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ABSTRACT

Radio pulsars emit regular bursts of radio radiation that propagate through the interstellar medium (ISM), the
tenuous gas and plasma between the stars. Previously known dispersive properties of the ISM cause low-frequency
pulses to be delayed in time with respect to high frequency ones. This effect can be explained by the presence
of free electrons in the medium. The ISM also contains neutral hydrogen that has a well-known resonance at
1420.4 MHz. Electromagnetic theory predicts that at such a resonance, the induced dispersive effects will be
drastically different from those of the free electrons. Pulses traveling through a cloud of neutral hydrogen should
undergo “anomalous dispersion,” which causes the group velocity of the medium to be larger than the speed of
light in vacuum. This superluminal group velocity causes pulses containing frequencies near the resonance to
arrive earlier in time with respect to other pulses. Hence, these pulses appear to travel faster than light. This
phenomenon is caused by an interplay between the timescales present in the pulse and the timescales present
in the medium. Although counter-intuitive, it does not violate the laws of special relativity. Here, we present
Arecibo observations of the radio pulsar PSR B1937+21 that show clear evidence of anomalous dispersion. Though
this effect is known in laboratory physics, this is the first time it has been directly observed in an astrophysical
context, and it has the potential to be a useful tool for studying the properties of neutral hydrogen in the Galaxy.

Key words: galaxies: evolution – galaxies: formation – galaxies: high-redshift

1. INTRODUCTION

A radio pulsar is a rapidly spinning neutron star that emits
a beam of radio radiation. This highly collimated beam of
radiation is rotated into and out of the line of sight of a
distance observer as the star itself rotates about a fixed axis.
Hence, an observer sees a periodic train of pulses arriving
at regular intervals of time. The nature of these pulses gives
astronomers a unique tool to study various physical phenomena
including electromagnetic propagation effects in the interstellar
medium (ISM).

Classically, pulsar pulses are affected by four basic
ISM-related propagation effects, which can alter a pulse’s ob-
served properties: dispersion, absorption, Faraday rotation, and
scattering (Manchester & Taylor 1977). Dispersion is caused
by free electrons in the ISM (Cordes et al. 1991). Pulse ab-
sorption is caused by clouds of neutral hydrogen which absorb
energy near the spin-flip resonance frequency of 1420.4 MHz
(Weisberg et al. 2008; Johnston et al. 2001). The presence of
a magnetic field together with free electrons causes Faraday
rotation, which changes the orientation of the electric field’s
polarization vector (Han et al. 2006). Scattering effects are cre-
ated by free electron density inhomogeneities (Armstrong et al.
1995). Recently, Weisberg et al. (2005) found evidence for stim-
ulated emission driven by pulsar emission. Interstellar hydroxyl
(OH) clouds amplify the intensity of pulses with energy near the
OH resonance. These four phenomena, together with the mod-
ern discovery of pulsar driven stimulated emission, encompass
all previously known and studied ISM propagation effects.

This paper reports on the discovery of a new ISM propaga-
tion effect. The arrival times of pulses are seen to be delayed
or advanced over and above the standard free-electron disper-
sion delay near the spin-flip resonance frequency of neutral
hydrogen. In the next section, the physics of pulse dispersion
is reviewed and the expected pulse time delay is calculated for

the case of a cloud of neutral hydrogen with a thermal (i.e.,
Gaussian) velocity distribution. The observations and data anal-
ysis techniques used to measure this effect are presented in
Section 3. The results and conclusions are given in Section 4.

2. PULSE DISPERSION IN THE ISM

The free electrons in the ISM induce a frequency-dependent
index of refraction, the ratio of the vacuum light propagation
speed to the actual phase velocity in the medium. The index
of refraction may be calculated directly from the “dispersion
relationship,” the equation which relates the wave number, k, to
the wave’s frequency, f. For the case of free electrons in the ISM,
the dispersion relationship takes the following form assuming
cgs units:

k = 2πf

c

√
1 − nee2

πmef 2
, (1)

where ne is the electron number density, e is the electron charge,
and me is the electron mass. The index of refraction is given
by kc/2πf , where c is the speed of light in vacuum. From the
above dispersion relationship, one can calculate the index of
refraction for free electrons:

n(f ) =
√

1 − nee2

πmef 2
. (2)

