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ABSTRACT

Among efforts to detect gravitational radiation, pulsar timing arrays are uniquely poised to detect “memory”
signatures, permanent perturbations in spacetime from highly energetic astrophysical events such as mergers of
supermassive black hole binaries. The North American Nanohertz Observatory for Gravitational Waves
(NANOGrav) observes dozens of the most stable millisecond pulsars using the Arecibo and Green Bank radio
telescopes in an effort to study, among other things, gravitational wave memory. We herein present the results of a
search for gravitational wave bursts with memory (BWMs) using the first five years of NANOGrav observations.
We develop original methods for dramatically speeding up searches for BWM signals. In the directions of the sky
where our sensitivity to BWMs is best, we would detect mergers of binaries with reduced masses of M109

 out to
distances of 30Mpc; such massive mergers in the Virgo cluster would be marginally detectable. We find no
evidence for BWMs. However, with our non-detection, we set upper limits on the rate at which BWMs of various
amplitudes could have occurred during the time spanned by our data—e.g., BWMs with amplitudes greater than
10−13 must encounter the Earth at a rate less than 1.5 yr−1.

Key words: gravitational waves – pulsars: general

1. INTRODUCTION

Due to the intrinsically nonlinear nature of Einstein’s
equations, all systems that radiate gravitational waves (GWs)
are anticipated to produce “memory.” Once a GW propagates
through a region of space, a memory component of the wave
leaves the space permanently modified (Smarr 1977; Bontz &
Price 1979; Braginskii & Thorne 1987; Christodoulou 1991;
Blanchet & Damour 1992). Supermassive black hole binaries
(SMBHBs), during the final stages of their merger, on a
timescale approximately equal to the light-crossing time of the
post-merger black hole’s event horizon, are expected to
generate GW bursts with memory (BWMs) with sufficiently

large amplitudes to make them potentially detectable with
pulsar timing arrays (PTAs; Favata 2009; Seto 2009; Pshirkov
et al. 2010; van Haasteren & Levin 2010; Cordes & Jenet 2012;
Madison et al. 2014). Cutler et al. (2014) recently singled out
memory as a key detection target for PTAs as a probe of exotic
and unexpected GW sources like phase transitions in the early
universe.
To facilitate GW detection, several international consortia

are currently using sensitive radio telescopes paired with
pulsar-optimized hardware to realize the PTA concept (Hel-
lings & Downs 1983; Foster & Backer 1990). The European
Pulsar Timing Array (EPTA; Kramer & Champion 2013), the
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav; McLaughlin 2013), and the Parkes Pulsar
Timing Array (PPTA; Hobbs 2013) are pushing precision
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pulsar timing to its limits and developing new data analysis
techniques to usher in the era of PTA GW astronomy. By
pooling their data and expertise, these consortia have formed
the International Pulsar Timing Array (IPTA; Manchester &
IPTA 2013), which is poised to become the most sensitive of
all PTAs.

In recent years, the various PTAs have begun to place
astrophysically meaningful upper limits on continuous GWs
from individually resolvable SMBHBs (Arzoumanian
et al. 2014; Zhu et al. 2014) and a stochastic background of
GWs (van Haasteren et al. 2011; Demorest et al. 2013;
Shannon et al. 2013). Wang et al. (2015) searched for BWMs
in the first approximately six years of PPTA data; they detected
nothing, but determined with 95% confidence that BWMs with
amplitudes greater than 10−13 occur at a rate less than 0.8 yr−1.

In this paper, we search for BWMs in the first approximately
five years of NANOGrav data using new techniques that lead to
considerable computational speedups over the search methods
described by Madison et al. (2014) and those used by Wang
et al. (2015). In Section 2, we describe the data used in our
BWM search. In Section 3, we describe the BWM signal model
we use for our analysis. In Section 4, we discuss models of
noise and how our sensitivity to BWMs is influenced by them.
In Sections 5 and 6, we describe our search techniques,
differentiating between searches for so-called pulsar-term and
Earth-term events. In Sections 7 and 8, we present the results of
our pulsar-term and Earth-term searches, respectively. In
Section 9, we place upper bounds on BWM rates and
amplitudes. In Section 10 we summarize our key results and
offer concluding remarks. We provide a summary of our
important notational elements in Table 2 in the Appendix.

2. PULSAR TIMING DATA SET

In this section, we discuss several aspects of the data that are
relevant to our analysis. For a more thorough description of the
data, see Demorest (2007) and Demorest et al. (2013).

The five-year data set consists of pulse times-of-arrival
(TOAs) collected at approximately monthly intervals for each
of 17 millisecond pulsars (MSPs). All observations were done
with the Arecibo radio telescope and the Green Bank Telescope
(GBT). Of these 17MSPs, those visible to Arecibo were
observed with Arecibo; all others were observed with the GBT.
One pulsar, J1713+0747, was observed with both telescopes.
All observations were done using one of two identical backend
systems: the Astronomical Signal Processor (ASP) and the
Green Bank Astronomical Signal Processor (GASP). These
backends performed real-time coherent dedispersion over
bands up to 64MHz wide and recorded the results averaged
over channels of width 4MHz each.

