statistic

The degree of similarity between the simulated and
observed populations can be ascertained by comparing the
distribution of various attributes of individual pulsars, such
as the period and magnetic field for the two populations.
The one-dimensional K-S test provides a simple measure of
the overall difference between two distributions. The K-S
statistic is defined as (see Press et al. 1992 for a brief
discussion)

D = max | SNl(x) - SNz(x)| s (27)

where Sy (x) and Sy,(x) are two cumulative probability dis-
tribution functions of the parameter x. N, and N, are the
number of objects in the two samples, respectively. The
one-dimensional test does not depend in any way on the
shape of the parent distribution and does not require any
binning of the data.

The K-S probability can be obtained for each of the inde-
pendent attributes that define the population. The three
parameters we use are the period, P, the magnetic field, B,
and the vertical component of the dispersion measure,
DM sin | b|, as these can be independently specified for each
pulsar. Battacharya et al. (1992) also use luminosity as an
independent attribute, but we find that it is not necessary to
include it in the tests. The luminosity of each pulsar can be
obtained as described above, given a law that determines
mean luminosity, as in equation (15), for instance, and the
distribution of individual luminosity about the mean, which
has the fixed form given in equations (17) and (18). It is
therefore not an independent parameter. We have verified
that the conclusions we reach about the population are
independent of whether or not the luminosity is used as an
extra attribute in the comparision, and we do not consider
it any further.

From the individual probabilities for the three attributes
P, P, and DM sin|b|, we obtain an overall probability,
which is the product of the three probabilities, and use it as
the indicator of the degree of similarity in the distributions.
We vary the three parameters log By, 0., 5., and 7 in the
manner described above and find the combination for
which the maximum product probability is obtained.

4.2. The Two-dimensional K olmogorov-Smirnov Statistic

In the one-dimensional K-S test, the distribution of each
attribute in the simulated and real populations is compared
independently from the distributions of the other attributes.
However, it would be most natural to consider the joint
distribution of the triplet (P, P, DM sin|b|) for the two
populations. While this would be difficult to do computa-
tionally, schemes have been developed for comparing two-
dimensional distributions (Peacock 1983; Fasano &
Franceschini 1987; see Press et al. 1992 for a brief descrip-
tion and numerical algorithms of the Fasano & Frances-
chini version), which are analogous to the
Kolmogorov-Smirnov test applicable in one dimension and
are loosely termed as two-dimensional K-S tests. In our
case, the three attributes can be divided into the two planes
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(P, P) and (P, DM sin|b|), and the distributions in these
planes of the simulated and real pulsars can be considered.
We adopt Fasano & Franceschini’s (1987) version of the
two-dimensional K-S test. In this test, the absolute differ-
ence between the observed and the predicted (normalized)
two-dimensional cumulative distributions is computed
separately in the four quadrants of the plane defined by the
variables of interest. Thus, for any data point with coordi-
nates (X;, Y), the observed data and predictions are
summed up in the four quadrants of the plane defined by

(x<Xiay<Y;): (x<Xi:y>Yi)9 (x>Xi,y<Yvi),
x>X;,y>Y), i=1,...,n. (28)

The statistic Dg_g, is taken to be the largest of the differ-
ences of the integrated probabilities when all data points are
considered. The probability that a difference exceeding
Dy s, is obtained under the null hypothesis is approx-
imately given by Press et al. (1992).

We evaluate the two-dimensional K-S probability for dis-
tributions in the (P, B) and (P, DM sin|b|) planes and, as
in the one-dimensional case, obtain the product probability.
We will see that this appears to provide a better discrimi-
nant than the one-dimensional product probability. We
shall compare the relative merits of the one-dimensional
and two-dimensional tests in detail in a future publication.

4.3. Parameter Ranges

As explained at the beginning of this section, the variable
parameters in our simulations are (1) the magnetic field
decay constant, t; (2) the mean of the logarithm of the initial
magnetic field, log B,; and (3) its variance, 0y, p,- In order
to determine the optimum step size of these parameters and
the number of objects to be used in the simulation, we first
generated a “real population” using some set of input
parameters and tried to recover these through the process of
simulation and comparision using the K-S test.

We began by varying t from 10 to 370 Myr in steps of 10
Myr, log B, from 12.0 to 13.0, and 0., 3, from 0.2 to 0.4,
both in steps of 0.01. We found that the K-S probability
values were insensitive to such small step variations of log
B, and 0., 3, and showed fluctuations. By increasing the
step size and repeating the simulations several times, we
found that step sizes of 0.1 for log B,, and o), 3, and 30 Myr
for 7 led to stable probabilities, and peak probabilities were
always obtained for the values of parameters that were
equal to the input values.