For frequencies greater than
√

nee2/πme, the so-called “plasma
frequency,” the index of refraction is less than unity. This implies
that the phase velocity is greater than the speed of light. This is
not a violation of any physical principal since it is well known
that information propagates at the “group velocity,” which is
defined as the derivative of the angular frequency, 2πf , with
respect to the wavenumber, k. From Equations (1) and (2), it can
be shown that

vgroup = 2πdf/dk = cn(f ). (3)
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Since n(f ) is less than unity for frequencies above the plasma
frequency, the group velocity is less than the speed of light in
vacuum. The functional form of n(f ) tells us that high-frequency
pulses travel faster than low-frequency pulses. Using the group
velocity, one can calculate the time, Δ, it takes for a pulse to
travel from the pulsar to the telescope. Assuming that the free
electron density is sufficiently low (ne � 107 cm−3 (f/1 GHz)2),
which is true for observing frequencies above 22 kHz, one can
approximate Δ by its Taylor series expansion out to first order
in ne. One then finds that the propagation time may be written
as a sum of two delays:

Δ = Δv + Δf e, (4)

where

Δv = D/c, (5)

Δf e(f ) = e2neD

2πmecf 2
. (6)

D is the distance between the Earth and the pulsar, Δv is the
vacuum propagation time, and Δf e(f ) is the added frequency-
dependent delay due to the free electrons. Note that in order
to simplify the discussion, it is assumed that the free electron
density is uniform. The product neD is known as the dispersion
measure. If the free electron density varies along the line of
sight, this product is replaced by the integral

∫ D

0 ne(l)dl.
The presence of bound electrons can alter the index of re-

fraction of a medium significantly near the resonance frequency
(Jackson 1975; Sommerfeld 1954). n(f ) will have an imagi-
nary part, which is responsible for the absorption, as well as
a real part, which determines the propagation properties. At
resonance, the group velocity becomes greater than the speed
of light in vacuum. This effect, a result of a phenomenon
known as anomalous dispersion, can cause pulses to appear to
travel faster than light without violating causality (Wang et al.
2000). Although the effects of anomalous dispersion have been
measured in ground-based laboratories (Schweinsberg et al.
2006; Dogariu et al. 2001), they have not been observed in an
astrophysical context. Pulsar observations offer a unique oppor-
tunity to directly measure the effects of anomalous dispersion
using the electron spin-flip transition in neutral hydrogen.

Consider the case of a medium made up of a cloud of neutral
hydrogen only. First, let us assume that the atoms are not
moving with respect to the observer. In this case, the dispersion
relationship takes the form (Jackson 1975):

k2c2 = (2πf )2 −
(
nhe

2sh/πme

)
(2πf )2

f 2 − f 2
0 + i2 f

τ

, (7)

where nh is the number density of hydrogen, sh is the “oscillator
strength,” τ is the life time of the spin-flip transition, and f0 is the
resonant frequency of the transition. Note that nh is the number
density only when the spin temperature is zero. Otherwise, it
is the difference between the number density of atoms with
its electron spin in its ground state and the number density of
atoms with its electron spin in its excited state. From the above
dispersion relationship, the squared index of refraction is given
by

n(f )2 = 1 −
(
nhe

2sh/πme

)
f 2 − f 2

0 + i2 f

τ

. (8)

It will be assumed that we are only interested in frequencies near
f0. Since f0 = 1.4 GHz and the observing bandwidth is of order
1 MHz, |f − f0|/f0 � 1. In this case, one can approximate
f 2 − f 2

0 as 2f (f − f0). With this approximation, the squared
index of refraction becomes

n(f )2 = 1 −
(
nhe

2sh/2πmef
)

f − f0 + i 1
τ

. (9)

If the atoms were moving with respect to the observer at speeds
small compared to the speed of light, f0 in the denominator of
the above expression would be replaced by its Doppler-shifted
value of f0(1 − v/c), where v is the radial velocity. If one were
to add in another set of atoms moving at a velocity different from
the first set, the index of refraction would be adjusted simply
by adding another term of a form identical to the second term
in the above expression except with different values of nh and
f0. Following this logic, the squared index of refraction for the
case of a cloud of neutral hydrogen with a thermally distributed
set of radial velocities takes the form:

n(f )2 = 1 − nhe
2sh

2πmef

1√
2πfd

∫
e

−(f ′−fc )2

2f 2
d

f − f ′ + i 1
τ

df ′, (10)

where fc = f0(1−vc/c), vc is the average velocity of the cloud,
fd = f0

√
kbT /mhc2 is the thermal frequency width of the cloud,

kb is Boltzmann’s constant, and T is the kinetic temperature of
the cloud.