For each observing epoch, several TOAs are reported from
various frequency channels of the 64MHz band. At Arecibo,
observations were typically conducted at two widely separated
frequencies (usually 430 and 1400MHz) within one day; at the
GBT, observations at two frequencies (usually 820 and
1400MHz) were conducted within several days of each other.
Approximately contemporaneous observations at multiple
frequencies allow epoch-to-epoch timing fluctuations caused
by changes in dispersion measure (DM) to be accounted for in
the timing model fit (Lam et al. 2015).

Three of the pulsars comprising the five-year NANOGrav
data set, J1853+1308, J1910+1256, and B1953+29, do not

have sufficient dual-frequency coverage to correct for timing
errors from variations in DM over time; we exclude these
pulsars from our analysis for this reason. We also exclude the
data set for J1600−3053 from our analysis because it is
comparatively very short, spanning just two years. Searching
for BWMs in such short data sets is feasible in principle, but we
avoid it for two reasons. First, the minimum detectable BWM
amplitude in a particular data set scales approximately as T 3 2-

where T is the span of the data set (van Haasteren &
Levin 2010), so we do not anticipate that this data set will
greatly improve our sensitivity to BWMs. Second, in such short
data sets, many timing model parameters are highly covariant
with each other (e.g., spin and astrometric parameters; Madison
et al. 2013) and with any BWM signal present.
Finally we exclude the data for J1643−1224 from our

analysis because we believe it contains chromatic timing biases
from unaccounted-for phenomenology in the interstellar
medium (ISM; see Figure 2). The DM of J1643−1224 is
approximately 62 pc cm−3, nearly a factor of two greater than
any other pulsar in our sample. With high DM pulsars,
chromatic timing errors that deviate from the 2n- scaling
expected from cold plasma dispersion alone become more
significant (Cordes & Shannon 2010). Furthermore, this pulsar
is directly behind a complex region of H II associated with
ζ-Ophiuchi, a massive, runaway O-type star spinning very near
breakup (Gaustad et al. 2001; Villamariz & Herrero 2005). This
intervening H II region could conceivably contribute to non-
trivial and currently unaccounted-for chromatic effects on the
timing behavior of J1643−1224.

3. SIGNAL MODEL

For a given pulsar, the timing perturbation from a BWM of
amplitude hB is well-modeled as

t t h B t t t t

t t t t

,

. 1

B 0 0

1 1

[
]

( ) ( ) ( ) ( )

( ) ( ) ( )

q fD = - Q -

- - Q -

See Pshirkov et al. (2010), van Haasteren & Levin (2010),
Cordes & Jenet (2012), or Madison et al. (2014) for discussion
of this signal model. The function
B , 1 2 1 cos cos 2( ) ( )( ) ( )q f q f= - ranges between 1- and
1 and is common to all pulsar timing efforts to detect point-like
sources of GWs (Estabrook & Wahlquist 1975; Hellings &
Downs 1983; Lee et al. 2011). The angle between the direction
the burst propagates and the line of sight from Earth to the
pulsar is θ; f is the angle between the principal polarization
vector of the wave and the projection of the line of sight from
the Earth to the pulsar onto the plane normal to the wave
propagation direction. The BWM encounters the Earth at a time
t0 and is observed from Earth to encounter the pulsar at a time
t t l c 1 cos1 0 ( )( )q= + + where l is the distance from the
Earth to the pulsar (van Haasteren & Levin 2010; Cordes &
Jenet 2012; Madison et al. 2014). The function Θ is the
Heaviside step function. The amplitude of a BWM coming
from a SMBHB merger of reduced mass

M M M M1 2 1 2( )m º + (M1 and M2 are the masses of the black
holes in the binary) with a typical inclination angle of 3 p=

2
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at a luminosity distance DL from Earth is (Madison et al. 2014)
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Equation (1) describes a timing perturbation that begins to
grow linearly with time instantaneously at t0 and stops growing
instantaneously at t1; the instantaneity of this signal model is an
approximate description of an actual BWM from a SMBHB
merger, but it is a well justified one. Formally speaking, the
memory component of a GW builds up over the entire pre-
merger history of a SMBHB, but it grows most precipitously
during the final orbits of the binary just prior to merger,
requiring a time to build up that is approximately equal to the
light-crossing time of the post-merger event horizon-approxi-
mately one day for a M109

 merger (Cordes & Jenet 2012;
Madison et al. 2014). The timescale necessary for the memory
component of a GW to build up is substantially smaller than
typical pulsar timing measurement cadences of several weeks
to a month. The detailed turning-on of the memory signal will
not be sufficiently resolved with these relatively low measure-
ment cadences making Equation (1) sufficient to describe the
anticipated memory signal.