If too few simulated pulsars are used in the comparision
with the observed population, the results obtained will
change owing to “noise” from one set of simulated pulsars
to another. On the other hand, if the simulated set is very
large, the requirement on computer time will be prohibitive.
In order to decide on the size of the simulated sample, we
again had trial runs with samples of 200 and 2000 objects
each and tried to recover known input values that went into
defining a “real population.” We found that with 2000
simulated pulsars, the input parameter values could always
be recovered, independent of the seed value used in random
number generation for simulating a population. However,
when the same tests were carried out with 200 simulated
pulsars, we observed unacceptable fluctuations in the prob-
ability values for test runs with different seeds. Therefore, in
all the simulations that followed, we kept the sample size of
the simulated pulsars at 2000. Nevertheless, test runs with
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the smaller number provided valuable insights during the
early stages of the project.

As explained above, the simulation procedure involves
choosing pulsars with parameters that are picked at
random from certain distributions and then passing them
through selection filters to ensure that the simulated objects
could actually be observed on Earth under the conditions of
the discovery surveys. When survey conditions were not
met, the pulsar had to be dropped from consideration. The
rejection level of simulated pulsars because of the imposi-
tion of selection effects was quite high: in order to obtain
2000 simulated pulsars that satisfied the selection effects, we
found it was necessary to make ~ 10° trials, i.e., only one of
every ~ 500 simulated pulsars could meet the selection cri-
teria of at least one of the four surveys from which our
observed sample was derived. The requirement that the cal-
culated flux should be above a minimum limiting flux led to
maximum rejection.

We found that in all trial cases of comparision between
simulated and observed pulsars, maximum probability
values were obtained for log B, in the range 12.3-12.5 and
O10g B, i the range 0.3-0.5. In order to reduce the computer
time needed, we restricted the variation in these parameters
to these short ranges. We ensured from time to time that
probability maxima were not situated outside these ranges
by having runs over wider ranges.

5. RESULTS OF SIMULATIONS

In the simulations reported here we have considered
pulsar motion only in the direction normal to the Galactic
plane, after obtaining their initial positions in the plane
using the appropriate probability distribution. We assume
that the velocity dispersion for the pulsars is 200 km s 1.
Evolution of pulsar positions by considering their motion in
three dimensions slows down the simulation process con-
siderably. We have made some preliminary simulation
studies with three-dimensional motion taken into account,
and the results support the conclusions reported in this
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paper. We shall present details of these simulations in a
later work.

We have performed the one- and two-dimensional K-S
tests between the simulated and observed samples by
varying <log B,) from 12.0 to 12.3 in steps of 0.1, 6}, 5,
from 0.3 to 0.5 in steps of 0.1, and 7 from 10 to 370 Myr in
steps of 30 Myr. We have used the luminosity laws of
Stollman (1986) as well as Proszynski & Przybycien (1984)
in order to arrive at the best-fit model. Our samples of
simulated and selected pulsars always have 2000 objects.

When the mean and dispersion in the initial magnetic
field are varied over their range, we find that the best fit, i.e.,
the maximum product probability, is always obtained for
log B, = 12.4 and 0,,, , = 0.4. We have presented in Table
1 the results of one- and two-dimensional K-S tests when
the decay constant was varied over its range, with log B,
and o0y, p, held fixed at 12.4 and 0.4, respectively. Three sets
of values of the one- and two-dimensional K-S probabilities
corresponding to three sets of simulations with different
seed values are listed. The table shows results for the lumi-
nosity laws of Stollman (1986) as well as those of Proszynski
& Przybycien (1984).

It is seen from Table 1 that for low values of 7, the simula-
tions poorly reproduce the observed distributions. Prob-
abilities are very low for values of 7 up to 100 Myr.
However, beyond t = 160 Myr, there is a distinct rise in the
probability values (by a factor of ~2-4), which tend to
reach saturation for ¢ > 220 Myr. It is important to note
that in the case of the one-dimensional K-S test, probability
values for t > 160 Myr can occasionally drop to values
comparable to those corresponding to <100 Myr. However
this is never so with the two-dimensional K-S probability.
Even though there is statistical fluctuation in the probabil-
ity values for T > 220 Myr, the values at any stage beyond
T > 220 Myr never approach values corresponding to
7 < 100 Myr.

