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Abstract

We present the results of prompt optical follow-up of the electromagnetic counterpart of the gravitational-wave
event GW170817 by the Transient Optical Robotic Observatory of the South Collaboration. We detected highly
significant dimming in the light curves of the counterpart ( g 0.17 0.03D =  mag, r 0.14 0.02D =  mag,

i 0.10 0.03D =  mag) over the course of only 80 minutes of observations obtained ∼35 hr after the trigger with
the T80-South telescope. A second epoch of observations, obtained ∼59 hr after the event with the EABA 1.5 m
telescope, confirms the fast fading nature of the transient. The observed colors of the counterpart suggest that this
event was a “blue kilonova” relatively free of lanthanides.

Key words: gamma-ray burst: individual (170817A) – stars: neutron

Supporting material: machine-readable table

1. Introduction

The network of advanced ground-based gravitational-wave
(GW) interferometers constituted by the Advanced Laser
Interferometer Gravitational-wave Observatory (LIGO; LIGO
Scientific Collaboration 2015, hereafter, “LSC”) started its
second observational campaign (O2) on 2016 November 30.
On 2017 August 1, Advanced Virgo (Acernese et al. 2015)
began its first observational campaign, initiating the first
concurrent monitoring of the sky by a network of three GW
interferometers.20

The first detection of a binary black hole (BBH) merger by
Advanced LIGO opened the era of GW astronomy (GW150914;
Abbott et al. 2016a). Three similar events have been detected
since then, two by Advanced LIGO and the most recent one by

Advanced LIGO/Virgo (GW151226, GW170104, and
GW170814; Abbott et al. 2016b, 2017a, 2017b). For many
years, particularly since the discovery of the binary pulsar PSR
B1913+16 by Hulse & Taylor (1975) and the evidence for
energy loss in this system as expected from GW emission
(Taylor & Weisberg 1982), binary neutron star (BNS) mergers
were anticipated to be one of the main sources found by
advanced GW detectors. Hence, it was surprising that the first
four GW detections were BBHs.
The LSC and the Virgo Collaboration (VC) issued on 2013

June 6 a worldwide call to participate in electromagnetic (EM)
and multi-messenger observations of GW events recorded
by their detectors, using a wide range of telescopes and
instruments of “mainstream astronomy.”21 The Transient
Optical Robotic Observatory of the South Collaboration

The Astrophysical Journal Letters, 848:L29 (5pp), 2017 October 20 https://doi.org/10.3847/2041-8213/aa9060
© 2017. The American Astronomical Society. All rights reserved.

20 This concurrent campaign ended on 2017 August 25, http://www.ligo.org/
news/index.php#O2end. 21 http://www.ligo.org/scientists/GWEMalerts.php
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(TOROS; Díaz et al. 2014; Benacquista et al. 2014) was
organized in 2013 to participate in these observations. While
seeking to deploy a wide-field optical telescope on Cordón
Macón in north-west Argentina (Renzi et al. 2009; Tremblin
et al. 2012), the collaboration has been utilizing other resources
for follow-up activities. Our activities during LIGO’s first
observational campaign (O1) have been reported by Colazo
et al. (2015) and Díaz et al. (2016).

On 2017 August 17 12:41:04 UTC (BJD 2457983.02857), a
BNS merger candidate was identified in data from the LIGO
Hanford (H1) detector (LIGO/Virgo G298048, LIGO Scien-
tific Collaboration & Virgo Collaboration 2017a, 2017b). The
Gamma-ray Burst Monitor (GBM) on board Fermi
(Bissaldi et al. 2009) detected an event ∼2s after the GW
trigger, which was given the designation GRB170817A
(Connaughton et al. 2017; Goldstein et al. 2017; von Kienlin
et al. 2017). The significance of the GW detection was initially
estimated as an equivalent false-alarm rate of 1-in-104years
based on the H1 data alone. The effective distance was
estimated as ∼58Mpc, and the initial localization estimate,
based only on H1 data, was quite broad. LIGO Scientific
Collaboration & Virgo Collaboration (2017b) reported that the
GW event was also clearly visible in data from LIGO
Livingston (L1), although there was a coincident noise artifact.
Further analysis of GW data from all detectors (including
Advanced Virgo) provided better estimates of the localization
probability and of the luminosity distance, 40±8Mpc (LIGO
Scientific Collaboration & Virgo Collaboration 2017c, 2017d,
2017e).

