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PULSAR TIMING AND THE DETECTION OF BLACK HOLE BINARY SYSTEMS IN GLOBULAR CLUSTERS

Fredrick A. Jenet,1,2 Teviet Creighton,3 and Andrea Lommen4
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ABSTRACT

The possible existence of intermediate-mass binary black holes (IMBBHs) in globular clusters (GCs) offers
us a unique geometry in which to detect spacetime oscillations. For certain pulsar-IMBBH configurations possible
within a GC, the usual far-field plane wave approximation for the IMBBH metric perturbation severely under-
estimates the induced pulse time-of-arrival (TOA) fluctuations. In this Letter, the expected TOA fluctuations
induced by an IMBBH lying close to the line of sight between a pulsar and the Earth are calculated for the first
time. For an IMBBH consisting of 10 and components, a 10 yr orbital period, and located 0.1 lt-yr from310 M,

the Earth-pulsar line of sight, the induced TOA fluctuations will be of order 5–500 ns.

Subject headings:black hole physics — gravitational waves — pulsars: general

1. INTRODUCTION

The unique stability of electromagnetic pulses emitted by
radio pulsars could allow one to detect the presence of grav-
itational wave (GW) radiation. It is normally assumed that the
pulsar, Earth, and all points along the line of sight are far enough
away from the GW source that the spacetime oscillations may
be treated as gravitational plane waves (Sazhin 1978; Detweiler
1979). Recently, it has been suggested that intermediate-mass
black hole binary systems may form in the centers of globular
clusters (GCs; Miller 2002; Will 2004; Miller & Colbert 2004).
Given the high density of radio pulsars in GCs together with
the relatively small scale length (100 pc) of a GC, it is possible
to find a pulsar whose line of sight will pass closer to the binary
system than its endpoints (Lommen et al. 2005). It is shown
in this Letter that this scenario differs from the plane gravi-
tational wave case in two important ways. First, the amplitude
of the induced time-of-arrival (TOA) fluctuations depends on
the distance of closest approach, or impact parameter, between
the binary system and the Earth-pulsar line of sight. Second,
since the closest distance may be well within one gravitational
wavelength, the near-field terms will play the dominant role in
inducing the observed TOA fluctuations.

In this Letter, the effect of the gravitational field of a binary
system on pulsar timing residuals is calculated. This is the first
time both near- and far-field terms are included in this calcu-
lation, and no assumptions are made about the structure of the
emitted gravitational wave front. The results are accurate to
order and , where is the characteristic relative2 2(v/c) (d/r ) v
velocity of the mass-energy within the source,c is the speed
of light, d is the length scale of the binary system, andr is the
distance between the binary system and the Earth-pulsar line
of sight. The general expressions for the timing residuals de-
rived here may be applied to pulsar timing data to constrain
the properties of putative black hole binary systems.

It should be noted that the 20 new millisecond pulsars re-
cently discovered in the dense globular cluster Terzan 5 (Ran-
som et al. 2005) may provide an interesting application of these

1 California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak
Grove Drive, Pasadena, CA 91109.

2 Center for Gravitational Wave Astronomy, University of Texas at Browns-
ville, TX 78520; merlyn@alum.mit.edu.

3 The LIGO Laboratory, California Institute of Technology, Pasadena, CA
91125; tdcreigh@ligo.caltech.edu.

4 Franklin and Marshall College, Department of Physics and Astronomy,
P.O. Box 3003, Lancaster, PA 17604.

results. The large number of pulsars together with this cluster’s
high central density (≈106 L, pc�3) make it a good candidate
to detect or at least limit the existence of an intermediate-mass
binary black hole (IMBBH) system in its core.

In the next section, the general effect of a binary system on
the arrival times of pulses emitted by a pulsar is calculated.
We make use of geometric units where . Order-of-G p c p 1
magnitude estimates of the induced timing residuals are also
made for astrophysically relevant systems. The results are sum-
marized in the last section.

