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ABSTRACT
Analysis of pulsar timing data sets may provide the first direct detection of gravitational
waves. This paper, the third in a series describing the mathematical framework implemented
into the TEMPO2 pulsar timing package, reports on using TEMPO2 to simulate the timing residuals
induced by gravitational waves. The TEMPO2 simulations can be used to provide upper bounds
on the amplitude of an isotropic, stochastic, gravitational wave background in our Galaxy and
to determine the sensitivity of a given pulsar timing experiment to individual, supermassive,
binary black hole systems.

Key words: gravitational waves – methods: numerical – pulsars: general.

1 IN T RO D U C T I O N

Sazhin (1978) and Detweiler (1979) were the first to realize that
pulsar timing observations provide a powerful tool for detecting
ultra-low frequency (f g ∼ 10−9 Hz) gravitational waves (GWs).
The precision with which millisecond pulsars are now being timed
makes it possible that pulsar timing experiments could provide the
first direct detection of a GW signal.1 The Parkes Pulsar Timing
Array (PPTA) project (e.g. Hobbs 2008; Manchester 2008 and ref-
erences therein) is an attempt to achieve this ambitious goal by
making regular observations of 20 bright millisecond pulsars.

Recent theoretical work (e.g. Jaffe & Backer 2003; Wyithe &
Loeb 2003) suggests that the strongest signal potentially detectable
by such experiments would be an isotropic stochastic GW back-
ground caused by coalescing supermassive black holes in the cen-
tres of merging galaxies. Jenet et al. (2005) showed that in or-
der to detect this signal, the 20 PPTA pulsars will need to be
timed to a precision of ∼0.1 μs over a time-span of ∼5 years. To
date, the PPTA project has data spanning ∼3 years with rms residu-
als of typically 0.1–3 μs, but it is expected that these residuals will

�E-mail: george.hobbs@csiro.au
1 Observations of the first binary pulsar, B1913+16 (Hulse & Taylor 1974),
provided the first evidence for the existence of GW emission. The pulsar
timing experiments described in this paper are designed to make a direct
detection of GWs.

significantly improve over the next few years with new observing
systems and enhanced signal processing procedures. Therefore, it
is now appropriate to determine how these existing data sets can be
used to limit the amplitude of GW signals, and how future data sets
will be analysed in order to detect a GW signal and determine its
properties.

Pulsar observations lead to measurements of pulse times-of-
arrival (TOAs; tobs

a ) at an observatory. Paper I (Hobbs, Edwards
& Manchester 2006) and Paper II (Edwards, Hobbs & Manchester
2006) of this series detail how the new pulsar timing package,
TEMPO2,2 is used to convert tobs

a to the proper time of emission, tpsr
e ,

as

tpsr
e = tobs

a − �� − �IS − �B, (1)

where �� is the transformation required to convert the site arrival
times to the Solar system barycentre, �IS is the excess propagation
delay due to the interstellar medium and �B is the transformation
to the pulsar frame for binary pulsars. TEMPO2 compares the derived
time of emission with a pulsar model to form ‘timing residuals’,
which are equivalently the deviations between the observed TOAs
and the model predictions. For a perfect pulsar model, random
receiver noise and no other systematic effects, these timing residuals
will have a mean of zero and be uncorrelated, corresponding to a flat,

2 The TEMPO2 software and documentation are available from our web site
http://www.atnf.csiro.au/research/pulsar/tempo2.
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1946 G. Hobbs et al.

or ‘white’, spectrum. Since TEMPO2 does not include GW sources
in the timing model, the existence of any such sources will induce
a signal in the timing residuals. The aim of this paper is to describe
how this signal can be simulated, and how such simulations aid
searches for GW signals within our existing data sets.

Since the intrinsic pulsar pulse period, spin-down, orbital motion
and various astrometric parameters are a priori unknown, they must
be determined from the pulsar timing data. In common with other
pulsar timing analysis programs, TEMPO2 uses initial estimates of
the pulsar parameters to obtain ‘pre-fit’ timing residuals, and then
uses a least-squares fitting procedure to fit an analytical model to
obtain improved pulsar parameter estimations and ‘post-fit’ timing
residuals (full details are given in Paper I). The net outcome of this
process is that a polynomial and various spectral components are
removed from the post-fit timing residuals. Any GW signal with
a period larger than the time-span of the data is largely absorbed
by the removal of the low-order polynomial terms. Hence, pulsar
timing experiments are only sensitive to GW signals with periods
less than, or equal to, the time-span of the data (typically years),
corresponding to frequencies in the range 1–30 nHz.

The three basic types of GW sources that have been discussed
in the literature are (1) continuous wave sources (Peters 1964), (2)
burst sources (e.g. Thorne & Braginskii 1976; Damour & Vilenkin
2001; Kocsis, Gáspár & Márka 2006; Enoki & Nagashima 2007)
and (3) stochastic backgrounds (e.g. Maggiore 2000; Jaffe & Backer
2003). The GW strain spectrum for a stochastic background is
thought to be a power law in the GW frequency, fg, as

hc(fg) = Ag

(
fg

f1 yr

)α

, (2)

where f 1 yr = 1/1 yr and Ag is dimensionless. For a background
generated by supermassive binary black holes, α = −2/3 and Ag ∼
10−15 (Jaffe & Backer 2003; Wyithe & Loeb 2003). Standard models
of inflation (e.g. Turner 1997; Boyle & Buonanno 2008) produce
GW backgrounds with amplitudes well below detectable limits with
current experiments (Ag ∼ 10−18), but some non-standard models
(e.g. Grishchuk 2005) have α ∼ −1 and Ag ∼ 10−15. Cosmic string
cusps are also expected to produce a GW background with α =
−7/6, and Ag can become as large as 10−14 (Caldwell, Battye &
Shellard 1996; Damour & Vilenkin 2001).

Determining a rigorous limit on Ag is not trivial as real pulsar data
sets have irregular sampling, non-white noise due to instrumental
problems, intrinsic pulsar timing noise, astrometric and orbital pa-
rameter fitting and inaccuracies in the terrestrial time standard or
in the planetary ephemeris. Jenet et al. (2006a) recently described
how simulating GW signals within TEMPO2 allows rigorous limits
to be placed on Ag, which take into account the majority of the
issues affecting real pulsar observations. The use of TEMPO2 and the
methods employed were only outlined in the Jenet el al. paper (full
details are provided here). Unfortunately, the Jenet et al. technique
can only be applied to timing residuals that have a white spectrum.
We have recently developed a new technique that makes no assump-
tion on the spectrum of the timing residuals. This recent work will
be presented in a forthcoming paper.