At the time of the event, the horizon ranges (the maximum
distance at which a BNS merger could be detected with
S N 8;> Finn & Chernoff 1993; Allen et al. 2012; Chen
et al. 2017) were 218, 107, and 58Mpc for L1, H1, and Virgo,
respectively (Abbott et al. 2017b). The GW trigger has
subsequently been confirmed as a very high-confidence
detection consistent with a BNS merger, and given the
designation GW170817 (LIGO Scientific Collaboration &
Virgo Collaboration 2017f).

About 11 hr after the GW trigger, several groups participat-
ing in the aforementioned GW/EM collaboration reported
(Allam et al. 2017; Coulter et al. 2017; Yang et al. 2017) the
detection of a putative EM counterpart (initially called SSS17a
or DLT17ck, official IAU name AT2017gfo; hereafter, “the
transient”) located 10 from the center of NGC 4993, an S0
galaxy at a distance of 38±5Mpc (Kourkchi & Tully 2017).
Its J2000 coordinates were reported as R.A.=13h09m48 1,
decl.=−23d22m53s (Coulter et al. 2017, and D. A. Coulter
et al. 2017, in preparation).

2. Observations and Photometry

2.1. Observations

The TOROS Collaboration participated in the search for the
EM counterpart of GW170817 starting just a few hours after
the trigger. On the nights of 2017 August 17 and 18, we
surveyed 26 nearby galaxies contained in the initial localization
region using two facilities: the T80-South telescope (described
below) and a Meade LX200 16-inch telescope equipped with a
SBIG STF 8300 camera, located in Tolar Grande, Argentina
(Díaz et al. 2017a, 2017b). Once the candidate counterpart was
identified near NGC 4993 (see the references above), we
focused our efforts on that source.

On 2017 August 18 (∼35 hr after the GW trigger) we
observed the transient using the T80-South22 telescope (T80S;
C. Mendes de Oliveira et al. 2017, in preparation) located at
CTIO. This telescope has a primary mirror with a diameter of
0.83 m and a camera equipped with an E2V CCD290-99
detector, consisting of 9216×9232 pixels with a plate scale of
0. 55 pix that yields a field of view (FoV) 1 .4 on a side. We
obtained 16, 15, and 15 one-minute exposures through SDSS g,
r, and i filters, respectively, at airmass values from 1.35 to 1.97
over the course of 80 minutes. The typical seeing was 1. 8~  .
The left panel of Figure 1 shows a color composite of a small
subsection (9.5¢ on a side) of the T80S field of view (FoV)
centered on the transient.
On 2017 August 19 (∼59 hr after the GW trigger) we

imaged the same source using the 1.54 m telescope located at
the Estación Astrofísica de Bosque Alegre (EABA) and an
Apogee ALTA F16 camera equipped with a KAF-16083
sensor, consisting of 4096×4096 pixels with a plate scale of
0. 24 pix that yields a FoV of 17¢ on a side. We obtained 88
one-minute unfiltered exposures in 2×2 binned mode to
expedite readout and match the seeing ( 3. 5~  ).