The distances to the pulsars in the NANOGrav array are on
the order of kiloparsecs. Our timing baseline is approximately
five years. Unless θ differs from π by less than ∼3° for a
particular pulsar, we expect that t0 and t1 will not both fall
within our observing window. Since we consider only 12
pulsars in our analysis, less than 1% of the sky is within 3° of
one of our pulsars. Assuming BWMs occur isotropically, there
is a less than 1% chance of both t0 and t1 occurring within our
five-year observing span if a BWM occurs at all. And if a
BWM occurred with a small enough angular separation from a
pulsar in our array that we could see the timing perturbation
both turn on at t0 and turn off at t1, it would only be observed to
turn off in that one pulsar. So, in each of our pulsar timing data
sets, we need only to look for evidence of timing perturbations
of the form

t t h t t t t , 3p B B( ) ( ) ( ) ( )D = - Q -

where h h B ,p B ( )q f=  , what we call the projected burst
amplitude, and tB is either t0 or t1, what we call the burst epoch.
Bursts arriving at an individual pulsar only influence the timing
behavior of that pulsar; we refer to these as pulsar-term bursts
(see Section 5). Bursts arriving at the Earth will simultaneously
begin to influence the timing behavior of all pulsars in our
sample; we refer to these as Earth-term bursts (see Section 6).

4. NOISE MODEL

In this section, we describe several well-known sources of
noise we anticipate to be present in our data and the
correlations they induce in our measured TOAs (see Equa-
tion (7)). We then introduce the empirical parameterized noise
model used in our analysis that can accommodate the types of
noise we anticipate as well as potentially unexpected noise-like
contributions (see Equation (8)). For one pulsar, J1713 + 0747,
the noise parameters in Equation (7) are well-measured
allowing a direct assessment of the empirical noise model
used in our analysis (see Figure 1). Finally, we discuss how to
use our noise models to make so-called “epoch-averaged”
timing residuals and we display our data set in Figure 2.

4.1. Physically Motivated Noise Models

Consider TOAs measured using pulse profiles obtained by
synchronously averaging  pulses for each of several radio-
frequency channels. The pulse profiles are functions of pulse
phase, j, channel frequency, ν, and observing epoch, τ. A
TOA from a particular frequency channel and observing epoch
can be written as

t t t t , 4C, , DM S N J DISS, , , , , ( )  = + + + + +n t t¥ n t n t n t n t n t

where t ,t¥ is the TOA at infinite frequency, tDM is the
dispersive delay from propagation through ionized interstellar
plasma, tC is an additional, non-dispersive chromatic perturba-
tion, such as intrinsic profile evolution with frequency, pulse
broadening from multipath propagation, and interstellar refrac-
tion (Cordes & Shannon 2010). If unaccounted for, tDM and tC
can lead to systematic errors in TOA estimates. With multi-
frequency observations at each observing epoch, effects from
tDM are mitigated in the NANOGrav data set. Potential effects
from tC are combatted by fitting for constant inter-channel
offsets unique to each pulsar. Unlike tDM and tC, the “ò” terms
in Equation (4) are random errors from a variety of noise
sources.
The term S N , n t is uncorrelated between frequency channels

and between observing epochs, i.e.,

, 5S N S N S N
2

, ,〈 ( ) ( )  s d dñ = nn tt¢ ¢n t n t¢ ¢

where S NS N
1 1 2( ) s µ µ- - . The quantity S Ns is the

TOA uncertainty from radiometer noise assuming that the
radiometer noise adds to a fixed pulse shape under the
assumptions of matched filtering against a very high signal-to-
noise ratio (S/N) template pulse profile.
The second random contribution to t ,n t, J , n t, is from phase

jitter in single pulses. Jitter is highly correlated between
frequency channels, but is known to decorrelate over widely

Figure 1. Uncertainty on the projected amplitude of a BWM at various trial
burst epochs with the NANOGrav five-year data set for PSR J1713+0747
using three different noise models. The lowest curve assumes that only
radiometer noise is present in the data and is identical to the results of Madison
et al. (2014). The middle curve assumes that only radiometer noise and jitter
noise are present in the data (as in Equation (7)); the scale of the jitter
contribution is consistent with Shannon & Cordes (2012). The most
conservative curve is based on the fixed noise model used in Arzoumanian
et al. (2014) (as in Equation (8)) sans a red noise component.
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separated frequencies; the probability distribution function of
the phase of single-pulse centroids evolves with frequencies
similar to pulse profiles (Shannon et al. 2014). Jitter noise can
be modeled as

, 6J J J
2

J J
2

, , ,
〈 ( ) ( ) ( )   s d r s dñ = »tt tt¢ ¢n t n t n n¢ ¢ ¢

where J
1 2s µ - . The quantity J ,

r
n n ¢

is approximately unity

unless ν and n¢ are very widely separated.
Usually, J S Ns s . Jitter noise begins to dominate radio-

meter noise only when the S/N of single pulses begins to
exceed unity. For our data, collected with ASP and GASP, jitter
noise should be significantly subdominant to radiometer noise
for all pulsars. Both radiometer and jitter noise are significantly
larger than contributions from DISS , n t, a random error
associated with diffractive interstellar scintillation (DISS;
Cordes 1990; Cordes & Shannon 2010). In a detailed study
of J1713+0747, Shannon & Cordes (2012) found that for
single pulses, 27 1Js m»  s, while timing errors from DISS

were only a few nanoseconds. A recent 24 hr study of J1713
+0747 (Dolch et al. 2014) confirmed the jitter measurement of
Shannon & Cordes (2012). Errors from DISS can be
substantially more important in the timing of high DM pulsars
like B1937+21. We expect DISS to be a subdominant
component of our timing error budget for the MSPs we include
in our sample, so we ignore it in our analysis. In summary, the
noise covariance matrix for a pulsar in our array, with these
anticipated sources of noise, can be approximated as

C , 7, , , S N
2

J
2〈 ( ) ( ) ( )   d d s s= ñ » +nn tt n t n t tt nn¢ ¢ ¢ ¢ ¢ ¢

⎡⎣ ⎤⎦
where ,n t is the sum of all noise influencing the TOA from
observing epoch τ and frequency channel ν.