In Section 2, we provide the mathematical framework that allows
TEMPO2 to simulate GW sources. This is divided into sections con-
sidering the timing effects induced by non-evolving GW sources
(Section 2.1) and evolving sources (Section 2.2). In Section 3, we
demonstrate applications of this mathematical framework within
TEMPO2.

2 SI M U L AT I N G TH E E F F E C T O F G W
SOURCES O N PULSAR TOA S

The equations presented in this paper describe how the induced
timing residuals for a given pulsar due to a GW signal can be
calculated. However, this is not sufficient for our purposes. We
must be able to simulate the effects of a GW on the actual pulse
TOAs, because the process of fitting a timing model to obtain the
residuals will modify the effects of a GW. Numerous methods exist
within TEMPO2 to simulate such TOAs. These methods are all based
on the following iterative procedure. First, a set of observation dates
and times is defined by the user. Secondly, the entire TEMPO2 timing
procedure (as described in Paper II) is carried out in order to obtain
pre-fit timing residuals. This procedure uses a user-specified timing
model defining the pulsar being simulated and assumes that the dates
and times described above represent pulse TOAs. Thirdly, these
pre-fit timing residuals, which really describe the timing model,
are subtracted from the original arrival times. The goal is to obtain
arrival times which, when fitted with a timing model, give zero
residuals. However, because of various non-linear operations in
the modelling and fitting process, this procedure must be iterated
until the resulting pre-fit residuals are adequately close to zero for
the simulation being planned. These TOAs can subsequently be
modified by the addition of white Gaussian noise, a model of the
pulsar timing noise and/or the GW signal. The final TOAs are stored
as if they were actual pulsar observations and can be processed using
standard fitting and analysis routines.

TEMPO2 employs two different techniques to simulate the effect
of GWs on pulsar timing residuals. The first technique is used
for constant frequency (i.e. ‘non-evolving’) sources. The second is
used for simulating the effects of binary systems that are evolv-
ing. Since the latter technique is computationally expensive, the
former is used to calculate the effects of a stochastic background
of GWs. The basic implementation into TEMPO2 is described below.
We also provide detailed derivations of all the main equations in the
Appendix.

2.1 Non-evolving GW sources

The majority of the GW sources that may be detectable by pulsar
timing are expected to evolve over time-scales much longer than the
typical observation time. Hence, the non-evolving algorithm used
in TEMPO2 can be used in most GW simulations.

The non-evolving GW simulation algorithm in TEMPO2 has been
defined so that the user can input pulsar and GW source positions in
an equatorial coordinate system. Fig. 1 represents the position, with
respect to the Earth, of either a pulsar (with unit position vector r̂p

and distance dp) or a GW source (r̂g, dg). The sources are specified
by their right ascension and declination (αi , δi).

TEMPO2 assumes a globally flat coordinate system with three spa-
tial coordinates (x, y, z) and one temporal coordinate t. GWs are
treated as a tensor field in this background space–time. A single-
plane GW takes the form

hlm = Re
[
Almei(kg ·x−ωg t)

]
, (3)

where the indices l and m range from 1 to 3 corresponding to the
three spatial coordinates. Alm is a constant tensor amplitude, kg is the
three-dimensional GW vector and ωg is the GW angular frequency.
A GW signal causes fluctuations in the observed pulsar’s observed
spin frequency δf /f . The induced pulsar timing residuals are given
by the integral of this quantity over time. The timing residuals
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Figure 1. Configuration of the coordinate system used throughout this pa-
per. Note that α̂ × δ̂ = r̂ .

induced by a GW of the above form are given by

R(t) = −1

2
Re

[
r̂ l

pAlmr̂m
p

ωg

(
e−iωgt − 1

) ( 1 − eiωgdpζ

ζ

)]
, (4)

where ζ = 1 − cos θ and θ is the angle between the direction of the
pulsar and that of the GW source (see Appendix).

In TEMPO2, the GW tensor amplitude is specified in the (r̂g, α̂g, δ̂g)
coordinate system where the GW is propagating along the −r̂g di-
rection. GWs consistent with Einstein’s equations have two inde-
pendent degrees of freedom, which we label as A+ and A×. Written
in terms of these values, the tensor amplitude takes the form

Alm =
⎛
⎝0 0 0

0 A+ A×
0 A× −A+

⎞
⎠ . (5)

Since TEMPO2 allows one to arbitrarily specify the entire tensor am-
plitude, one can generate GWs consistent with any general metric
theory. Once the GW amplitude is specified in the (r̂g, α̂g, δ̂g) co-
ordinate system, r̂ l

pAlmr̂m
p is evaluated by transforming both r̂p and

Alm into the global (x, y, z) coordinate system. This scalar quantity
is then used in equation (4) to calculate the induced pulsar timing
residuals for the given pulsar. In the remainder of this section, we
will discuss how the above general framework is used to simulate
GWs from a single, non-evolving, binary system as well as from a
stochastic background of GWs.

2.1.1 GWs from supermassive black hole binary systems

Supermassive black hole binary systems in the cores of galaxies are
expected to be sources of detectable GWs. For long-period binary
systems, the time it takes for the orbital period to evolve under the
action of GW emission (∼104 yr for a system with chirp mass Mc =

109 solar masses3 and a 3-year orbital period) is much longer than
any reasonable observation time. Hence, the binary system may be
treated as non-evolving. In general, the GWs emitted by a binary
system will be elliptically polarized (Blanchet et al. 1996). Since
the tensor amplitude is a complex quantity, the effects of such GWs
can be calculated using the framework described above.

In the current TEMPO2 implementation, only systems with zero
eccentricity are considered for the non-evolving case. This is a valid
assumption since binary systems tend towards zero eccentricity
much faster then the decay time-scale (Peters 1964).

Following Wahlquist (1987), TEMPO2 models GWs emitted from
a binary system by setting A+ and A× as follows:

A+ = −Age−iθn [(3 + cos θi) cos(2φ) + i4 cos(θi) sin(2φ)] , (6)

A× = −Age−iθn [(3 + cos θi) sin(2φ) − i4 cos(θi) cos(2φ)] , (7)

where

Ag = M5/3
c ω2/3

o

dg
, (8)

θi is the orbital inclination angle, φ is the orientation of the line of
nodes, θ n is the orbital phase angle at the line of nodes, Mc is the
binary chirp mass, ωo is the orbital frequency and dg is the distance
to the source. Note that the GW angular frequency ωg = 2ωo.