2.2. Photometry

Our photometry is based on the observations obtained with
the T80S and the EABA 1.5 m telescopes. We used the IRAF23

CCDPROC package to debias and flat-field the raw frames. We
carried out time-series point-spread function (PSF) photometry
using DAOPHOT/ALLSTAR (Stetson 1987), ALLFRAME
(Stetson 1994), and related programs, kindly provided by
P.Stetson. The steps we performed closely follow those
outlined in Macri et al. (2006, 2015). We modeled the PSFs by
fitting a Moffat function with 2.5b = to 25–50 bright and
isolated stars in each image. The fitting radii were 4 and 6pix,
and the PSFs were defined out to 8 and 10pix for T80S and
EABA, respectively. The local background level for each star
was determined using annuli from 8–10 and 10–15 pix for
T80S and EABA, respectively.
We first used DAOPHOT to detect sources in each image with

a significance of 4s or greater, identify bright isolated stars,
and determine the PSFs. We then used ALLSTAR to obtain
preliminary PSF photometry for all of the sources. Next, we
used DAOMATCH and DAOMASTER to derive robust geometric
transformations between all of the images obtained with a
given telescope and filter. We generated four “master frames”
(one for each telescope and filter) by median-combining a
subset of images with low background values and good seeing.
Given the close proximity of the transient to its host galaxy,

we used the IMFIT package (Erwin 2015) to model and
subtract its light distribution from each image. We first
determined the best-fit parameters on the master frames,
masking all of the stars within 30 of the galaxy center as
well as its innermost 5 and fitting the intervening region using
Sérsic profiles. Once the best-fit parameters (ellipticity, position
angle, Sérsic index, effective radius) for a given band were
determined from the master image, they were held fixed in the
fitting process for each individual frame. We only allowed the
intensity scaling to remain a free parameter, since the location

22 http://www.splus.iag.usp.br/t80s-telescope
23 IRAF is distributed by the National Optical Astronomy Observatory, which
is operated by the Association of Universities for Research in Astronomy
(AURA) under cooperative agreement with the National Science Foundation.
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of the galaxy center was already well constrained by the initial
PSF photometry. The right panel of Figure 1 shows the
outcome of this procedure. Removing the host galaxy improved
the determination of the local sky value and therefore reduced
the uncertainty in the PSF magnitudes of stars in its vicinity by
factors of 1.5, 2.2~ and 2.0 in gri, respectively.

We performed the aforementioned procedures with DAOPHOT
and ALLSTAR on the galaxy-subtracted master frames and
generated “master star lists” for further analysis. The master star
lists were used as input for ALLFRAME to perform simultaneous
PSF photometry on all of the host galaxy-subtracted images
obtained with T80S in a given filter (due to the very low signal-
to-noise ratio of the individual EABA images, we only obtained
a single measurement for this data set using its master frame and
did not perform time-series photometry). We identified 100
bright and isolated stars in each filter within the T80S FoV and
used them to solve for frame-to-frame zeropoint offsets, in order
to correct for differential extinction and any other variations.
We achieved a photometric precision in our T80S time-series
photometry of 0.01mag or better for objects with g 16,<
r i15, 14< < mag.

We transformed the T80S measurements into the Pan-
STARRS1 photometric system (Tonry et al. 2012) and
simultaneously corrected for atmospheric extinction using
4600–5400 objects in common between our star lists and the
PS1 catalog available at the Mikulski Archive for Space
Telescopes (MAST).24 We used the PS1 PSF magnitudes
for the transformations. The selected stars spanned

g i0.6 3.2- < - < , enabling us to solve for a quadratic

transformation in each band as a function of that color. We
found small but statistically significant color terms for all of the
transformations, with residual dispersions of 0.03 mag.
The calibrated light curves are plotted in Figure 2 and

the time-series photometry is presented in Table 1.25 The
tabulated uncertainties were calculated by ALLFRAME and
related programs based on the PSF fitting results and the frame-
to-frame zeropoint corrections. We present the analysis of the
light curves in Section 3.
We calibrated the EABA 1.5 m observations in a similar

manner. Due to the significantly smaller FoV and worse image
quality, we were limited to 200 stars in common. Since these
images were obtained without a filter, we solved for a linear
transformation with respect to r, which exhibited a very large
r i- color term (−0.54± 0.03).