4.2. Empirical Noise Models

In a previous analysis of the first five years of NANOGrav
data, Arzoumanian et al. (2014) searched for continuous GWs
using a different noise model:

C CE A, .

8

,
2 2

S N
2 2

red( )( ) ( )

( )

  d d s g= + + +nn tt tt nn¢ ¢ ¢ ¢
⎡⎣ ⎤⎦

This noise model expands on the physically motivated model
of Equation (7), allowing for additional, otherwise-unmodeled
contributions to the noise. The terms and E are commonly
referred to as EQUAD (a source of Gaussian white noise with
time units added in quadrature to radiometer noise) and EFAC
(a dimensionless constant multiplier on the anticipated amount
of radiometer noise), respectively. The term  mimics the
correlations induced between TOAs from different frequency
channels of the same observing epoch by jitter, but qualita-
tively differs from jitter in that its value does not change to
reflect the number of pulses,  , averaged together to yield a
TOA. Most observations in the five-year NANOGrav data set
we considered had similar integration times, so  does not
fluctuate substantially between epochs and is thus very much
like a jitter-induced correlation. Different values of, E, and
were used for each widely separated observing frequency of
each pulsar, e.g., one value of is used for observations of a
pulsar at frequencies centered on 820MHz while another value
is used for observations of that pulsar centered on 1400MHz.
We regard these frequency bands as widely separated since
their spacing is much larger than the maximum 64MHz
bandwidth used in our observations. The quantities, E, and
 describe inter-channel correlations between TOAs from
within a single frequency band; TOAs from different frequency
bands measured at different times are uncorrelated by the types
of noise we are considering.
The Arzoumanian et al. (2014) noise model also included red

noise with a power-law power spectrum
P f A f 1 yr 1( ) [ ( )]= g- . This component of the noise model
is not to be thought of as part of the TOA error budget; TOAs
measured with extreme accuracy may still differ from the
expectations of a timing model because of spin noise intrinsic
to a pulsar, which is well modeled as a stochastic process with a
power-law spectrum (Shannon & Cordes 2010). In the
Arzoumanian et al. (2014) analysis, under the assumption that
no GW signal was present in the data set, the noise model
parameters A E, , , ,[ ] gX = were determined by finding

Figure 2. Epoch-averaged timing residuals for the 12 pulsars used in our
analysis (and the excluded pulsar J1643−1224). The various colors indicate
different observing frequencies: 327 MHz is green, 430 MHz is blue, 820 MHz
is red, 1400 MHz is black, and 2300 MHz is cyan. We show the residuals for
J1643−1224 to illustrate the apparent chromatic problems with the data: the
residuals from 820 and 1400 MHz are consistently anti-correlated and are often
extreme outliers.
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the maximum of the likelihood function

R
R M C R M

C
p

p p
,

exp
1

2

2 det
, 9

T

N

1

TOA

( ∣ )
( ) ( )

( )
( ) d

d d

p
X =

- - --⎡
⎣⎢

⎤
⎦⎥

where R are the timing residuals from an initial timing model,
pd are deviations of the timing model parameters from the
initial timing model, M is the timing model design matrix, and
NTOA is the total number of TOAs in the data set.
We applied the noise model assessment done by Arzouma-

nian et al. (2014) to two simulations of the five-year
NANOGrav data set for PSR J1909−3744, one that contained
only simulated radiometer noise and one that contained
radiometer noise and a bright BWM occurring at the midpoint
of the data set. The resulting best-fit noise models were
identical except for in the red noise parameters A and γ. The
BWM signal is heavily covariant with the red noise component
of the noise model, resulting in a large value for A and a poorly
constrained value of γ.

An independent analysis of the five-year NANOGrav data
set by Perrodin et al. (2013) found that except for J1643−1224
and J1910+1256, pulsars we already excluded from our
analysis, all pulsars were consistent with white noise alone.
Because the demonstrated covariance between red noise and
BWM signatures would complicate detection of a BWM
(Cordes & Jenet 2012) and because of the lack of strong
evidence for red noise, we have opted to consider the
Arzoumanian et al. (2014) fixed noise models without the red
noise component.

4.3. Comparing Noise Models

In Figure 1, we show how the uncertainty on the projected
BWM amplitude, h,ps , varies in the NANOGrav five-year data
set for PSR J1713+0747 over several trial burst epochs under
three different noise models. The quantity h,ps is a direct
measure of how sensitive a particular data set is to BWMs and
it is directly influenced by the noise model; it is discussed by,
e.g., van Haasteren & Levin (2010) and Madison et al. (2014).