2.1.2 A stochastic background of GWs

It is possible within TEMPO2 to specify a large number of individual
GW sources, each with different properties. A stochastic back-
ground of GWs is simulated by randomly specifying the source
directions and tensor amplitudes of the GWs generated by these
sources. Such a background is described by its characteristic strain
spectrum, hc(f ) (equation 2). In order to simulate such a background,
probability distributions for the GW parameters are defined as fol-
lows. The source directions are chosen uniformly on the celestial
sphere so that the respective probability distribution functions are
given by

P (sin δ) = 1

2
, (9)

P (α) = 1

2π
. (10)

The GW frequencies are chosen to be uniformly distributed in
log ωg:

P (ωg) =
{ 1

ωg

1
log(

ωh
ωl

)
ωl ≤ ωg ≤ ωh

0 otherwise,
(11)

where ωl and ωh can be defined by the user, but default to ωh =
2π/(1 d) and ωl = 2π 0.01

T
, where T is the time-span of the observa-

tions.
A+ and A×, the parameters used to determine the tensor amplitude

(see equation 5), are treated as real numbers (i.e. the imaginary parts
are set to zero) that are normally distributed with zero mean and
rms given by

σA(f ) =
√

log(ωh/ωl)

N
hc(f ), (12)

3 The chirp mass is defined as Mc = (m1 + m2)( m1m2
(m1+m2)2 )3/5, where m1

and m2 are the masses of the binary companions.
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where N is the number of individual plane waves used to generate
the background.

Given the above choice of distributions, the simulated back-
ground will be isotropic, unpolarized and have a Gaussian am-
plitude distribution with characteristic strain hc(f ). For the existing
simulations within TEMPO2, hc(f ) is taken to be of the form given by
equation (2). The spectral index, α, and the amplitude, Ag, depend
on the physical processes generating the background and may be
specified by the user.

2.2 Evolving sources

In general, a binary system will evolve under the action of GW
emission and can have non-zero eccentricity. Although it is possible
to use the above framework to model such a source, it is not very
convenient. A separate module (the GWEVOLVE plug-in; see below)
has been developed in TEMPO2 to deal with this case. Full details of
the equations integrated numerically within TEMPO2 were provided
by Jenet et al. (2004) and therefore are not reproduced here. As
shown in Section 3.2, the user inputs the initial eccentricity and
orbital periods to obtain the resulting timing residuals generated
using the specified geometry of the orbit.

Unfortunately, solving the differential equations numerically is
computationally expensive. Hence, this module is currently only
used to simulate well-defined, individual evolving sources.

3 A PPLIC ATIO N S W ITH IN TEMPO2

As described in Paper I, the TEMPO2 software is based around ‘plug-
ins’ that add to the functionality of the package. The mathemat-
ical framework described above allows for the development of
new plug-ins to simulate, study and detect GW signals. A listing
of the current plug-ins available for GW research is presented in
Section 3.4. These existing plug-ins are divided into those (1) sim-
ulating the induced timing residuals due to single GW sources or
from a stochastic GW background, (2) producing an upper bound
on the amplitude of any GW background, (3) determining the sensi-
tivity of a given set of pulsar timing residuals to single GW sources
and (4) inspecting the resulting timing residuals. In this section, we
demonstrate these plug-ins.

It is important that TEMPO2 is used for fitting the pulsar’s astromet-
ric, pulse and, if applicable, orbital parameters when studying the
induced timing residuals due to GW signals as such fits reduce the
detection sensitivity at various characteristic frequencies. In Fig. 2,
we show the average power spectrum obtained after fitting a stan-
dard pulsar timing model to a white noise, daily sampled data set
with a rms timing residual of 100 ns. The absorption features are
due to the removal of power by fitting for the astrometric, rotational
and orbital parameters. It is difficult to obtain a straightforward de-
scription of these spectral features as they depend on the details of
the fitting procedure and on the sampling of the data. However, in
the TEMPO2 routines for simulating and studying GW signals that
are described below, detailed analytic descriptions of such spectral
features are not required; the simulations take all such effects into
account.

3.1 Stochastic GW background

GW backgrounds can be simulated using the GWBKGRD plug-in. The
power-law spectrum of hc(f ) leads to a power-law spectrum for the
pulsar timing residuals with spectral exponent αres = 2α − 3 (see
equation A58). Hence, for a background generated by supermassive

Figure 2. Average power spectrum obtained from 1000 realizations of white
timing residuals and fitted using the PSR J0437−4715 timing model. The
vertical dotted lines correspond to periodicities of 1 and 0.5 years, respec-
tively. The dashed lines correspond to the orbital period of 5.7 d and twice
the orbital period, respectively.

Figure 3. Example timing residuals induced by a stochastic GW back-
ground (with Ag = 10−14) after fitting for the pulsar’s (PSR B1937+21)
pulse period and its first derivative. The error bars correspond to 100 ns of
additional white Gaussian noise.

black holes where α = −2/3, the induced timing residuals will have
a much steeper red-noise spectrum with spectral exponent αres =
−13/3. Example timing residuals (simulated every two weeks for
3000 days) are shown in Fig. 3 for PSR B1937+21 after fitting for
the pulsar’s pulse frequency and its first derivative.

In Fig. 4, we show the power spectrum4 of 512 weekly sampled
simulated residuals induced by a GW stochastic background with

4 Analysis of such steep ‘red’ spectra is challenging because of the irregular
sampling of the observations and spectral leakage from the low-frequency
components. In this case, the sampling is regular and leakage was eliminated
by pre-whitening the time series with a second difference filter and post-
darkening the spectrum with the inverse of the transfer function of the second
difference filter. We have found that most observations can be handled with
combinations of interpolation and pre-whitening. These techniques are being
integrated into TEMPO2 and will be discussed elsewhere.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 394, 1945–1955

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/394/4/1945/1202538 by Intarcia Therapeutics, Inc. user on 28 January 2020
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Figure 4. The average spectrum of 1000 GW background realizations for
Ag = 10−15 and α = −2/3 for 512 weekly spaced simulated observations.
The solid, diagonal line is the theoretical spectral density.

Ag = 10−15 and α = −2/3. The simulation was repeated 1000 times
and the average power spectrum is shown, with the theoretical spec-
trum (A2

g/12π2) f −13/3 yr3 drawn as a solid line. In each simulation,
10 000 plane GWs were summed as discussed in Section 2.1.2. On
this scale, the average power spectrum can barely be distinguished
from the theoretical line, except at high frequencies. The apparent
high-frequency noise corresponds to a rms of 0.2 ns and occurs due
to rounding errors in the pulsar timing model computations. Since
TEMPO2 has been designed to maintain 1 ns precision, and our best
observations currently have a rms residual of 50 ns, this white noise
is negligible.