The integral on the right-hand side of Equation (10) may be
evaluated analytically in terms of the w(z) function defined in
Abramowitz & Stegun (1970), Section 7. In terms of w(z), the
squared index of refraction becomes

n(f )2 = 1 +
inhe

2sh

2
√

2πmeffd

w

(
f − fc + i/τ√

2fd

)
. (11)

Since w(z) � 1 provided that the imaginary part of z is
greater than zero, the maximum amplitude of the second
term in Equation (11) is given by nhe

2sh/2
√

2πmef
2
d . A full

quantum mechanical treatment shows that sh = hf0/2mc2,
where h is Planck’s constant (Condon & Shortley 1963). Hence,
the maximum amplitude is much less than unity as long as
nh � 1021 cm−3. Under this assumption, we can accurately
approximate n(f ) by

n(f ) = 1 +
inhe

2sh

4
√

2πmeffd

w

(
f − fc + i/τ√

2fd

)
. (12)

In order to simplify further the above expression, we will
ignore the natural line width term, i/τ , since it is much less
than the Doppler broadening width fd. Also, we will define
σo = √

πnhe
2sh/

√
2mefdc. The index of refraction may now

be written as

n(f ) = 1 +
iσ0c

4πf
w

(
f − fc√

2fd

)
. (13)

There were several approximations used to derive the above
expression for the index of refraction. These approximations are
summarized here. First, it is necessary that 1/τ � fd � f0.
Since fd is determined by the cloud temperature, it can be
shown that the above expression for n(f ) is valid as long
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as 10−26 K � T � 1014 K. Second, the number density of
hydrogen atoms in the cloud must be less than 1021 cm−3.
Both of these conditions are easily satisfied in the ISM where
the cloud temperatures range from 10 K up to 104 K and the
densities range from less than 0.01 cm−3 to of order 100 cm−3

(Burke & Graham-Smith 2002, p. 406). Note, there is evidence
of H i clouds with densities up to 104 cm3 (Johnston et al. 2003),
but even this relatively high density is still well within the regime
of validity for Equation (13).

The index of refraction determines both the rate at which the
intensity of the wave-packet decreases as well as the time it
takes for the wave-packet to travel through the medium. The
intensity of the wave-packet decreases as e−σ (f )D , where σ (f )
is the frequency-dependent absorption coefficient and D is the
distance traveled through the cloud. The absorption coefficient is
determined from the imaginary part of the index of refraction:
σ (f ) = Im(4πf n(f )/c). From Equation (13), one finds that
σ (f ) is proportional to the real part of w(z), which is identically
equal to e−z2

when z is purely real (see Abramowitz & Stegun
1970, Section 7.1). Given σ (f ) and the length scale of the cloud,
Dc, the optical depth of the cloud, τ , may be calculated,

τ (f ) = σ (f )Dc = τ0e
− (f −fc )2

f 2
d , (14)

where τ0 = σ0Dc.
The real part of n(f ) determines the propagation proper-

ties of the wave. The propagation time across a cloud is deter-
mined by Δ(f ) = Dc/vgroup(f ) = (Dc/c)Re[dk/df ]/2π =
(Dc/c)d(f n(f ))/df . For the index of refraction given in
Equation (13), Δ(f ) may be written as

Δ(f ) = Dc

c
+

σ0Dc

4
√

2πfd

Re

[
iw′

(
f − fc√

2fd

)]
, (15)

where w′(z) = dw(z)/dz. As for the case of the free electrons,
one can see that the propagation time may be written as
a sum of the vacuum delay term and a term involving the
hydrogen resonance: Δ(f ) = Dc/c + Δrd (f ). Abramowitz &
Stegun (1970) give an expression for w′(z) in terms of w(z):
w′(z) = −2zw(z) + 2i/

√
π . Using this, the resonant dispersion

component of the time delay, Δrd (f ), may be written as

Δrd (f ) = τ0

(
f − fc

4πf 2
d

)
Im

[
w

(
f − fc

fd

)]
− τ0

2
√

2π3/2fd

.

(16)
As an example of what we might expect see in actual data,

Figure 1 shows the absorption spectrum given by e−τ (f ) and
the frequency-dependent delay, Δrd (f ), for a single hydrogen
cloud. The peak optical depth is unity and the temperature is
100 K. Near the peak of the resonance, Δrd (f ) is less than zero,
implying that the pulses arrive earlier in time.