The bottom curve of Figure 1 is based on a noise model that
only includes radiometer noise. The middle curve uses the
noise model described by Equation (7) with the jitter
measurement from Shannon & Cordes (2012). The top curve
is based on the noise model used by Arzoumanian et al. (2014)
and described in Equation (8) (without the red noise
component). The discrepancy between the physically moti-
vated noise model of Equation (7) and the empirical noise
model of Equation (8) is not currently well understood.
Detailed studies like Dolch et al. (2014) are being carried out to
better understand the noise budget of pulsar timing experiments
and any systematic effects that influence the timing procedure,
but bridging the gap between the top and middle curves of
Figure 1 is an ongoing area of research. The Arzoumanian et al.
(2014) noise model is the most conservative of the three we
consider and we use it for the remainder of our analysis.

4.4. Epoch Averaging

In Figure 2, we depict the epoch-averaged timing residuals
from the 12 pulsars in our sample (and the excluded pulsar
J1643−1224). Residuals are obtained individually for multiple
frequency channels for each integration lasting 15–45 minutes.

The residuals from that integration are combined to form a
single epoch-averaged residual. The noise model is central to
this procedure. We define an operator,

A U C U U C , 10T T1 1 1( ) ( )= - - -

which maps the raw residuals, R, to epoch-averaged residuals,
R ARE = . The matrix C is the noise covariance matrix as
described in Equation (8). The matrix U is the “exploder”
matrix discussed in Arzoumanian et al. (2014) that maps
epochs to the full set of TOAs. The uncertainties on the epoch-
averaged residuals are the square roots of the diagonal entries
of the matrix

C R R U C U . 11E E E
T T 1 1( )〈 ( )= ñ = - -

5. SEARCHES FOR BWMS IN THE PULSAR TERM

Information in the pulsar terms of the 12 pulsars in our
sample comes from causally distinct regions of spacetime
(Cordes & Jenet 2012). A BWM is 12 times more likely to
encounter a single pulsar in our array than it is to encounter the
Earth. However, it is not true that BWMs encountering
individual pulsars in the array are 12 times more likely to be
confidently detected. Different pulsars are timed with varying
degrees of precision and with differing observing cadences
making them unequally sensitive in searches for BWMs. A
particular BWM may be polarized in such a way or from such a
part of the sky that the projection factor, B ,( )q f , makes its
influence on the timing behavior of a particular pulsar
vanishingly small. Furthermore, non-BWM phenomena such
as intrinsic pulsar spin noise (Shannon & Cordes 2010) and
microglitches (Cognard & Backer 2004) can be confused as
BWMs. Without the signal appearing concurrently in multiple
pulsars as in an Earth-term BWM, it is difficult to rule out
pulsar-specific phenomena. Nonetheless, we carry out a search
for BWMs in each of our individual pulsars as non-detections
in many pulsars allow us to place constraints on otherwise
inaccessible regions of BWM parameter space.
Madison et al. (2014) describe techniques for searching for

BWMs in individual pulsar timing data sets and for assessing
the minimal projected amplitude detectable at a particular
epoch. The timing perturbation from a BWM is deterministic
and can be included as part of the timing model. The projected
amplitude enters the timing model as a linear parameter and can
be fit for using least-squares methods (Gregory 2010), yielding
an estimate for the projected amplitude, hp

ˆ , and its uncertainty,
h,ps . We deal with the nonlinear parameter tB by searching over
a grid of trial burst epochs. For all of our timing model fits and
calculation of timing residuals, we use the software package
TEMPO2 (Edwards et al. 2006).
The modification to the timing solution caused by including

a burst of projected amplitude hp at time tB can be assessed by
computing the likelihood ratio for a model with and without a
burst:

h t h t t, exp
1

2
, 0, . 12p B

2
p B

2
B( ) ( ) ( ) ( )c cG = - -⎜ ⎟⎛

⎝ ⎡⎣ ⎤⎦⎞
⎠

In this expression,

R C Rh t h t h t, , , , 13T2
p B p B

1
p B( ) ( ) ( ) ( )c = -
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where R h t,p B( ) are the timing residuals when a burst of
projected amplitude hp at time tB is included as part of the
timing model. The least-squares estimator for the projected
burst amplitude at a trial burst epoch tB, h tp B

ˆ ( ), maximizes Γ at

that trial burst epoch; call this value tBˆ ( )G . For a fixed trial burst
epoch, if the data are consistent with the noise model,
D 2 lnˆ ˆº G, the reduction in the 2c of the residuals caused
by introducing a projected burst amplitude to the timing model
fit will be a random variable following a 2c distribution with
one degree of freedom:

f D D D2 exp 2 . 141
1 2( ) ( ) ( )ˆ ˆ ˆ ( )p= -

-

Since the burst amplitude is a linear parameter in the timing
model, we expect the 2c value of the residuals to respond
quadratically to the burst amplitude, i.e.,

t h t t h t t0, , , 152
B

2
p B B p B h,p B

2( )( ) ˆ ( ) ˆ ( ) ( ) ( )c c s= + ⎡⎣ ⎤⎦
or D t h t tB p B h,p B

2ˆ ( ) [ ˆ ( ) ( )]s= . The h,ps values are the least-

squares 1σ amplitude uncertainties on hp
ˆ and are the quantities

plotted in Figure 1. For a trial burst time tB, th,p B( )s is the
square root of the diagonal element of the parameter covariance
matrix, M C MT 1 1( )- - , associated with the amplitude of a BWM
occurring at tB (M is the fit design matrix; see Madison et al.
2014 for more discussion of M and h,ps ).