3.1.1 Producing an upper bound on the background

Many techniques have been described in the literature for determin-
ing an upper bound on Ag. The earliest work (e.g. Kaspi, Taylor &
Ryba 1994; McHugh et al. 1996) was based on analysing the mea-
sured post-fit timing residuals. More recently, Jenet et al. (2006b)
used the TEMPO2 simulations of GW backgrounds that are described
in this paper to produce an upper bound on Ag for various values
of α. This technique has limitations. Notably, it requires that the
observed timing residuals are ‘white’ (defined as being a data set
whose power spectrum is independent of frequency, or equivalently,
for which the data points have no temporal correlation). Each data
set used in the Jenet et al. (2006) work was tested by (1) forming
power spectra (constructed using a Lomb–Scargle periodogram and
using Gram–Schmidt orthonormal polynomials) and searching for
significant periodicities and (2) averaging adjacent points to confirm
that the variance of the timing residual decreases with the number of
points averaged. However, the power spectrum at low frequencies
is suppressed by the fitting procedure carried out by TEMPO2, and
therefore even though a data set may pass the tests described above,
it may not have a purely white spectrum.

For completeness, we describe here the details of the TEMPO2
usage in the original Jenet et al. (2006) method, but emphasize that
new techniques are currently being developed that are not restricted
to white data sets. It is expected that an implementation of many
of these new techniques (e.g. van Haasteren et al. 2008; Anholm
et al. 2008) will use and develop the TEMPO2 functionality that is
described below.

In the Jenet et al. (2006) method, a statistic is first defined that
is sensitive to a GW background. Following the terminology of

the original paper, we define each pulsar data set to consist of
np measured residuals xp(i), a time tag tp(i) and an uncertainty
σ p(i), where i is the data sample index and p is an index referring
to a particular pulsar. Each data set may be unevenly sampled.
Normalized time tags

τp(i) = 2
[
tp(i) − tp

min

]
/
(
tp
max − tp

min

) − 1 (13)

are defined, where t p
min is the earliest time and tp

max is the time of the
most recent observation for pulsar p. Hence, τ p(i) runs from -1 to 1.
These τ p(i) values are used in a weighted Gram–Schmidt orthogo-
nalization procedure to determine a set of orthonormal polynomials,
jlp(i), defined from

np−1∑
i=0

j l
p(i)jk

p (i)

σ 2
p (i)

= δlk, (14)

where j l
p(i) is the lth order polynomial evaluated at τ p(i) and δlk is the

standard Kronecker delta function. The following coefficients are
calculated using the orthonormal polynomials, j l

p(i), and the timing
residuals, xp(i):

Cl
p =

np−1∑
i=0

j l
p(i)xp(i)

σ 2
p (i)

. (15)

The pulsar average polynomial spectrum is given by

Pl =
∑

p

(
Cl

p

)2

vp
, (16)

where the weighted variance, vp, is defined as 1
np

∑np−1
i=0 [xp(i) −

x̄p]2/σ 2
p (i) and x̄ is the mean of x. For a stochastic background

dominated by low-frequency noise, Pl will be large for low values of
l. Hence, ϒ = ∑l=n

l=0 Pl is used as a statistic to detect the background.
The upper limit, n, can be selected by the user, but n = 7 was used
throughout the Jenet et al. (2006) paper.

The background will be ‘detected’ if ϒ > ϒ0, where ϒ0 is set
so that the false-alarm probability is given by Pf . By default Pf =
0.1 per cent. ϒ0 is obtained using the following Monte Carlo proce-
dure. First, standard pulsar timing procedures are followed to obtain
‘pre-fit’ timing residuals, Rp

1(i), for each pulsar data set. These are
subtracted from the original site-arrival-times and the procedure
iterated until arrival times, tp

1(i), are obtained that are exactly pre-
dicted by each pulsar’s timing model. Noise is then added back to
the arrival times. Since only pulsar residuals that are consistent with
‘white noise’ can be analysed by the Jenet et al. (2006) method, an
independent data set with the same noise distribution as the original
is obtained by adding a shuffled version of the timing residuals Rp

1(i)
to tp

1(i). With this new simulated set of site-arrival-times, the entire
TEMPO2 timing procedure is repeated in order to obtain a new set
of ‘post-fit’ timing residuals, Rp

2(i). The detection algorithm is sub-
sequently applied to Rp

2(i) and the output statistic ϒj is recorded.
This procedure is repeated for Nit iterations, where Nit is set, by
default, to 10 000. These ϒj values are subsequently inspected to
determine ϒ0.

Finally, the upper bound on Ag is determined so that the probabil-
ity of detecting the background with Ag = Aupper is Pd. By default,
Pd = 95 per cent. This upper bound is determined by adding a
GW background of a given amplitude to tp

2(i). As above, the fitting
procedures are carried out to obtain ‘post-fit’ timing residuals, and
the detection algorithm is applied to obtain ϒ . If ϒ > ϒ0, then
the background has been detected. The amplitude is changed using
a bracketing procedure in order to determine the amplitude Aupper

which gives a detection probability of Pd.
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In this technique, the actual timing residuals are used only as
a mechanism for generating instances of white noise in the sim-
ulations. If the spectrum of the measured timing residuals is red,
then this technique will provide an upper bound which is too low
because the shuffled observations (which will be white) will give
lower detection statistics than a simulation based on the correct
noise spectrum. A plug-in package, CHECKWHITE, is available in
TEMPO2 to test the ‘whiteness’ of a data set (see Section 3.4).

The default values of Nit and Ngw have been chosen to produce
a stable upper limit that has the precision necessary for current
astrophysical applications. To demonstrate this, we use the data
set for PSR J1857+0943 that was first described by Kaspi et al.
(1994) and used to determine an upper bound by Jenet et al. (2006)
of A < 1.45 × 10−14 (corresponding to a bound on the energy
density per unit logarithmic frequency interval of 
gw [1/(8 yr)]h2 <

1.3 × 10−7) for α = −1. Multiple simulations using the same
observations, but with different realizations of the GW background
and with different shuffles of the data, produce a mean upper bound
of A < 1.54 × 10−14 and standard deviation of 0.06 × 10−14.
It should be noted that the ‘whiteness’ of the residuals of PSR
J1857+0943 is suspect because the observed detection statistic is
2.4 times higher than the mean of the simulated detection statistics
using shuffled observations. A detection statistic would exceed this
value by only 3 per cent of time by chance, suggesting that the
residuals are somewhat red.