3. Analysis

The T80S light curve of the transient exhibits a very significant
decline across all bands during the ∼80minutes of observations.
A weighted linear fit to the data yields g 0.17 0.03D =  mag,

r 0.14 0.02D =  mag, i 0.10 0.03D =  mag over that time
period. The mean magnitudes at the mid-point of our observations
(1.467 days after the GW trigger) and their time derivatives
(expressed in magnitudes per day) are as follows:

g dg dt

r dr dt
i di dt

18.60 0.02 mag, 3.0 0.6 mag day
17.99 0.02, 2.5 0.4
17.80 0.02, 1.9 0.5.

=  = 
=  = 
=  = 

We ruled out systematic effects as the reason for the fast
decline by examining the light curves of all 885 objects in the

Figure 1. Left: pseudo-color image of a small subsection (9.5¢ on a side) of the FoV of T80S, centered on the transient. Intensity scaling is logarithmic in order to better
display the light distribution of the host galaxy. Right: 3´ zoom into the residual image after host galaxy subtraction and core masking (hatched circle; see Section 2.2
for details).

24 MAST is part of STScI, operated by AURA, Inc., under NASA contract
NAS5-26555. Support for MAST for non-HST data is provided by the NASA
Office of Space Science via grant NNX09AF08G and by other grants and
contracts.

25 Only a portion of the Table is shown here for guidance and context. The full
version is available online.
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T80S FoV with similar colors to the transient (within 0.1 mag
in both g− r and r i- ). We performed weighted linear fits as a
function of time on the light curves of all of the selected objects
in each band, and estimated the statistical significance of the
first-order coefficient (hereafter, “slope”). The results are
shown as histograms in the top half of Figure 3. It can be
seen that the distributions are approximately centered on zero
and that the transient exhibits some of the fastest recorded
decline rates in all bands. The bottom panels of Figure 3 show
that most of the light curve slopes for the objects in the
comparison sample are not statistically significant, while the
decline rates for the transient are among the most highly
statistically significant.

As we do not have a measurement of the r i- color of the
transient during the EABA observations, we present two
possible values for the calibrated magnitude of the object at that
time (2.456 days after the trigger): r 18.78 0.03=  mag if its
color did not evolve relative to the previous night
(r i 0.19 0.03- =  mag), or r 19.15 0.06=  mag if its
color evolved as extrapolated from the T80S light curve to
r i 0.84 0.08- ~  mag. Despite the limited information
obtained from EABA, these observations confirm a fast decline
in luminosity of r 0.8 1.2D ~ – mag over 24 hr.

Figure 4 compares our photometry (adjusted to D=38 Mpc)
with the gri light curves predicted by three kilonova models (see
Figure 8 of Tanaka et al. 2017, hereafter T17), which build upon

the work of Tanaka & Hotokezaka (2013). We refer interested
readers to those publications for details of the parameters used in
each model.
Our absolute magnitudes and colors are inconsistent with the

predictions of a “red kilonova” model containing dynamical
ejecta ( M0.01 , v c0.2= ) rich in lanthanides (dotted lines).
Our r-band luminosity is in fairly good agreement with the
prediction of a “blue kilonova” model with a “wind” ( M0.01 ,
v c0.05= ) free of lanthanides (Ye=0.3 variant in T17, solid
lines), but the predicted g i- color of this model at t=1.5
days does not match the observations. A similar “wind model”
( M0.01 , v c0.05= ), in which the ejecta contain a small
amount of lanthanides (Ye=0.25 variant in T17, dashed lines),
matches the observed colors fairly well, but the predicted
luminosities are somewhat lower than observed. Regardless, it

Figure 2. gri light curves of the EM counterpart to GW170817, obtained with
T80S on 2017 August 18. The g points have been offset by −0.4mag for
clarity.