2. CALCULATING THE RESIDUALS

The curvature of spacetime will cause the observed pulsar
frequency to vary as a function of time. The timing residuals,

, are given by (Detweiler 1979)R(t)

t
n � no eR(t) p dt, (1)�

n0 e

wheret is time, is the observed frequency, and is the emittedn no e

frequency. The frequency shifts will be calculated using per-
turbative methods. Given the four-velocity of an observer, ,mV
the observed pulse frequency is given by , wheremn p �V Km

is the dual to the photon four-velocity. Letm m¯K V p V �n

and , where the barred quantities are them ¯dV K p K � dKm m m

unperturbed values, and and are the corresponding per-dV dK
turbations. For the purposes of this discussion, we choose the
unperturbed four-velocities of both the emitter and the observer
to be 1 in the time direction and zero for the three spatial
components. To lowest order, the timing residuals are given by

t o e om em ¯dK � dK � (dV � dV )K0 0 mR(t) p dt. (2)� K̄0 0

The last term on the right-hand side is the standard Doppler
shift due to the relative velocity between the source and the
emitter. The first two terms are determined by the actual path
of the photons as they travel toward the receiver.

The geodesic equations will be used to solve for bothdK
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Fig. 1.—System configuration and coordinate system.

and . To lowest order, these equations take the followingdV
form:

ddK 1a m n¯ ¯� g K K p 0, (3)mn, adl 2

ddV 1a m n¯ ¯� g V V p 0, (4)mn, adt 2

wherel is the affine parameter along the light-ray path,t is
the proper time of the observer, and is the spacetime metric.gmn

The metric is assumed to be of the form , whereh � h hmn mn mn

is the flat Minkowski metric and is a small perturbationhmn

given, at spacetime location , by(t, r)

′ ′T̄ (t � Fr � r F, r )mn 3 ′h (t, r) p d r , (5)mn � ′Fr � r F

where is the trace-reversed stress energy tensor of the regionT̄mn

generating the spacetime perturbation.
The timing residual due to ray-path propagation will be cal-

culated to first order inh using equation (3) rewritten in integral
form as

zoo edK � dK0 0 ˆ ˆp H(t � z, by � zz) dz, (6)�K̄0 ze

where . This is given in theH(t, r) p (h � h � 2h )/200, 0 zz, 0 0z, 0

black hole barycentered coordinate system shown in Figure 1,
with pointing parallel to the light ray from the radio emitterẑ
to the observer (so that ) and with pointing from0¯ ˆz p K l x
the black hole binary barycenter to the closest point on that
ray. The emitter and observer positions and , and the impactz ze o

parameterb, are defined in Figure 1.
Using equation (5), can be calculated using standard per-hmn

turbative techniques to order and . Remarkably,H2 2(v/c) (d/r )
can be written to this order as , whereF is givenH p dF/dz
by

i˙ ˙ ˙ ˙ ˙ ¨ ¨ ¨Q � Q Q � Q � 2Q Q � Q � 2Qrr i rr zz rz rr zz rzF(t, r) p � � .2(r � z)r (r � z) r � z

(7)

is the second moment of the mass-energy dis-00 ′ ′ 3 ′Q p T r r d r∫ij i j

tribution, and the overdot represents the time derivative. Given that
the mass-energy distribution is usually specified in the ( )-ˆ ˆ ˆx, y, z
coordinate system, it is useful to note that 2Q p Q cos v �rr zz

, , and22Q cosv sinv � Q sin v Q p Q cosv � Q sinvzx xx rz zz zx

, where andi 2 2 1/2Q p Q � Q � Q r p (z � b ) v pi xx yy zz

.arccosz/r
Next, the contribution due to the 4-velocity of the observer

and emitter will be calculated. Equation (4) determines the
acceleration of the body in question. Under the assumption that
the body does not move appreciably under the influence of the

metric perturbation so that the time derivatives ofr may be
ignored, we have , wherem ¯ ¯dV K /K p G(t, r) � G(0, r)m 0

i¨ ¨ ¨2Q � (1 � z/r )Q /2 � (1 � z/r )Q /2rz rr iG(t, r) p
r

i˙ ˙ ˙3Q � 3Q (1 � z/r ) � Q /2rz rr i� 2r

3 i3Q � (1 � 5z/r )Q � (1 � 3z/r )Q /2rz rr i2
� 3r

t i3Q � (3z/2r )Q � (15z/2r )Qrz i rr ′� dt . (8)� [ ]4r0

Using equations (2), (6), and (8), the complete residual may
be written as

t

′ ′ ′R(t) p [F(t , r ) � F(t , r ) � G(t , r ) � G(t , r)]dt , (9)� o ret e o ret
0

where . Note that the terms that will ulti-′t p t � (z � z )ret o e

mately give rise to secular terms [i.e., ] are not includedG(0, r)
in the above expression.