We have shown in Table 2 the peak K-S probabilities and
the corresponding 7 values obtained for many runs, each

TABLE 1
ONE- AND TWO-DIMENSIONAL K-S PRODUCT PROBABILITIES

SIMULATION 1

SIMULATION 2

SIMULATION 3

LummNosiTy LAw 7 (Myr) P ;gduct P ;ﬂdum P ;g)duct P izduct P ;lyrl())duct P ﬁgyduct
Stollman.............oeeenenne. 10 8.3E—-8 1.5E—9 32E-8 1.18E—10 8.5E—9 8.6E—11
40 49E—4 52E-5 6.8E—3 14E—4 40E—4 49E-5
70 0.001 0.001 9.5E—4 1.8E—4 0.002 8.0E—4
100 0.008 0.005 0.013 0.010 0.007 0.009
160 0.015 0.022 0.007 0.020 0.021 0.032
220 0.019 0.024 0.014 0.013 0.006 0.017
250 0.019 0.025 0.020 0.020 0.011 0.026
280 0.017 0.034 0.013 0.022 0.009 0.014
310 0.030 0.035 0.022 0.015 0.018 0.032
370 0.023 0.035 0.069 0.050 0.041 0.072
Proszynski & Przybycien...... 10 47TE-7 99E—-9 1.1IE-7 9.8E—10 4.7E—17 99E—-9
40 64E—4 2.6E—4 1.3E—4 13E—4 6.4E—4 2.6E—4
70 6.0E—4 2.6E—4 6.2E—4 0.001 5.8E—4 2.0E—4
190 0.002 14E—4 7.3E—4 6.9E—5 0.002 14E—4
310 0.006 7.7E—4 0.005 22E—4 0.006 77E—4
340 0.007 29E—4 0.004 33E—4 0.007 29E—4
370 0.019 0.002 0.014 0.001 0.019 0.002

Note—TFor different values of decay timescales for log B, = 12.4 and ,,, 3, = 0.4. The pulsar motion is assumed to be
normal to the Galactic plane, with a velocity dispersion of 200 km s~ !. The K-S probabilities for three sets of simulations
corresponding to different seed values are shown. The number of selected pulsars in each run is 2000.
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TABLE 2

ONE- AND TWO-DIMENSIONAL K-S BEST-FIT VALUES CORRESPONDING TO
PEAK PRODUCT PROBABILITIES

ONE DIMENSION Two DIMENSIONS

LuMNosITY Law T piD T P32

product product

Stollman........coceeeuenennnnens 340 0.029 250 0.044
280 0.033 190 0.040
220 0.045 220 0.060
310 0.035 310 0.056
370 0.049 370 0.057
310 0.052 310 0.090
250 0.043 160 0.066
220 0.034 310 0.054
250 0.026 310 0.060
370 0.041 370 0.072
310 0.029 370 0.036
250 0.048 340 0.066
Proszynski & Przybycien...... 160 0.013 160 0.010
310 0.011 100 0.010
340 0.009 220 0.010
370 0.017 130 0.019
280 0.018 100 0.018
250 0.016 340 0.011

Note.— Each entry for 7 is the decay timescale for which the maximum
product probability is obtained, in a run with 7 varying over the range
10-370 Myr, log B, varying between 12.3 and 12.5, and o,,, 5, varying
between 0.3 and 0.5. In every run the maximum was obtained for log
B, = 12.4 and 7,,, 5, = 0.4, so all entries shown are for these values. Other
assumptions are as in Table 1.

initiated with a different seed value. For each seed value, the
parameters log By, 0y,,5,, and t were varied over their
respective ranges, which were mentioned above. Since in
every run the maximum probability was obtained for log
B, = 12.4 and 0,,, 3, = 0.4, these values are not separately
indicated in the table. It is seen from the table that in every
run the best fit was obtained for 7 > 160 Myr, even though ¢
was varied over a wide range.

It is seen from both Tables 1 and 2 that the probabilities
obtained in the simulations carried out with Stollman’s
luminosity law are always greater than those corresponding
to Proszynski & Przybycien’s luminosity law. Stollman’s
luminosity law therefore provides a better overall fit
between simulated and observed pulsars. This is true for
both one- and two-dimensional K-S tests.

The values of = corresponding to the best fit varied from
160 to 370 Myr in the different sets of simulations using
different initial seed values. It is important to note that even
though we have repeated the entire procedure several times
using different seed values, in none of the cases do we obtain
the best-fit model for values of < 160 Myr, though the
starting value in our simulation loop for 7 is 10 Myr. This
consistently sets a lower bound to the value of 7, which
shows that the existing model favors a longer value of the
magnetic field decay constant. This is equally true for one-
dimensional as well as two-dimensional tests.