3.1.2 Detecting the background

Hellings & Downs (1983) showed that a GW background signal can
be detected by searching for correlations in the timing residuals of
many pulsars spread over the sky. Within the framework of general
relativity, the induced timing residuals for any isotropic, stochastic
GW background are correlated with a well-defined zero-lag angular
correlation function:

c(θ ) = 3

2
x ln x − x

4
+ 1

2
+ 1

2
δ(x), (17)

where x = [1 − cos θ ]/2 for angle θ in the sky between two pulsars.
Our simulations successfully reproduce this angular correlation. In
Fig. 5, we show the results of simulated timing residuals (using
the GWBKGRD plug-in) in the presence of a GW background for
the 20 PPTA millisecond pulsars (no pulsar noise is added). For
each pulsar pair, we plot the zero-lag correlation versus the angular
separation of the pulsars on the sky. The solid line is the predicted
functional form (equation 17). In order to produce the figure using
standard correlation techniques, we have selected the GW spectral
exponent α = + 3/2 which corresponds to αres = 0 (i.e. white timing
residuals) and have simulated regularly sampled timing residuals
with two weekly sampling over five years. In general, obtaining
the zero-lag correlations between pulsar pairs in the presence of red
noise in the timing residuals and uneven sampling is challenging and
requires pre-whitening of the data in order to attain the maximum
possible signal-to-noise ratio. Hence, Fig. 5 displays the optimal
effect that could be achieved with pre-whitening techniques. These
algorithms, and their implications for GW background detection,
will be described in a subsequent paper.

3.2 Simulating single sources and the effect
parameter fitting

TEMPO2 plug-ins are available to simulate both non-evolving indi-
vidual GW sources (GWSINGLE) and evolving sources (GWEVOLVE).

Figure 5. Pair-wise angular correlation curves for 20 simulated pulsar data
sets in the presence of a GW background with power-law index α = +3/2
and amplitude Ag = 0.01.

The non-evolving source simulations can easily be shown to pro-
duce sinusoidal residuals of the correct amplitude and phase for a
given GW source and pulsar position. In Fig. 6, we use the GW-
EVOLVE plug-in to reproduce the expected PSR B1855+09 timing
residuals for the postulated binary supermassive black hole system
in the radio galaxy 3C66B (Sudou et al. 2003). As described in Jenet
et al. (2004), the induced signal has a low-frequency component due
to the GW signal at the pulsar and a higher frequency component
due to the GW signal at Earth. Fig. 6(a) shows the pre-fit timing
residuals induced by the simulated GWs. Fig. 6(b) gives a realistic
representation of observed post-fit timing residuals if 3C66B did
contain a binary black hole system with the chirp mass and period
given in Sudou et al. (2003). As concluded by Jenet et al. (2004),
such a signal would be easily detectable but has not been observed
in actual pulsar data sets (Fig. 6c). Note that the low-frequency term
would be indistinguishable from the cubic variations often observed
and attributed to pulsar period irregularities.

One of the best-known candidates for a supermassive binary
black hole system emitting GWs with frequencies detectable by
pulsar timing is in the blazar OJ287, where a periodicity of ∼12 yr
has been identified in optical outbursts (e.g. Sillanpaa et al. 1996).
The parameters of this system are not well defined. However, to
obtain an order of magnitude estimate of the induced timing resid-
uals due to the GW emission from this system, we can use the
parameters originally suggested by Sillanpaa et al. (1988) and
make no cosmological corrections. They model the system with
m1 = 2 × 107 M�and m2 = 5 × 109 M�, an orbital period of
9 years in the rest frame of the blazar and an initial eccentric-
ity of e = 0.7. The source has a redshift of 0.306 corresponding
to a distance of ∼1250 Mpc. The GWEVOLVE plug-in shows that
the induced timing residuals due to this system are significantly
less than 1 ns, and therefore undetectable in all existing data sets.
Note that cosmological effects will only change this result by about
20 per cent.

3.3 Public data sets

Many publications which have described limits on the existence
of a GW background, or of individual GW sources, have relied
on publically available pulsar timing residuals (in particular, most
have used the data sets made available by Kaspi et al. 1994). It
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Figure 6. (a) Simulation of the timing residuals induced in the Kaspi et al. (1994) timing residuals for PSR B1855+09 due to the postulated supermassive
binary black hole system in 3C66B. (b) Simulated residuals after including the GW signal, the measured timing residuals and their uncertainties and fitting for
the pulsar’s spin-down, astrometric and orbital parameters. (c) The observed timing residuals.

is likely that the resurgence of interest in pulsar timing arrays and
GW detection will lead to many more techniques being developed.
In order to aid comparison between different techniques, we have
made available a set of simulated pulsar timing residuals with and
without the addition of a GW background. These timing resid-
uals, arrival time files and parameter models are available from
our web site.5 The timing residuals for the simulated PPTA data
are also available as an electronic supplement to this paper (see
Appendix B).

(i) Simulated PPTA data: based on the design specifications for
the PPTA project, we provide data sets with two-weekly sampling
of 20 pulsars with white, Gaussian noise giving 100 ns rms timing
residuals. We include data sets (1) without the addition of a GW
background, (2) with a background where Ag = 10−14 and α = −2/3
and (3) with a background where Ag = 10−15. The pulsar parameter
files were obtained from the Australia National Telescope Facility
(ATNF) pulsar catalogue (Manchester et al. 2005).

(ii) Simulated global timing array data: we provide data sets
which are likely to be created by the global pulsar timing array (i.e.
combining observations of both Northern and Southern hemisphere
pulsars). We simulate 30 pulsars (20 PPTA pulsars and 10 more
northern millisecond pulsars), with data spans ranging from 5 to
12 years, realistic observation dates and rms timing residuals from
100 ns to 1 μs. We provide two different GW background amplitudes
(with Ag = 10−15 and 10−14, respectively).

(iii) Simulated Square Kilometre Array (SKA) data: the SKA is
likely to be able to time at least 100 ms pulsars with rms timing
residuals around 50 ns. In order to simulate possible data sets, we
select the 100 fastest recycled pulsars in the ATNF pulsar catalogue
that are not associated with globular clusters. We simulate weekly
sampled, white timing residuals over a data span of 10 years.

3.4 Plug-in packages

The following plug-ins are available for TEMPO2 from our web site.

(i) FAKE: as described in Section 2, this plug-in allows the user to
simulate pulse arrival times at an observatory that are in accordance
with a specified pulsar timing model to better than 1 ns. This plug-
in has been used in producing the publically available files that are
described in Section 3.3.

5 Select the ‘publically available data files’ link from http://www.
atnf.csiro.au/research/pulsar/tempo2.

(ii) GWBKGRD: this plug-in allows the user to simulate the pre-
and post-fit timing residuals resulting from a specified GW back-
ground.

(iii) GWSINGLE: this plug-in allows the user to simulate the pre-
and post-fit timing residuals resulting from a non-evolving super-
massive black hole binary system at a given distance.

(iv) GWEVOLVE: this plug-in determines pulse arrival times that
have been affected by a binary source evolving due to emission of
gravitational radiation.