The above derivation assumes that the pulsar and observer
are stationary in the barycentric frame of the binary system.
However, for velocitiesKc, equations (7)–(9) give the correct
leading-order behavior of the residual, provided we allowzand
r to be functions oft.

For the case when goes to negative infinity and goesz ze o

to positive infinity, one can show that the expected residual
does not go to zero. Instead, it limits to

t ′ ′˙ ˙Q (t � r ) � Q (t � r )xx o yy o ′R(t) p 2 dt . (10)� ′ 2b(t )0

Now when the source of the gravitational perturbation is a
massive binary system, we can give an explicit form for the quad-
rupole moment in the barycentric frame: , whereQ p ms sij i j

is the separation vector ands p s � s m p m m /(m � m )2 1 1 2 1 2

is the reduced mass of the binary system with component masses
and . Using standard astrometric notation (see Fig. 2 andm m1 2

Smart 1977), we can write in terms of the inclinationi of theQij

orbit to the plane of the sky, the position angleQ of the ascending
node, the argument of periapseq, and the true anomalyu. Taking

to be the direction of angular momentum of the system, toˆ ˆL u
be ascending node of the orbit, and , the motion ofˆˆ ˆw p L � u
the binary in that coordinate system is

21 � e
ˆ ˆs p a [cos (q � u)u � sin (q � u)w], (11)

1 � ecosu



No. 2, 2005 PULSAR TIMING L127

Fig. 2.—Binary orbital parameters.

TABLE 1
Residuals Induced in Globular Cluster Pulsars by a ,310� 10 M,

10 yr Binary

Globular Cluster Pulsar
b

(lt-yr)
RI

(ns)
RII

(ns) Reference

47 Tuc . . . . . . . . . . . . . . . . . . J0024�7204O 0.26 0.8 11 1
J0024�7204W 0.34 0.5 4 2

NGC 6266. . . . . . . . . . . . . . J1701�3006B 0.18 1.6 50 3
NGC 6624. . . . . . . . . . . . . . B1820�30A 0.37 0.4 3 4
M28 (NGC 6626). . . . . . B1821�24 0.12 4 200 5
NGC 6752. . . . . . . . . . . . . . J1910�5959B 0.38 0.4 2 6

J1910�5959E 0.49 0.2 0.9 6
M15 (NGC 7078). . . . . . B2127�11D 0.19 1.4 40 7

B2127�11H 0.37 0.4 3 7

Note.—The binary is assumed to be at the core of the GC. The pulsars
listed here all have periods of less than 10 ms. The following URL was very
useful in constructing this table: http://www.naic.edu/∼pfreire/GCpsr.html.

References.—(1) Freire et al. 2003; (2) Camilo et al. 2000; (3) Possenti
et al. 2003; (4) Biggs et al. 1994; (5) Rutledge et al. 2004; (6) D’Amico et
al. 2002; (7) Anderson 1993.

wherea is the orbital semimajor axis ande is the eccentricity.
Noting that is the projection of into′ˆ ˆ ˆˆx p x cosv � z sinv xo o

the plane of the sky, and defining its position angleB in the
same sense asQ, the separation vector in the -coordinateˆ ˆ ˆ(x, y, z)
system is

ˆs p x[s cos (Q � B) cosv � s sin (Q � B) cosv cosiu o w o

ˆ� s sinv sin i] � y[s sin (Q � B)w o u

ˆ� s cos (Q � B) cosi] � z[�s cos (Q � B) sinvw u o

� s sin (Q � B) sinv cosi � s cosv sin i].w o w o

(12)

Here we have takenu to be our independent parameter, which
must be evaluated at appropriate retarded times. The time de-
rivatives can be computed analytically using Kepler’s law

, where2 2 3/2 3 1/2u̇ p (2p/P)(1 � ecosu) /(1 � e ) P p 2p(a /M )t
is the orbital period and the total mass of theM p m � mt 1 2

system.
Solving explicitly for the case in which and isb K r , re o

effectively constant over the time of observation, equation (10)
becomes

2 2 2ma 1 � e
R(t) p 2 {sin 2(q � u) sin 2(Q � B) cosi( )2b 1 � ecosu

2 2 2� [sin (q � u) cos i � cos (q � u)] cos 2(Q � B)}.