Table 1
Time-series Photometry

Timea Band Mag σ (mag)

1.4390 g 18.43 0.06
1.4447 g 18.51 0.04
1.4458 g 18.48 0.04
1.4469 g 18.62 0.04
1.4481 r 17.93 0.02
1.4492 r 17.97 0.02
1.4502 r 17.94 0.02
1.4514 i 17.74 0.03

Note.
a Days since GW trigger.

(This table is available in its entirety in machine-readable form.)

Figure 3. Top: comparison of the light curve slopes (magnitudes per day) of
the transient (arrows) in gri (left, center, and right panels, respectively) relative
to 885 objects in the T80S FoV with similar colors ( g r r i, 0.1- - <∣ ∣ ∣ ∣ ).
The horizontal error bars indicate the 1s uncertainty in the values for the
transient. Bottom: statistical significance of the values for the transient in gri
(left, center, and right panels, respectively) relative to the comparison sample.

Figure 4. Comparison of our photometry (g: blue triangle; r: black hexagons; i:
red square) adjusted to D=38Mpc with models from Tanaka et al. (2017)
plotted using the same color scheme. The dotted lines represent a “red
kilonova” model with dynamical ejecta rich in lanthanides. The dashed and
solid lines represent “blue kilonova” wind models with decreasing amounts of
lanthanides. The measurement uncertainties are smaller than the size of the
symbols. The two possible r-values at 2.456days are discussed in Section 3.
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appears that this event may have been a “blue kilonova”
(Metzger 2017) relatively free of lanthanides.

Intriguingly, there is a low-significance (∼0.1 mag) modula-
tion in the T80S light curve residuals across all bands. If
confirmed by others, such a correlated departure from a linear
decay may be useful for discriminating among models. As seen
in Figure 4, the light curves predicted by the two “blue”
kilonova models exhibit quite different behavior at the time of
our observations.

4. Concluding Remarks

The detection of a merger of two neutron stars by Advanced
LIGO/Virgo has opened a new chapter of GW astronomy. The
combination of three GW interferometers provided a robust and
relatively small localization region for the event, and the
prompt follow-up and sharing of information by many
collaborations resulted in a timely identification of its EM
counterpart.

Given the fast temporal evolution of these transients, it is
clear that continued worldwide follow-up efforts will be critical
for providing early and nearly continuous coverage, minimiz-
ing weather losses, and maximizing the astrophysical con-
straints that can be extracted from photometric and
spectroscopic observations.

We thank the referee for a very prompt and helpful report and
Dr.Masaomi Tanaka for kindly sharing his latest kilonova
models in advance of publication. M.D. acknowledges NSF
support through grant NSF-HRD 1242090. D.G.L. and the
IATE/UNC team acknowledge support from the Consejo
Nacional de Investigaciones Científicas y Técnicas of Argentina.
C.Md.O. and the S-PLUS team are thankful to FAPESP (grant
2009/54202-8) for funding the T80-South robotic telescope
and its camera, to the Observatorio Nacional-MCT for funding
the T80-South building, to INPE for help with the design of the
camera, and to the staff of CEFCA for constant support over the
years in the design and testing of T80S and its data reduction
pipeline. J.L.N.C. is grateful for financial support from the
Southern Office of Aerospace Research and Development
(SOARD), a branch of the Air Force Office of the Scientific
Research International Office of the United States (AFOSR/IO),
through grant FA9550-15-1-0167. J.L.N.C. also acknowledges
financial support from the Dirección de Investigación y
Desarrollo de la Universidad de La Serena through the Programa
de Incentivo a la Investigación Académica (PIA-DIULS). R.L.O.
was supported by the Brazilian agency CNPq (PDE-200289/
2017-9 and universal-459553/2014-3). S.T.F. acknowledges
financial support from the Universidad of La Serena for funding
two technician positions for the T80S project. Finally, the entire
TOROS Collaboration would like to thank the Argentine Gemini
TAC and the Mexican GTC TAC for awarding ToO time to
TOROS during the first semester of 2017.