If we compute D̂ for two trial epochs that are very close
together, the results will be correlated. Because of these
correlations, when computing D̂ along a densely sampled grid
of Nt trial burst epochs, the number of effectively independent
trial burst epochs tested is N NI t< . The probability distribution
function for the maximum value of D̂ along the grid, Dmax

ˆ , is

f D N f D F D , 16N
N

max I 1 max 1 max
1

I

I( ) ( ) ( )ˆ ˆ ˆ ( )( )=
-

where F1 is the cumulative distribution of f1,

F D Derf 2 . 171 ( )( )ˆ ˆ ( )=

The cumulative distribution for Dmax
ˆ associated with fNI

is then
simply

F D Derf 2 . 18N
N

max maxI
I ( )( )ˆ ˆ ( )=

The anticipated false alarm probability for noise alone to
exceed a threshold value of Dmax

ˆ , Dthresh
ˆ , is just

D F D1 . 19N Nthresh threshI I( ) ( )ˆ ˆ ( ) = -

For a fixed allowable false alarm probability, Dthresh
ˆ grows

logarithmically with NI if N 1I  .
To estimate NI, for each pulsar, we generated 1000 simulated

sets of TOAs that matched the real data set in number of TOAs,
observing schedule, and timing model, but yielded timing
residuals consistent with our noise models. We then fit for
h tp B
ˆ ( ) along an equispaced grid of twenty trial burst epochs
between MJD 53500 and 54900 and computed D tBˆ ( ) to get
Dmax
ˆ .
In Figure 3, we show the cumulative distribution of the

1000 Dmax
ˆ values from our simulations for three pulsars: J0030

+0451 and J2145−0750, observed by Arecibo and the GBT,

respectively, with rms timing residuals of ∼100 ns, and J1713
+0747, observed by both Arecibo and the GBT with an rms
timing residual of ∼30 ns. We also plot the theoretically
anticipated curves for NI equal to one, five, and twenty. In
fitting the anticipated cumulative distributions of Dmax

ˆ with NI

as a free parameter to the results of our simulations, we find
that for all pulsars, NI is between four and five. As NI increases,
large values of Dmax

ˆ occur more frequently in the presence of
pure noise. We take the conservative approach and assume that
there are five independent trial burst epochs to test. With NI

fixed at five, inverting Equation (19) allows us to compute
Dthresh
ˆ for any desired allowable false alarm probability; false
alarm probabilities of approximately five and one percent are
expected for Dthresh

ˆ equal to 6.60 and 9.54, respectively.

6. SEARCHES FOR BWMS IN THE EARTH TERM

Searches for BWMs in the Earth term have several
advantages over searches in pulsar terms. The timing
perturbation from a BWM will turn on simultaneously for all
pulsars in the PTA if it occurs in the Earth term, providing a
powerful means by which pulsar-specific phenomena (e.g.,
glitches) can be ruled out. Variations in the projected BWM
amplitude from pulsar to pulsar provide information about the
location of the GW source and its polarization. As such, for a
trial BWM source location, polarization, and epoch, the
residuals of all pulsars in the PTA can be combined into a
coherent simultaneous fit for all timing model parameters and
the amplitude of a BWM, hB. We refer to these simultaneous
multi-pulsar fits as global fits. Such global fits, described in
Madison et al. (2014), have better amplitude sensitivity than
what is attainable with any one timing data set and can be
carried out with a similar least-squares apparatus as is used in
pulsar term searches.
Global least-squares fitting techniques were recently used by

the PPTA to search for BWMs (Wang et al. 2015). The PPTA
data set those authors analyzed contained many fewer TOAs
than the NANOGrav data set we are considering here owing to

Figure 3. Cumulative distributions of Dmaxˆ values from 1000 simulations of
noise-like timing residuals for three of the pulsars in our sample. Overlaid are
the anticipated cumulative distributions if NI, the effective number of trial burst
epochs tested, is one, five, or twenty. For all pulsars in our sample, the
analytically anticipated cumulative distribution best fits the results of our
simulations with NI between 4 and 5.

6

The Astrophysical Journal, 810:150 (13pp), 2015 September 10 Arzoumanian et al.



NANOGrav’s practice of reporting many TOAs from a single
observing epoch but from different frequency channels. With
these multifrequency TOAs, NANOGrav includes as part of its
timing models numerous chromatic parameters to account for
profile evolution across our wide-bandwidth receivers and
time-variable DM, so, we fit for many more timing model
parameters than the PPTA. The PPTA attempts to mitigate
effects of time variable DM in a very different way that does
not require the simultaneous fitting of many chromatic timing
model parameters (see Keith et al. 2013); it is unclear which
practice is better. Optimal methods for mitigating DM
variations are an active area of pulsar timing research (e.g.,
Lam et al. 2015).