(13)

Next, order-of-magnitude estimates are made for the ampli-
tude of the induced residuals using the above results. Two cases
will be considered. In case I, and are infinite, butb isz ze o

finite. In case III, is infinite, but (i.e., the pulsarz Fz F ∼ b K Po e

is in the near zone of the gravitational field).
In case I, the amplitude of the induced residuals can be estimated

using equation (13): . For the2 2 2/3 4/3 2R ∼ 2ma /b p 2mM (P/2p) /bI t

nominal case of a binary system with 10 and components,310 M,

a 10 yr orbital period, and an impact parameter of 0.1 lt-yr, one
obtains the following order-of-magnitude estimates:

2/3 �2 4/3m M b PtR ∼ 5 ns .I ( ) ( ) ( ) ( )310 M 10 M 0.1 lt-yr 10 yr, ,

(14)

In case II, the residuals induced by the motion of the binary
system will be dominated by the last term in equation (8).
Hence, an estimate for the residual amplitude is given by

. For the same system, one obtains2/3 10/3 4R ∼ (3/4)mM (P/2p) /bII t

2/3 �4 10/3m M b PtR ∼ 500 ns .II ( ) ( ) ( ) ( )310 M 10 M 0.1 lt-yr 10 yr, ,

(15)

In order to understand the above scaling, note thatb is the
only external scale factor in the problem and that the residuals
are proportional to the quadrupole moment . A simple2Q ∼ ma
dimensional argument therefore givesRscaling as , times2 2ma /b

for every time integral ofQ in the leading-order term. CaseP/b
I involves no time integrals, while case II has two. Kepler’s
law is then used to writea in terms of the orbital period.

3. APPLICATION AND DISCUSSION

General expressions for the periodic timing residuals induced
by a binary system were calculated. It was shown that system-
atic variations in the pulsar timing residuals depend not only
on the location of the pulsar and the observer, but also on how
close the binary system is to the pulsar observer line of sight.
As long as the line-of-sight impact parameter is finite, a nonzero
residual amplitude can still occur even if both the pulsar and
the observer are infinitely far away from the binary system.
For a given impact parameter, the residuals calculated using
case I and case II represent the range of possible residual am-
plitudes provided that .z � 0e

Globular clusters present an interesting opportunity to dis-
cover intermediate-mass binary black holes using pulsar tim-
ing. Table 1 shows the timing residuals, for cases I and II,
that a binary system with a 10 yr period would310� 10 M,

induce on known pulsars whose lines of sight pass near the
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cores of their respective clusters. By way of comparison,
the rms timing noise for millisecond pulsars is approaching
the level of 100 ns or better (van Straten et al. 2001). New
efforts like the Parkes Pulsar Timing Array project are ac-
tively working to improve the rms noise level.5 The proposed
Square Kilometer Array project will provide timing preci-
sions as low as 10 ns in the next 10–20 years and will also
uncover all pulsars beamed at Earth within globular clusters
(Cordes et al. 2004; Kramer et al. 2004).

Of course, a single pulsar could never definitely detect a

5 See http://www.atnf.csiro.au/research/pulsar/psrtime.

binary system, although it could be suggestive. In order to make
a strong case, timing residual oscillations must be seen in two
or more pulsars, and these oscillation must be consistent with
the same binary system. The 20 millisecond pulsars in Terzan
5 may offer us such an opportunity (Ransom et al. 2005).

Part of this research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration and
funded through the internal Research and Technology Devel-
opment program. The authors thank Ben Stappers and Simon
Portegies Zwart for inspiring discussions.
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