(v) GWWHITELIMIT: this plug-in implements the technique first
used by Jenet et al. (2006) to place an upper bound on the amplitude
of a GW background.

(vi) CHECKWHITE: a plug-in to test the ‘whiteness’ of a partic-
ular data set. This plug-in plots various power-spectral estimates
(including a Lomb–Scargle periodogram and a Gram-Schmidt or-
thogonal polynomial power spectrum) and calculates the statistic
used in the Jenet et al. (2006) upper bound technique for the actual
timing residuals and for shuffled realizations of the timing residuals.

(vii) PLK: this plug-in is available with the default TEMPO2 dis-
tribution. It allows the user to view pre- and post-fit pulsar timing
residuals. The user may turn on (or off) fitting for various model
parameters and recalculate post-fit timing residuals. Figs 3 and 6 in
this paper were obtained using this plug-in.

4 C O N C L U S I O N S

A major advantage of TEMPO2 over previous pulsar timing packages
is that its functionality can be expanded using plug-in packages.
Numerous plug-ins have now been developed in order to simulate
and analyse the effects of GW signals on pulsar timing data. This
code has already been used to place the most stringent constraints to
date on the existence of a GW background (Jenet et al. 2006). It is
now being used to study how a GW background could be detected,
to determine the sensitivity of a given pulsar timing array to single
and burst GW sources and to study the possibilities of pulsar timing
array projects with future instruments such as the SKA telescope,
with which we hope to not only detect GWs, but also study their
properties in detail and the sources from which they emanate.
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APPEN D IX A : MATHEMATICAL
DESC R IPTION O F G RAVITATIONA L
WAV E S O U R C E S

This Appendix shows how the expected power spectrum from a
stochastic background of GWs is calculated. This power spectrum
is related to the characteristic strain spectrum, hc, and the normalized
power per logarithmic frequency interval, 
gw. In order to establish
a consistent, well-defined notation, the calculations are presented
from first principles. Note that we are using standard geometrized
units where c = 1.

A1 The stochastic background and its energy density

GWs are linear perturbations to a background space–time metric.
For the purpose of this paper, we will assume that the background

space–time is flat. Hence, the space–time metric may be written as

gμν = ημν + hμν, (A1)

where

ημν =

⎛
⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ (A2)

and hμν is a small perturbation. The linearized Einstein’s equations
with ημν as the background space–time take the following form:

hλ
λ,μν − hλ

μ,λν − hλ
ν,λμ + hλ

μν,λ = 0. (A3)

A stochastic background of GWs is made up of a sum of plane
waves travelling in several directions. Hence, one can write the
metric perturbation due to a stochastic background as

hμν = Re

[
N−1∑
j=0

Aμνj
eik j ·x−iωj t

]
, (A4)

where N is the total number of GWs and Aμνj
, k j and ωj are the

complex amplitude, spatial wave vector and angular frequency of
the jth GW, respectively. ωj is taken to be positive.

The stress-energy tensor for a metric perturbation is given by a
four-dimensional volume average:

T
gw
αβ = 1

32π

1

T

1

L3

∫
hμν,αh

μν
,βd3xdt, (A5)

where L and T are the spatial and temporal limits of integration,
respectively. L and T are taken to be several times the longest
wavelength involved. Using the metric of a stochastic background,
equation (A4), the energy density, ρgw, takes the form

ρgw = T
gw

00 = 1

32π

1

T

1

L3

∫
1

4

∑
j l

(
− iωjAμνj

eik j ·x−ωj t

+ iωjA
∗
μνj

e−ik j ·x+ωj t
)

× (−iωlA
μν
l eikl ·x−ωl t + iωlA

∗μν
l e−ikl ·x+ωl t

)
d3x dt .

(A6)
As long as there are a finite number of plane GWs, or sources, in the
sum, one can make the following approximation with reasonable
accuracy:

1

T

1

L3

∫
ei(kj −kl )·x−(ωj −ωl )tdtd3x = δjl, (A7)

where δjl = 1 if j = l and zero otherwise. Using this, the energy
density becomes

ρgw = 1

64π

∑
i

ω2
i A

∗
μνi

A
μν
i . (A8)

Next, the above sum will be written in integral form using a
probability density function. The amplitude of a given GW depends
on k and a set of other parameters is denoted as α. Examples of
these other parameters are mass and distance. Letting dP/dnαd3k
be the probability density for all the parameters on which a general
GW may depend, the ensemble-averaged energy density is given by

ρgw = 1

64π

∫
ω2A∗

μν(k, α)Aμν(k, α)N
dP

dnαd3k
dnαd3k. (A9)

Since d3k = ω2 dω d
, where d
 = dcos θ dφ and θ and φ are the
usual spherical coordinate angles specifying the GW propagation
direction, the energy density per unit frequency is given by
dρgw

dω
= 1

64π

∫
ω4A∗

μν(k, α)Aμν(k, α)N
dP

dnαd3k
dnα d
. (A10)
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A2 The stochastic background and the induced timing
residuals

The action of a GW slightly alters the arrival times of radio pulses
emitted by a radio pulsar. Equivalently, the rate of arrival of the
pulses will fluctuate. Since the action of gravity does not depend on
the frequency of the electromagnetic (EM) radiation, the problem
of determining the change in the rate of arrival of pulses of EM ra-
diation simplifies to the problem of finding the change in frequency
of a single-frequency plane wave or photon.

The four-dimensional path of a photon is the shortest path be-
tween specified end points. The four-dimensional path is rep-
resented by xμ(λ), where λ is the so-called ‘affine parameter’.
At any given point along the path, the wave four-vector is de-
termined by kμ

p = dxμ/dλ. Since the infinitesimal distance be-
tween two points on the four-dimensional curve is given by√

k
μ
p kν

pgμν dλ, the ‘distance’ between two points along any such

curve is given by

D =
∫ λ1

λ0

√
−k

μ
p kν

pgμν dλ. (A11)

Defining L =
√

−k
μ
p kν

pgμν , the shortest path between two fixed

endpoints is given by the four Lagrange equations:

d

dλ

dL

dkα
− dL

dxα
= 0. (A12)

Using

dL

dkα
= − 1

L
kν

pgαν = − 1

L
kpα (A13)

dL

dxα
= − 1

L

1

2
kμ

p kν
pgμν,α, (A14)

the Lagrange equations yield

dkpα

dλ
= 1

2
kμ

p kν
pgμν,α. (A15)