The unique shape of the frequency-dependent delay war-
rants further discussion. The time delay is proportional to
1/vgroup = n(f ) + f dn(f )/df . For most frequencies, the dis-
persion is “normal” where normal dispersion is defined as
dn(f )/df > 0. Within a small range of frequencies near
resonance, dn(f )/df < 0 and the dispersion are said to be
“anomalous.” If the magnitude of dn(f )/df is sufficiently large,
as is the case for H i resonant dispersion, the delay will become
negative. Since the dispersion is normal for most frequencies
and since dn(f )/df is continuous, there must be regions on
either side of the anomalous dispersion region where the dis-
persion transitions back to normal. It just so happens that the

Figure 1. Expected absorption (top panel) and delay (bottom panel) spectrum
caused by a cloud of neutral hydrogen (H i) in the ISM. The kinetic temperature
is 100 K and the optical depth is unity. At the spin-flip transition frequency, the
delay is seen to be negative, corresponding to a pulse advance. Pulses at this
frequency appear to arrive earlier than pulses at frequencies off resonance. Note,
the free electron dispersive effects are not included in the above delay spectrum.

transition regions are still close enough to resonance so that nor-
mal dispersion is enhanced thus producing the delay “wings”
to either side of the anomalous dispersion negative delay peak.
Further discussion of this phenomenon may be found in Jackson
(1975), Section 7.8.

The reason that this pulse advance is not a violation of
causality and relativity is a subtle one. Put simply, the peak
of the pulse does not necessarily carry information. When the
rising edge of the pulse enters the plasma, it causes the atoms to
start emitting radiation at the same frequencies as that present in
the wave-packet, but each with a slightly different phase. This
radiation interferes with the radiation in the wave-packet in just
the right way as to cause the intensity to start to decrease earlier
than it would have in vacuum. Hence, the peak has advanced. It
will not advance earlier than the time the leading edge reached
the plasma.

Let us assume that we wanted to create a signal transmission
device that could send information faster than the speed of light
using the anomalous dispersion effect. We could imagine having
a pulse generator that, when a button is pressed, emits a wave-
packet with frequency content near the H i resonance into an H i

cloud. The pulse would travel through the cloud and hit a receiver
at some distance D away. For argument sake, let us assume that
the pulse envelope is described by a Gaussian function with
a given width. The device is set up so that, initially, it is not
transmitting. As soon as the button is pressed, the device starts
to transmit the signal. If we let E(x, t) represent the electric field
of the signal and say that the button is pressed at t = 0, then
E(0, t) = 0 for all times less than zero and it is non-zero at
t > 0. It can be shown formally that E(D,t) must be equal to
zero for all times t < D/c (Jackson 1975). The transmission
device was programed to emit a pulse whose peak power occurs
at some known duration after the button is pressed. No matter
what happens to the peak of the pulse, it cannot arrive earlier than
D/c. The peak would have occurred at some positive time after
the button is pressed. As it travels through the H i cloud, the peak
may be moving faster than light for some distance, but it will
still arrive after a time D/c, the earliest time when information
about the button being pressed could be received. It may be the
case that the receiver detects the signal only after a threshold
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Figure 2. Delay spectra measured on three consecutive days. The top panel, day 1, was measured using a 2 hr observation. The remaining two days correspond to
1.5 hr observations.

intensity is reached. In which case, the signal traveling through
the H i cloud may be detected before the signal traveling through
vacuum, but the detection will occur after a time D/c. Note that
if the peak continued to move at a rate faster than light, the peak
would eventually arrive earlier than D/c. In this extreme case,
the assumptions used to calculate the group velocity break down
and the group velocity no longer describes the propagation of
the peak. As long at the time shift is small compared to the width
of the pulse, the group velocity will describe the propagation of
the peak of the pulse and the pulse shape itself will not change
(Garrett & McCumber 1970).

In the ISM, there can be free electrons present together with
neutral hydrogen. In this case, the total time delay is a sum of
the free electron delay together with the time delays associated
with each H i cloud present along the line of sight to the pulsar.
It should be emphasized that the anomalous dispersion effects
are completely separate from the normal dispersion effects of
the free electrons. One may be tempted to side-step the whole
causality issue discussed above by saying that the pulses are
advanced by a small amount with respect to a much larger pulse
delay introduced by the free electrons. If the free electrons and
the neutral hydrogen were somehow always forced to occupy
the same regions of space, this may be a valid argument. The
fact of the matter is that the neutral hydrogen may be very
well located in regions of space distinct from the free electrons.
Pulses traveling through the H i regions will appear to travel
faster than light.