Figure 2 illustrates the above results explicitly through
equal probability contours. The contours in each panel
show the locus of equal probability points as log B, and the
magnetic field decay timescale, 7, are varied. In each panel
contours for ,,, 5, = 0.3 and 0.4 are shown. The four panels
correspond to two different seed values for the random
number generators used in the simulations and one- and
two-dimensional K-S tests. Results shown are for Stoll-
man’s luminosity law and a velocity dispersion ¢, = 200 km
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s~ 1. The figure shows the sensitivity of the probability to
variations of different parameters. The vertically elongated
nature of the contours indicates that the probabilities are
more sensitively dependent on the initial magnetic field
value than the decay timescale. The dots in each panel show
the maximum probability, and it is clear that the maximum
in every case occurs at log B, = 12.4 and 0., 5, = 0.4. While
the position of highest probability on the t-axis depends on
the other parameters, it is always high, which indicates that
there is almost no field decay during the lifetime of the
pulsar.

Another point of interest in Table 2 is that the maximum
two-dimensional product probabilities are always greater
than the corresponding one-dimensional product probabil-
ities, which indicates that the two-dimensional test provides
a better way to discriminate between the different sets of
input parameter values so as to obtain the best-fit model.
This also shows that a multiparameter comparison of the
simulated and observed pulsars is better brought out by
testing the distributions in the parameter space by using a
higher dimensional K-S test than by using the one-
dimensional K-S test to compare the properties individ-
ually.

Figure 3 shows the distributions of the observed pulsars
against the simulated pulsars corresponding to log B, =
124, 61,5, =04, and 7 =280 Myr. The distributions
shown are for period, period derivative, the magnetic field,
DM sin b, and the luminosity at 400 MHz. The close coin-
cidence of the distributions of the simulated and the
observed pulsars show that our simulations can reproduce
the actual observed distribution of the respective properties
of the pulsars well. Figures 4 and 5 show the cumulative
distribution of the pulsars for the period, the period deriv-
ative, the magnetic field, and the luminosity for two values
of 7, viz. 280 and 10 Myr. It is quite clear from the figures
that the simulated pulsars follow the observed pulsar dis-
tribution closely for = = 280 Myr, but show a rather poor fit
for © =10 Myr. Figure 6 shows the distribution of the
pulsars in the B-P plane.

6. DISCUSSION

Though we began with an observed sample of 467
pulsars, for each of which we had all the information neces-
sary to do our tests, the selection effects lead to the retention
of only 97 pulsars in our sample. We have found that most
of the rejection occurs because the observed flux falls below
the minimum flux calculated on the basis of the model
based on survey parameters. However, rejection of so many
observed pulsars for this reason implies that all assumptions
in the model for the calculation of S,;, should be thor-
oughly checked, and a better model, which can give a more
realistic minimum flux estimate, should be developed such
that fewer observed pulsars are deleted from the sample.

The selected pulsars tend to have their luminosity toward
the higher values of the luminosity distribution of the full
sample. This happens because of the minimum flux selec-
tion criterion. However, the distributions of all other
parameters are similar for the selected subsample and the
full observed sample.

The main goal that we have addressed in this paper is to
find a good estimate of the magnetic field decay timescale.
Our simulations have consistently shown that the best-fit
models correspond to 7 > 160 Myr. In fact it can be seen
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one- and two-dimensional K-S tests. Stollman’s luminosity law and a velocity dispersion of 200 km s ~* were used.

from the tables that the ¢ > 200 Myr is the most frequently
reproduced value that gives the best-fit solution. It is clear
from Figures 1 and 2 that properties such as the period, the
period derivative, the magnetic field, and the luminosity are
simultaneously well reproduced for the value of z > 200
Myr. However, none of the above mentioned properties
could be matched with the observed sample for 7 ~ 10 Myr.
It is difficult (and perhaps meaningless) to pinpoint an exact
value of © when the model is that of a truncated joint dis-
tribution having so many parameters. However, it is of con-
siderable significance to note that in all the sets of
simulations that we have carried out, we have obtained a
consistent lower bound for <. In a former study, Wakatsuki et
al. (1992) proposed a constant field model as the better
alternative to a decaying model (exponential or power law).
However, exponential decay with timescale > 160 Myr sig-
nifies practically no field decay at all during the active life-
time and hence cannot be distinguished from a truly
constant magnetic field with the data presently available.
We would, however, like to add that experimenting with the
parameters (a and b) in the calculation of L,,, will lead to a
much wider range of acceptable values of t (Hartman et al.

1997). We intend to include this effect in a subsequent study.