In order to calculate the terms due to the action of the GW alone,
we will assume that both the pulsar and the observer are at rest in
the global background coordinate system. In this case, kp0 is the
frequency of the photon. kp0 at the pulsar will be written as ωe

while at the receiver it will be denoted as ωr. Next, we will write
the metric using equation (A1) and let kμ

p = k̄μ
p + δk

μ
0 , where k̄μ

p

is the photon four-vector in the unperturbed space–time and δkμ
p is

the induced perturbation to the path. The equation for the perturbed
photon frequency is then given by

dδkp0

dλ
= 1

2
k̄μk̄νhμν,0. (A16)

Using equation (A4) for the metric results in

dδω

dλ
= 1

2
Re

[∑
j

−iωk
μ
p0k

ν
p0Aμνj eikμxμ(λ)

]
, (A17)

where xμ(λ) is the unperturbed photon path given by

xμ(λ) = k̄μ
p (λ − λe) + xμ

e , (A18)

xμ
e is the location of the photon emitter (i.e. the pulsar) and λe is the

affine parameter of the emitter. Putting this into equation (A17) and
integrating yields

δωr − δωe = 1

2
Re

[∑
j

−iωk̄μ
p k̄ν

pAμνj

(
eikμj x

μ
r − eikμj x

μ
e

ikμj k̄
μ
p

)]
,

(A19)

where xμ
r is the location of the receiver. Using

xμ
r − xμ

e = k̄μ
p (λr − λe) (A20)

together with the unperturbed light traveltime between the pulsar
and the receiver, D = x0

r − x0
e , it can be shown that

xμ
r − xμ

e = D

ωe
k̄μ

p . (A21)

With the above, equation (A19) may be written as

δωr − δωe = 1

2
Re

[∑
j

−iωk̄μ
p k̄ν

pAμνj eikμj x
μ
r

(
1 − ei D

ωe
kμj k̄

μ
p

ikμj k̄
μ
p

)]
.

(A22)

Next, take the receiver location to be xμ
r = (t, 0, 0, 0), and write

kμj k̄
μ
p as

kμj k̄
μ
p = −ωeωj (1 − cos θ ), (A23)

where θ is the angle between the direction of the GW source and
the pulsar. With the above, the fractional frequency shift may be
written as

δωr − δωe

ωe
= 1

2
Re

{∑
j

k̄μ
p k̄ν

p

ω2
e

Aμνj e−iωj t

[
1 − eiωj D(1−cos θj )

1 − cos θj

]}
.

(A24)

The coordinate system has been chosen so that each Aμν only
has spatial components. Using this, the final form of the fractional
frequency shift is

δωr − δωe

ωe
= 1

2
Re

{∑
j

k̂l
pk̂

m
p Almj e−iωj t

[
1 − eiωj D(1−cos θj )

1 − cos θj

]}
,

(A25)

where k̂p is the unit vector in the direction of the pulsar.
The change in the arrival time of a pulse at time t is given by

the integral of the fractional change in frequency of the pulse rate.
Hence, the timing residuals induced by a set of plane GWs is given
by

R(t)=
∫ t

0

δωr(t ′) − δωe

ωe
dt ′ = −1

2
Re

{∑
j

i
k̂l

pk̂
m
p Almj

ωj

(e−iωj t − 1)

×
[

1 − eiωj D(1−cos θj )

1 − cos θj

]}
. (A26)

In order to simplify notation, the following definitions are made:

B(t)j = 1

2

i
(
e−iωj t − 1

)
ωj

, (A27)

Cj = 1 − e−iωj D(1−cos θj )

1 − cos θj

, (A28)

Ej = k̂l k̂mAlmj . (A29)

Using the above notation and explicitly taking the real part of the
summand, the induced timing residuals become

R(t) = −1

2

∑
j

Bj (t)CjEj + B∗
j (t)C∗

j E
∗
j . (A30)
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Next, the ensemble-averaged power spectrum of the residuals is
calculated. For a given length of data, T, the variance of the residuals
is given by

σ 2 = 1

T

∫ T

0
R2(t) dt −

[
1

T

∫ T

0
R(t) dt

]2

. (A31)

In order to take the ensemble average of the above, it is assumed
that no two GWs have the same kμ and that GWs with different
kμ are not related to each other; GWs from different regions of
the sky are uncorrelated. Mathematically, the above statements are
expressed as

〈AlmjApqk〉 = 0 (A32)

〈A∗
lmjApqk〉 = 〈A∗

lmjApqj 〉δjk. (A33)

With the above, the ensemble-averaged variance may be calcu-
lated by putting equation (A30) into (A31):

〈σ 2〉= 1

2

∑
j

〈
|Cj |2|Ej |2

[
1

T

∫ T

0
|Bj (t)|2dt −

∣∣∣∣ 1

T

∫ T

0
Bj (t)

∣∣∣∣
2
]〉

,

(A34)

where |x| is the complex amplitude of x. The integrals in the sum-
mand take the form

1

T

∫ T

0
|Bj (t)|2dt −

∣∣∣∣ 1

T

∫ T

0
Bj (t)

∣∣∣∣
2

= 1

4ω2
j

[
1 − sinc2

(
ωjT

2

)]
,

(A35)

where sinc(x) = sin(x)/x. Using the same technique to derive equa-
tion (A9), equation (A34) may be written as

〈σ 2〉 = 1

4

∫
1

ω2

[
1 − sinc2

(
ωT

2

)] ∣∣k̂l k̂mAlm(k, α)
∣∣2

×
{

1 − cos[ωD(1 − cos θ )]

(1 − cos θ )2

}
N

dP

dnαd3k
dnαd3k d
.

(A36)

The fact that k2 = ω2 implies that d3k = ω2 dω. Hence, the above
equation tells us that the power spectrum of the residuals is given
by

dσ 2

dω
= 1

4

∫ [
1 − sinc2

(
ωT

2

)] ∣∣k̂l k̂mAlm(k, α)
∣∣2

× 1 − cos[ωD(1 − cos θ )]

(1 − cos θ )2
N

dP

dnαd3k
dnαd
. (A37)

A3 An isotropic, unpolarized, GW background

Until now, the derived expressions for both the energy density of
a GW background and the induced pulsar timing residuals have
allowed for an arbitrary directional dependence. Here, the calcula-
tions will be simplified for the case of an isotropic background and
the power spectrum of the induced timing residuals will be calcu-
lated in terms of the normalized energy density per unit logarithmic
frequency interval, 
gw(f ). In this case, dP/dnαd3k does not depend
on the direction of the GW. The energy density per unit frequency
may be written as

dρgw

dω
= 1

16

∫
ω4A∗

μν(ω,α)Aμν(ω,α)N
dP

dnαd3k
dnα. (A38)

A∗
μν Aμν can be expressed in terms of the amplitudes of the two

independent GW modes A+ and A×:

A∗
μνA

μν = 2|A+|2 + 2|A×|2. (A39)