Suppose N is the number of timing model parameters being
fit for each of M pulsars in a PTA (in reality, N varies from
pulsar to pulsar). Then carrying out a global fit for the
amplitude of a BWM requires the inversion of an
NM NM1 1( ) ( )+ ´ + matrix, a procedure that requires
computation time NM 1 3( )µ + . This global fit has to be done
over N N NtyW trials in the four-dimensional phase space of sky
position, burst epoch, and burst polarization (NW, Ny, and Nt

are, respectively, the number of sky positions, polarization
angles, and burst epochs tested). Methods requiring these
global fits are thus computationally onerous for NANOGrav
because of the large number of timing model parameters for
which we fit. More importantly, the total number of suitably
stable MSPs being timed by NANOGrav is growing with time
as projects like the Arecibo PALFA survey (e.g., Cordes et al.
2006; Swiggum et al. 2014), the Arecibo All-sky 327MHz
Drift Pulsar Survey (e.g., Deneva et al. 2013), and the GBT
Northern Celestial Cap Pulsar Survey (e.g., Stovall et al. 2014)
continue to find more pulsars. A search procedure based on
global fits will not scale well to future PTA endeavors. We use
a different technique that avoids having to carry out any global
fits and is computationally much more efficient.

6.1. Accelerated Earth-term Searches

Over a five-dimensional grid of trial burst sky positions, ijW ,
polarizations, ky , epochs, t lB, , and amplitudes, h mB, , we search
for the maximum in the global likelihood ratio surface,

t h B h t, , , , , ,

20

ij k l m
K

M

K K ij k m lG B, B,
1

B, B,( ) ( )
( )

y yG W = G W
=

⎡⎣ ⎤⎦

where BK is the projection factor, B ,( )q f , for the Kth pulsar.
The KG quantities are equal to the likelihood ratios in
Equation (12). The angles θ and f depend on the location of
the Kth pulsar and the trial burst location, ijW . The trial burst
polarization angle, ky , influences f (see Equation (6) in
Madison et al. 2014). The total number of trials in this five-
dimensional search is N N N Nt hyW , where Nh is the number of
trial burst amplitudes tested.

Ostensibly, the procedure appears to require that for each
grid point in the five-dimensional space and for each pulsar in
our sample, we incorporate the signature of a BWM of
projected amplitude B h,K ij k mB,( )yW occurring at time t lB, into
the timing model of the Kth pulsar, refit the timing model, and
compute KG . This would take computation time

N N N N MNt h
3µ yW , a speed up over the global fitting scheme

so long as N NM MN1h
3 3( )< + . The average N for our

sample of M = 12 pulsars is approximately 90, meaning Nh

needs to be less than approximately 140 for this technique to be
faster.
However, there is a greater speed-up to be had. Variations in

ijW , ky , and h mB, only alter the projected BWM amplitude along
different pulsar lines of sight. We can precompute the two-
dimensional (projected burst amplitude and burst epoch)
likelihood ratio surface for each pulsar in our sample, a
procedure requiring computation time N N MNp t

3µ , where Np is
the number of trial projected burst amplitudes considered. We
then construct the full five-dimensional likelihood ratio surface
from Equation (20) by figuring out what the projected burst
amplitude in the Kth pulsar would be for a particular choice of

ijW , ky , and h mB, , looking to the precomputed two-dimensional
likelihood ratio surface for the Kth pulsar, and interpolating
between the nearest projected burst amplitudes tested and the
projected amplitude of interest from the five-dimensional
search; this step requires no additional timing model fits (the
computationally costly step), is very fast, and is essentially an
exercise in efficiently searching lookup tables.
Using precomputed two-dimensional likelihood ratio sur-

faces for a global Earth-term BWM search as we have just
described will lead to a speed up over the global fitting scheme
if N N N NM MN1p

3 3( )< +yW . For our search, we have tested
Nt = 40 trial burst epochs evenly spaced between MJDs 53541
and 54995, N 17=y trial burst polarization angles evenly
spaced between 0 and π, and N 1598=W trial burst sky
positions isotropically distributed on the sky. As a brief but
important aside, we have chosen to search within the particular
window of dates just mentioned because for each pulsar in our
sample, there is at least one collection of multifrequency
observations before and after this window, with the limiting
pulsar on the early side being J0613−0200 and J2145−0750
on the late side. Since we are searching for changes in the
observed rotational frequencies of the pulsars in our array
occurring at some trial burst epoch, a pulsar data set for which
there is no data before or after that epoch should not bear any
weight in the search. With the grid parameters we have chosen,
so long as Np is less than approximately 4 × 106, using
precomputed two-dimensional likelihood ratio surfaces will be
faster than global fitting schemes. In practice, we have set
Np = 300, testing 150 trial projected amplitudes logarithmically
spaced between 5 10 17´ - and 10−12 and their negatives.
Utilizing the precomputed two-dimensional likelihood ratio
surfaces is thus faster than using global fitting by a factor of
over thirteen thousand and is the only reason why searching
such a densely sampled grid is feasible.
Once the global, five-dimensional likelihood ratio surface is

computed, for fixed ijW , ky , and t lB, , we isolate the value of h mB,

that maximizes GG ; we call it hB
˜ . This four-dimensional surface,

which we call GG̃ , is approximately equal to GĜ , what we would
get if we had carried out the computationally costly global fits
we have taken great care to avoid, differing from GĜ only
because of the finite resolution of our trial burst amplitude grid.
We can then, as in the pulsar-term case, consider the false
alarm statistics of the quantity D 2 lnG G˜ ˜= G . For any fixed grid
point in our four-dimensional parameter space, if the data are
consistent with our noise models, DG˜ again follows 2c statistics
with one degree of freedom. With noise-like data, if we
consider the probability distribution of DG,max˜ , the maximum
value of DG˜ over the whole grid, also follows Equation (16),
but with a larger number of effective independent trials
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sampled than in the pulsar-term case owing to a search not just
over time, but also over polarization angle and sky position.
We call the effective number of independent trials in the global
search NG. We discuss NG in more detail in Section 8.