3. OBSERVATIONS AND ANALYSIS

Previous pulsar pulse arrival time observations have all been
consistent with free electron dispersion. Observations presented
here show the presence of anomalous dispersion at the reso-
nance frequency of the hydrogen spin-flip transition. Using the
Arecibo1 305 m radio telescope, pulsar PSR B1937+21 was ob-
served using the L-Band wide receiver centered on 1420.4 MHz.
The data were recorded using the Wide-band Arecibo
Pulsar Processor (WAPP) using 128 frequency channels across a
1.5 MHz bandwidth. Both polarizations were summed together.

1 The Arecibo Observatory is operated by Cornell University under contract
from the National Science Foundation.

Data were taken over three days. Observations lasted for 2 hr dur-
ing the first observing session, and 1.5 hr on the other days. For
each day, average pulse profiles were obtained in each channel
using this source’s known phase parameters (i.e., its ephemeris).
From the folded profiles in each frequency channel, a pulse ar-
rival time was obtained by convolving the measured profile
with an analytic profile consisting of two Gaussian pulses. The
parameters of the analytic profile were obtained by fitting the
measured pulsar profile. The effects of dispersion were removed
using standard incoherent dedispersion techniques (Lorimer &
Kramer 2004). Hence, the analytic profile was a good repre-
sentation of the average profile but without the added receiver
noise. See Lorimer & Kramer (2004) for details of pulsar timing
techniques.

Figure 2 shows the measured pulse times-of-arrival relative
to the lowest frequency channel as a function of frequency.
The three panels correspond to the three different observing
days. Over the 1.5 MHz band, the free electron dispersion
delay, Δdf , can be well approximated by a linear function of
the frequency offset from the center of the band. This linear
trend was subtracted from the delays presented in Figure 2. The
expected pulse advances are clearly seen in all three days. The
reproducible features are caused by the structure and velocity
of the hydrogen clouds located between Earth and the pulsar.

Figure 3 shows the measured anomalous dispersion delays av-
eraged over all three observing runs together with the hydrogen
emission and absorption spectra measured from the same data.
Note that these emission and absorption spectra are consistent
with previously published results by Heiles et al. (1983). From
the figure, it can been seen that the structure in the anomalous
dispersion “delay spectrum” is consistent with the features seen
in absorption. Note that digitization effects are known to alter
the absorption spectrum (Weisberg et al. 1980). Such systematic
effects have been removed from the absorption spectrum.

It is possible that digitization effects could be affecting the
delay spectrum. In order to determine if digitization could be
causing or altering the measured delay spectrum, Monte Carlo
style simulations were performed. Several million simulated
pulses were generated by modulating Gaussian noise with
a Gaussian pulse profile. The effects of the free electron
and neutral hydrogen dispersion were added to the signal
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Figure 3. Measured neutral hydrogen emission spectrum (top panel), absorption spectrum (middle panel), and delay spectrum (bottom panel). The free electron
dispersive effects were removed from the data by subtracting the best-fit linear model to the delay data using the off-resonance frequencies. The 1σ error bars take
into account the increased system temperature due to the line emission as well as the reduced signal due to the absorption spectrum.

by Fourier transforming the data into the frequency domain
using the Fast Fourier Transform (FFT) technique, multiplying
the transformed data by a filter function derived from the
appropriate dispersion relationship, and then transforming the
data back into the time domain. The pulsar had a simulated
period and dispersion measure equal to that of PSR B1937+21.
The simulated signal had a 1.5 MHz bandwidth. The H i cloud
was given a temperature of 100 K and a peak optical depth of
1.6. Random Gaussian deviates were then added to the data to
simulate the effects of receiver noise. The noise level was chosen
to be consistent with the L-band wide receiver system. These
data were next digitized into n-bits and then broken up into 128
independent frequency channels using an FFT-based technique.
The signal in each channel was then squared and folded at the
pulsar period. This resulted in a folded filter bank in the same
form as the actual data taken with the WAPPs. Delay spectrum
plots were then made in exactly the same way as done using the
real data. A delay spectrum was made using 2-bits and compared
to one made with 32-bits. No significant differences were seen
in the data sets. As an extreme test, the real part of the H i cloud’s
index of refraction was set to zero, thus removing the anomalous
dispersion pulse arrival time delays/advances. This test would
determine if the digitization process was somehow artificially
causing systematic arrival time delays/advances because of the
frequency-dependant absorption. No significant features were
seen in this delay spectrum. The above tests were also done with
no receiver noise added to the data. Again, no significant features
were seen in the delay spectrum. Hence, it was concluded that
digitization does not introduce significant artifacts into the delay
spectrum.