Since the GW background is taken to be unpolarized, 〈|A+|2〉 =
〈|A×|2〉. Hence,

〈A∗
μνA

μν〉 = 4|A+|2 (A40)

and the energy density per unit frequency may be written as

dρgw

dω
= 1

4
ω4

∫
|A+(ω,α)|2N dP

dnαd3k
dnα. (A41)

In order to calculate the induced residual power spectrum for
an isotropic background, equation (A37) will be expressed in a
standard spherical coordinate system with the pulsar located along
the z-axis. As before, θ represents the angle between the pulsar and
the direction of the GW as well as the standard spherical coordinate
polar angle. r̂ is the unit vector pointing in the direction of the source.
θ̂ and φ̂ are unit vectors pointing in the direction of increasing θ

and φ, respectively. These unit vectors, which depend on θ and φ,
make up a local right-handed coordinate system with θ̂ × φ̂ = r̂ .
Each Aij can be written in terms of the r̂ , θ̂ , φ̂ coordinate system as

Arr = 0 (A42)

Aθθ = −Aφφ = A+ (A43)

Aθφ = Aφθ = A×, (A44)

with all other components equal to zero. Using the above, one finds
that

|k̂l k̂mAlm(k,α)|2 = sin4(θ )|A+|2. (A45)

Since the pulsar lies in the ẑ direction, φ̂ · ẑ = 0 and θ̂ · ẑ = −sin θ .
The induced timing residuals therefore become

dσ 2

dω
= 1

4

[
1 − sinc2

(
ωT

2

)] ∫
|A+|2N dP

dnαd3k
dnα

×
∫

sin4 θ
1 − cos[ωD(1 − cos θ )]

(1 − cos θ )2
d
. (A46)

Since the background is assumed to be isotropic, neither dP/dnα

d3k nor |A+|2 depend on direction, hence they are taken outside the
d
 integral. The integration over solid angle is given by∫ 1

−1
sin4 θ

1 − cos[ωD(1 − cos θ )]

(1 − cos θ )2
d
 = 16π

3
− 8π

(ωD)2

+ 4π sin(2ωD)

(ωD)3
. (A47)

At this point, the short wavelength approximation will be made
(i.e. ω D 
 1) so that the last two terms in the above are negligible.
The power spectrum of the induced timing residuals can now be
written as

dσ 2

dω
= 4π

3

[
1 − sinc2

(
ωT

2

)] ∫
|A+|2N dP

dnαd3k
dnα. (A48)

Comparing this with equation (A41), the power spectrum of the
induced residuals may be written in terms of the energy density per
unit frequency:

dσ 2

dω
= 16π

3

1

ω4

dρgw

dω

[
1 − sinc2

(
ωT

2

)]
. (A49)

In terms of frequency (f = ω/2π), this becomes

dσ 2

df
= 1

3π3

1

f 4

dρgw

df

[
1 − sinc2

(
2πf T

2

)]
. (A50)

Typically, the energy density spectrum is written per unit loga-
rithmic frequency interval as

dσ 2

df
= 1

3π3

1

f 5

dρgw

d log(f )

[
1 − sinc2

(
2πf T

2

)]
. (A51)
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In terms of 
gw(f ) = 1
ρc

dρgw

d log(f ) , one has

dσ 2

df
= H 2

0

8π4

1

f 5

gw(f )

[
1 − sinc2

(
2πf T

2

)]
, (A52)

where ρc = 3H2
0/8π and H0 is the Hubble constant.

A4 Timing residuals and the characteristic strain spectrum

Several investigators use the ‘one-sided’ strain spectrum, Sh(f ), of
the GW background or the characteristic strain spectrum hc(f ).
These quantities are defined as∫ ∞

0
Sh(f )df = 1

2
〈hμν(t)hμν(t)〉 (A53)

hc(f ) =
√

f Sh(f ). (A54)

Using the same techniques employed above to calculate dρgw/

df , one finds that

〈hμν(t)hμν(t)〉 =
∑

j

1

2
A∗

μνj
Aμνj

= 1

2

∫
A∗

μν(α, k)Aμν(α, k)N
dP

dnαd3k
ω2dωd
dnα

= 64π4

∫
f 2|A+|2N dP

dnαd3k
dnαdf , (A55)

where the last equality holds for the case of an isotropic, unpolarized
background. Using the above and the definition of Sh(f ), one finds
that

Sh(f ) = 32π4f 2

∫
|A+|2N dP

dnαd3k
dnα. (A56)

Using this together with equation (A48), the power spectrum of
the residuals is given by

dσ 2

df
= 1

12π2

1

f 2
Sh(f )

[
1 − sinc2

(
2πf T

2

)]

= 1

12π2

1

f 3
hc(f )2

[
1 − sinc2

(
2πf T

2

)]
. (A57)

For the case of a power-law characteristic strain spectrum as given
by equation (2), the power spectrum of the residuals may be written
as

dσ 2

df
= 1

12π2

(
f

f1yr

)2α−3 A2
g

f 3
1yr

[
1 − sinc2

(
2πf T

2

)]
. (A58)

Also note that the normalized power per logarithmic frequency
interval, 
gw(f ), can also be written in terms of Sh(f ) sand the
characteristic strain spectrum (see equation A52):


gw(f ) = 2π2

3H 2
0

f 3Sh(f ) (A59)

= 2π2

3H 2
0

f 2h2
c(f ) (A60)

= 2π2

3H 2
0

A2
gf

2
1yr

(
f

f1yr

)2α+2

. (A61)

APPENDI X B: SI MULATED PARKES PUL S AR
TI MI NG ARRAY DATA SETS

An electronic supplement to this paper includes the simulated
PPTA data sets. Three tables are provided giving two-weekly
sampling of the 20 PPTA pulsars with the addition of 100 ns
white, Gaussian noise. The first table has no additional GW sig-
nal, the second table includes a GW background where Ag =
10−14 and α = −2/3 and the third table has a background where
Ag = 10−15. The first column in the online tables gives the MJD of
the simulated observation and the remaining 20 columns give the
timing residuals for each of the 20 PPTA pulsars in the following or-
der: PSRs J0437−4715, J0613−0200, J0711−6830, J1022+1001,
J1024−0719, J1045−4509, J1600−3053, J1603−7202, J1643−
1224, J1713+0747, J1730−2304, J1732−5049, J1744−1134,
J1824−2452, J1857+0943, J1909−3744, J1939+2134, J2124−
3358, J2129−5721 and J2145−0750.

SUPPORTI NG INFORMATI ON

Additional Supporting Information may be found in the online ver-
sion of this article:

Appendix B. Simulated PPTA data sets.

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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