We have used the Taylor & Cordes (1993) distance model
to calculate the dispersion measure. However, we find that
the DM sin b factor is not well reproduced in any of the
simulations. This is a bit surprising, since we have seen that
this distance model takes into account all relevant factors of
the structure of the Galaxy. In fact, the reason that
Bhattacharya et al. (1992) obtained 130 pulsars in the selec-
ted observed sample (with 3 kpc cut off in the projected
distance on the Galactic plane) while only 97 pulsars were
included in the present study is that the distance estimates
obtained from the old distance model (Lyne et al. 1985), as
used by Bhattacharya and coworkers, were considerably
lower than the most recent estimates given in the Taylor &
Cordes (1993) model. This is also demonstrated in Figure 7,
which shows that most of the pulsar distances were under-
estimated in the earlier model (Lyne et al. 1985).

As mentioned earlier, we are in the process of carrying
out similar simulations that take into account the motion of
pulsars in three dimensions. Preliminary studies with 200
and 500 simulated pulsars show the same trends as
discussed in this paper.
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The assumption regarding the uniform distribution of the
age of the pulsars should be critically examined. This is
because the existence of a correlation between the present
pulsar distribution and the estimated locations of the spiral
arms at earlier epochs (Ramachandran & Deshpande 1994)
might be a crucial factor in influencing birthrates. This has
not been modeled in the present simulation but would be
important in any future study.

Last, we would like to include a detailed discussion
regarding the justification of the choice of step size in the
variation of log B, and ¢ in the simulation. The choice of
the step size of the variables has an important effect on the
inference that we draw on the field decay constant, 7, and
thus a thorough discussion on the various aspects of it is
relevant. As is explained in § 4.3, we started by varying log
B, and ¢ over a very fine grid of parameter space, as in
Bhattacharya et al. (1992) and Hartman et al. (1997).
However, we found that the best-fit values obtained were
strongly correlated for such fine variation of the parameters.
The fit was indeed equally good everywhere. We described

this as “insensitive to small step variations” and decided to
use larger steps (=0.1) that led to stable peak probability
values and also reduced the computation load to a large
extent. We shall show in a subsequent paper (which is about
to be communicated) that if we retain parameter variation
over such fine grid, a much wider range of acceptable value
of 7 can be obtained. However, we feel that caution must be
taken in the interpretation of this result, since what might
appear to give more acceptable values of © might actually be
caused by statistical noise fluctuations. As we can see, the
whole model is a complex one with the inclusion of many
parameters and variables. The quantity ¢ is not a mono-
tonic function of these variables, nor is the dependence of t
on these parameters a predictable one. This aspect tends to
add to the statistical noise associated with complex numeri-
cal simulations, such as those undertaken in the present
study. However, it is also important to note that noise is
present in any real data set, and one should allow enough
degrees of freedom so as not to suppress it as far as possible.
In Figure 2, we have plotted the probability contours as
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F1G. 4—Cumulative distribution of various properties of simulated and observed pulsars after selection. Details are as in Fig. 3.

obtained from the results of our repeated simulations using
different seed values using the above criterion of the choice
of grids. In the earlier study by Bhattacharya et al. (1992), a
contour level of 1/e? below the maximum on the grid was
used, and the authors found that its location was fairly
stable to the variations of the seed. This is a clear alternative
way of defining the area of best fit.

To conclude, we stress that inclusion of the most recent
distance and velocity estimates make our simulations more
realistic than the previous studies. We also avoid selecting
the x- and y-position coordinates from a uniform distribu-
tion around the Sun (which was a doubtful assumption as
pointed out in B92), generate the coordinates from appro-
priate distributions as explained in § 2, and evolve them
under the Galactic potential. We have used a more detailed
form of this potential (Lorimer 1995) than used in any of the
previous simulations of a similar nature. We have also
taken into account Galactic rotation in solving the equa-
tions of motion in order to model the pulsar position with
as much accuracy as possible. The use of a two-dimensional
Kolmogorov-Smirnov test to examine the distributions of
the pulsars in the B-P and P-DM sin b planes provides a

more sensitive indicator for the comparision of distribu-
tions than the one-dimensional tests used so far. The
present study confirms the result of Bhattacharya et al.
(1992) that there is no significant field decay in single radio
pulsars during their active lifetime.
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Fi1G. 6.—Distribution of pulsars on the B-P plane. The dots represent

4 but for T = 10 Myr.

Luminosity (mJy kpc?)

. The mismatch between observation and simulation for this low

F1G. 7—Comparision of pulsar distances obtained using the new dis-
tance model and as in Bhattacharya et al. (1992). The distances are in
kiloparsecs.

the simulated and selected pulsars, while the squares represent observed
and selected pulsars.
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