4. RESULTS AND CONCLUSIONS

The delay spectrum offers a completely new way to probe
neutral hydrogen clouds. The information obtained can be
used together with the absorption information to create a more
accurate understanding of a cloud’s properties. It should be
noted that the delay spectrum carries different information than
the absorption spectrum. The peak of the absorption spectrum

scales as the absorption parameter, τ0, which is proportional to
the H i column density divided by fd (see Equation (13) and the
definition of σ0 above it. Remember that τ0 = σ0Dc and the
column density is given by nhDc). Since fd is proportional to
T 1/2, τ0 scales as T −1/2 times the H i column density. The peak
of the delay spectrum, given by

Δpeak = − τ0

(2π )3/2fd

, (17)

scales as τ0/fd . Hence, the peak delay scales as the H i

column density times T −1. This difference in the temperature
dependence will break the degeneracy between the kinetic
temperature and the column density that exists with only the
absorption information alone. The data presented here illustrate
this idea.

The absorption spectrum in Figure 3 contains both broad- and
narrow-line features. There appears to be about four narrow-line
features whose peaks line up with the peaks seen in the delay
spectrum. Taking the full width at half-maximum (FWHM) of
these features to be of order 2 bins (23 kHz), which corresponds
to a kinetic temperature of about 500 K, the expected delay
given by Equation (17) is of order 10 μs. This is consistent with
the observed delay spectrum. Note that the two largest peaks
in the delay spectrum have the largest errors since the pulsar
flux is weakest at this point. If the delay is actually at 25 μs, as
suggest by the data, then there would have to exist narrow-band,
≈10 kHz, unresolved clouds at these locations. The necessary
kinetic temperatures would have to be about 100 K.

There are also two broad features seen in the data, the
first centered at about 1420.3 MHz and the other starts just
above 1420.4 MHz. It is not possible to determine the kinetic
temperatures of the clouds in these regions from the absorption
spectrum alone since one cannot measure a line width. One
can use Equation (17) together with the delay spectrum to
estimate the cloud bandwidths and kinetic temperatures. For
the region centered at 1420.3 MHz, the measured optical depth
is 0.4 and the delay is 0.9 μs. If this region were made up of
a set of clouds with kinetic temperatures of the same order as
the narrow-line features (i.e., 500 K), but with smaller optical
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depths, the measured delays would have to be of order 2.5 μs, a
factor of over 2.5 times the measured value. Using Equation (17)
together with the measured optical depth and delay, the kinetic
temperature of a single cloud in this region would have to be
5000 K. The FWHM of such a cloud is 70 kHz. Hence, a single
hot cloud could explain the data in this region. Considering the
region above 1420.4 MHz, the optical depth in this region is
around 0.2 while the delay is about 3 μs. This corresponds to a
cloud temperature of about 100 K and FWHM of 10 kHz. This
width is just under the frequency resolution of the data. Hence, a
single high-temperature cloud in this region cannot explain the
data. It must be made up of about five unresolved clouds each
with temperatures of about 100 K. It should be noted that this
is consistent with high spectral resolution observations of other
pulsars that have revealed the existence of absorption features
as narrow as 2 kHz (Johnston et al. 2003; Stanimirović et al.
2003; Frail et al. 1994).

Given the signal-to-noise ratio and frequency resolution of
the current data, it is difficult to make any definitive statements
about the underlying cloud structure aside from the estimates
made above. Also, the analysis presented here assumes distinct
H i clouds in local thermodynamic equilibrium so that the atomic
velocity distribution is given by a Gaussian distribution and the
temperature refers to the thermal velocity width along the line
of sight. Future observations with longer time integrations and
higher frequency resolution together with more sophisticated
analysis techniques that take into account more complicated,
perhaps turbulent, velocity distributions should enable us to
determine or at least place bounds on the number, average
temperature, and column density of the neutral hydrogen clouds
in the line of sight to this pulsar. These techniques can also be
applied to a larger set of pulsars. This will allow us to gain
further insight into the global structure of neutral hydrogen in
the Milky Way.
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