ORCID iDs

M. C. Díaz https://orcid.org/0000-0002-7555-8856 
L. M. Macri https://orcid.org/0000-0002-1775-4859 
V. Chavushyan https://orcid.org/0000-0002-2558-0967
D. Dultzin https://orcid.org/0000-0001-5756-8842 
O. López-Cruz https://orcid.org/0000-0002-1381-7437 
J. L. Marshall https://orcid.org/0000-0003-0710-9474 
N. Padilla https://orcid.org/0000-0001-9850-9419
C. Quiñones https://orcid.org/0000-0003-0276-9879 
E. Ríos-López https://orcid.org/0000-0002-4436-221X

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a, PhRvL, 116, 061102
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016b, PhRvL, 116, 241103
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, PhRvL, 118, 221101
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b, PhRvL, https://doi.org/

10.1103/PhysRevLett.119.141101
Acernese, F., Agathos, M., Agatsuma, K., et al. 2015, CQGra, 32, 024001
Allam, S., Annis, J., Berger, E., et al. 2017, GCN, 21530
Allen, B., Anderson, W. G., Brady, P. R., Brown, D. A., & Creighton, J. D. E.

2012, PhRvD, 85, 122006
Benacquista, M., Belczynski, C., Beroiz, M., et al. 2014, in The Milky Way

Unravelled by Gaia: GREAT Science from the Gaia Data Releases, EAS
Publications Ser. 67, ed. N. A. Walton et al. (London: EDP Sciences), 357

Bissaldi, E., von Kienlin, A., Lichti, G., et al. 2009, ExA, 24, 47
Chen, H.-Y., Holz, D. E., Miller, J., et al. 2017, arXiv:1709.08079
Colazo, C., Lambas, D. G., Sanchez, B., et al. 2015, GCN, 18338
Connaughton, V., Blackburn, L., Briggs, M. S., et al. 2017, GCN, 21506
Coulter, D. A., Kilpatrick, C. D., Siebert, M. R., et al. 2017, GCN, 21529
Díaz, M. C., Benacquista, M., Belczynski, K., et al. 2014, in The Third Hot-wiring

the Transient Universe Workshop, ed. P. R. Wozniak et al. (Menlo Park, CA:
SLAC), 225, http://www.slac.stanford.edu/econf/C131113.1/papers/diaz.pdf

Díaz, M. C., Beroiz, M., Peñuela, T., et al. 2016, ApJL, 828, L16
Díaz, M. C., Garcia Lambas, D., Macri, L. M., et al. 2017a, GCN, 21619
Díaz, M. C., Garcia Lambas, D., Macri, L. M., et al. 2017b, GCN, 21620
Erwin, P. 2015, ApJ, 799, 226
Finn, L. S., & Chernoff, D. F. 1993, PhRvD, 47, 2198
Goldstein, A., Veres, P., von Kienlin, A., et al. 2017, GCN, 21528
Hulse, R. A., & Taylor, J. H. 1975, ApJL, 195, L51
Kourkchi, E., & Tully, R. B. 2017, ApJ, 843, 16
LIGO Scientific Collaboration & Virgo Collaboration 2017a, GCN, 21505
LIGO Scientific Collaboration & Virgo Collaboration 2017b, GCN, 21509
LIGO Scientific Collaboration & Virgo Collaboration 2017c, GCN, 21510
LIGO Scientific Collaboration & Virgo Collaboration 2017d, GCN, 21513
LIGO Scientific Collaboration & Virgo Collaboration 2017e, GCN, 21527
LIGO Scientific Collaboration & Virgo Collaboration 2017f, PhRvL, https://

doi.org/10.1103PhysRevLett.119.161101
LIGO Scientific Collaboration 2015, CQGra, 32, 074001
Macri, L. M., Ngeow, C.-C., Kanbur, S. M., Mahzooni, S., & Smitka, M. T.

2015, AJ, 149, 117
Macri, L. M., Stanek, K. Z., Bersier, D., Greenhill, L. J., & Reid, M. J. 2006,

ApJ, 652, 1133
Metzger, B. D. 2017, LRR, 20, 3
Renzi, V., Vrech, R., Ferreiro, D., et al. 2009, BAAA, 52, 285
Stetson, P. B. 1987, PASP, 99, 191
Stetson, P. B. 1994, PASP, 106, 250
Tanaka, M., & Hotokezaka, K. 2013, ApJ, 775, 113
Tanaka, M., Kato, D., Gaigalas, G., et al. 2017, arXiv:1708.09101
Taylor, J. H., & Weisberg, J. M. 1982, ApJ, 253, 908
Tonry, J. L., Stubbs, C. W., Lykke, K. R., et al. 2012, ApJ, 750, 99
Tremblin, P., Schneider, N., Minier, V., Durand, G. A., & Urban, J. 2012,

A&A, 548, A65
von Kienlin, A., Meegan, C., Goldstein, A., et al. 2017, GCN, 21520
Yang, S., Valenti, S., Sand, D., et al. 2017, GCN, 21531

5

The Astrophysical Journal Letters, 848:L29 (5pp), 2017 October 20 Díaz et al.

https://orcid.org/0000-0002-7555-8856
https://orcid.org/0000-0002-7555-8856
https://orcid.org/0000-0002-7555-8856
https://orcid.org/0000-0002-7555-8856
https://orcid.org/0000-0002-7555-8856
https://orcid.org/0000-0002-7555-8856
https://orcid.org/0000-0002-7555-8856
https://orcid.org/0000-0002-7555-8856
https://orcid.org/0000-0002-1775-4859
https://orcid.org/0000-0002-1775-4859
https://orcid.org/0000-0002-1775-4859
https://orcid.org/0000-0002-1775-4859
https://orcid.org/0000-0002-1775-4859
https://orcid.org/0000-0002-1775-4859
https://orcid.org/0000-0002-1775-4859
https://orcid.org/0000-0002-1775-4859
https://orcid.org/0000-0002-2558-0967
https://orcid.org/0000-0002-2558
https://orcid.org/0000-0002-2558
https://orcid.org/0000-0002-2558
https://orcid.org/0000-0002-2558
https://orcid.org/0000-0002-2558
https://orcid.org/0000-0002-2558
https://orcid.org/0000-0002-2558-0967
https://orcid.org/0000-0001-5756-8842
https://orcid.org/0000-0001-5756-8842
https://orcid.org/0000-0001-5756-8842
https://orcid.org/0000-0001-5756-8842
https://orcid.org/0000-0001-5756-8842
https://orcid.org/0000-0001-5756-8842
https://orcid.org/0000-0001-5756-8842
https://orcid.org/0000-0001-5756-8842
https://orcid.org/0000-0002-1381-7437
https://orcid.org/0000-0002-1381-7437
https://orcid.org/0000-0002-1381-7437
https://orcid.org/0000-0002-1381-7437
https://orcid.org/0000-0002-1381-7437
https://orcid.org/0000-0002-1381-7437
https://orcid.org/0000-0002-1381-7437
https://orcid.org/0000-0002-1381-7437
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0001-9850-9419
https://orcid.org/0000-0001-9850-9419
https://orcid.org/0000-0001-9850-9419
https://orcid.org/0000-0001-9850-9419
https://orcid.org/0000-0001-9850-9419
https://orcid.org/0000-0001-9850-9419
https://orcid.org/0000-0001-9850-9419
https://orcid.org/0000-0001-9850-9419
https://orcid.org/0000-0003-0276-9879
https://orcid.org/0000-0003-0276-9879
https://orcid.org/0000-0003-0276-9879
https://orcid.org/0000-0003-0276-9879
https://orcid.org/0000-0003-0276-9879
https://orcid.org/0000-0003-0276-9879
https://orcid.org/0000-0003-0276-9879
https://orcid.org/0000-0003-0276-9879
https://orcid.org/0000-0002-4436-221X
https://orcid.org/0000-0002-4436-221X
https://orcid.org/0000-0002-4436-221X
https://orcid.org/0000-0002-4436-221X
https://orcid.org/0000-0002-4436-221X
https://orcid.org/0000-0002-4436-221X
https://orcid.org/0000-0002-4436-221X
https://orcid.org/0000-0002-4436-221X
https://doi.org/10.1103/PhysRevLett.116.061102
http://adsabs.harvard.edu/abs/2016PhRvL.116f1102A
https://doi.org/10.1103/PhysRevLett.116.241103
http://adsabs.harvard.edu/abs/2016PhRvL.116x1103A
https://doi.org/10.1103/PhysRevLett.118.221101
http://adsabs.harvard.edu/abs/2017PhRvL.118v1101A
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1088/0264-9381/32/2/024001
http://adsabs.harvard.edu/abs/2015CQGra..32b4001A
https://doi.org/10.1103/PhysRevD.85.122006
http://adsabs.harvard.edu/abs/2012PhRvD..85l2006A
https://doi.org/10.1007/s10686-008-9135-4
http://adsabs.harvard.edu/abs/2009ExA....24...47B
http://arxiv.org/abs/1709.08079
http://adsabs.harvard.edu/abs/2014htu..conf..225D
http://www.slac.stanford.edu/econf/C131113.1/papers/diaz.pdf
https://doi.org/10.3847/2041-8205/828/2/L16
http://adsabs.harvard.edu/abs/2016ApJ...828L..16D
https://doi.org/10.1088/0004-637X/799/2/226
http://adsabs.harvard.edu/abs/2015ApJ...799..226E
https://doi.org/10.1103/PhysRevD.47.2198
http://adsabs.harvard.edu/abs/1993PhRvD..47.2198F
https://doi.org/10.1086/181708
http://adsabs.harvard.edu/abs/1975ApJ...195L..51H
https://doi.org/10.3847/1538-4357/aa76db
http://adsabs.harvard.edu/abs/2017ApJ...843...16K
https://doi.org/10.1103PhysRevLett.119.161101
https://doi.org/10.1103PhysRevLett.119.161101
https://doi.org/10.1088/0264-9381/32/7/074001
http://adsabs.harvard.edu/abs/2015CQGra..32g4001L
https://doi.org/10.1088/0004-6256/149/4/117
http://adsabs.harvard.edu/abs/2015AJ....149..117M
https://doi.org/10.1086/508530
http://adsabs.harvard.edu/abs/2006ApJ...652.1133M
https://doi.org/10.1007/s41114-017-0006-z
http://adsabs.harvard.edu/abs/2017LRR....20....3M
http://adsabs.harvard.edu/abs/2009BAAA...52..285R
https://doi.org/10.1086/131977
http://adsabs.harvard.edu/abs/1987PASP...99..191S
https://doi.org/10.1086/133378
http://adsabs.harvard.edu/abs/1994PASP..106..250S
https://doi.org/10.1088/0004-637X/775/2/113
http://adsabs.harvard.edu/abs/2013ApJ...775..113T
http://arxiv.org/abs/1708.09101
https://doi.org/10.1086/159690
http://adsabs.harvard.edu/abs/1982ApJ...253..908T
https://doi.org/10.1088/0004-637X/750/2/99
http://adsabs.harvard.edu/abs/2012ApJ...750...99T
https://doi.org/10.1051/0004-6361/201220420
http://adsabs.harvard.edu/abs/2012A&amp;A...548A..65T

	Observations of the First Electromagnetic Counterpart to a Gravitational-wave Source by the TOROS Collaboration
	Recommended Citation
	Authors

	1. Introduction
	2. Observations and Photometry
	2.1. Observations
	2.2. Photometry

	3. Analysis
	4. Concluding Remarks
	References