6.2. Assessing BWM Amplitude Uncertainty

A similar relationship exists between DG˜ , hB
˜ , and hs as exists

between D̂, hp
ˆ and h,ps as discussed in Section 5, i.e.,

D hp h,p
2ˆ ( ˆ )s= . Since GG is just the product of all the pulsar-

specific likelihood ratio surfaces (with appropriate projection
factors, as in Equation (20)),

D D B h h B . 21
K

M

K K
K

M

K KG
1

B B
2

1
h,p,

2( ) ( )˜ ˜ ˜ ( )å å s= =
= =

So, we have

D h , 22G B h
2( )˜ ˜ ( )s=

where

B . 23
K

M

K Kh
1

h,p,
2

1 2

( ) ( )ås s=
=

-⎡
⎣⎢

⎤
⎦⎥

Equation (23) is equivalent to Equation (32) from van
Haasteren & Levin (2010). While those authors analyzed
idealized pulsar timing data sets with equispaced observing
epochs, uniform TOA uncertainties, and very simple timing
models, their result holds more generally and applies here.

6.3. Cross-checks with Bayesian Methods

As an independent check, we also carry out the Bayesian
method of van Haasteren & Levin (2010), implemented in the
software package Piccard23, developed independently of the
Madison et al. (2014) method. In brief, this Bayesian method
takes the likelihood of Equation (9) as a function of the noise
parameters X, the timing model parameters pd , and the BWM
parameters t h, , ,ij k l mB, B,( )yW . Similar to what we do for our
frequentist search, we keep the noise parameters fixed to the
values obtained in Arzoumanian et al. (2014). Our prior
distributions are flat in all stated BWM parameters (including
the BWM amplitude hp), where we note that the prior in ijW is
taken flat over the sphere. Given a significance level, an upper
limit can then be set using the empirical cumulative margin-
alized posterior distribution as a function of hp.

We have been able to confirm that the results we describe in
this paper are identical for the frequentist and Bayesian
methods; specifically, we have compared sky-slices of the
detection statistic DG˜ similar to what is depicted in Figure 5. At
the time of this analysis, a full Bayesian analysis would have
been significantly more computationally expensive than the
frequentist analysis we primarily discuss in this work.
However, the new techniques we have developed for accel-
erating Earth-term searches can be readily integrated into
Bayesian searches and will yield comparable computational
speedups as what we discussed in Section 6.1. We are working
to implement these changes and plan to use the accelerated
search techniques discussed here in analyses of future data sets.

7. PULSAR TERM RESULTS

For all twelve of the pulsar data sets we analyze, our search
for pulsar-term BWMs occurring between MJDs 53541 and
54994 yields results that are entirely consistent with our noise
models. In Table 1, we summarize the key results in our search
for pulsar-term BWMs. For each pulsar in our sample, we list
the pulsar name, the most significant value of hp

ˆ (according to
the D̂ number) along with its 1σ uncertainty, the trial burst
epoch at which this most significant amplitude was found, the
Dmax
ˆ value for that pulsar, and the logarithm of the false alarm
probability anticipated from noise alone for that value of Dmax

ˆ
assuming NI = 5. The most significant event we find is in the
data for J1918−0642; it is consistent with approximately seven
percent of noise realizations.
The epochs at which the most significant projected BWM

amplitudes occur are distributed nearly uniformly throughout
the range of trial epochs we tested with repeat values occurring
only at the very first and last epochs tested. Clustering at the
edges of the window of tested epochs is not surprising. If there
are few timing residuals outside of the window of tested trial
burst epochs, when testing the first or last trial epoch, the pre-
or post-burst timing model is constrained by a small number of
data points. If the residuals at the edge of the data set are slight
outliers, allowing for an instantaneous change in the spin
period of the pulsar near the beginning or end of the data set
can bring them more in line with zero and lead to a modest
reduction of the 2c value of the residuals.
The individual data set in our sample that most tightly

constrains BWMs is for J1713+0747. This is in line with the
expectations of Madison et al. (2014). In Figure 4, we show the
detailed BWM search results for J1713+0747. The bottom
panel is simply the epoch-averaged residuals as in Figure 2; we
plot them again here to explicitly show how the interval of trial
burst epochs tested overlaps with the TOA coverage. The
second panel from the bottom shows hp h,p

ˆ s at the 40 trial
burst epochs we tested. The best-fit projected amplitude is
completely consistent with zero at each trial burst epoch

Table 1
Summary of Results from Pulsar Term BWM Search

PSR h 10p
max 13ˆ - t iB,

max
Dmaxˆ log10 5( )

(MJD)

J0030+0451 −0.87 ± 0.77 54100 1.2 −0.11
J0613−0200 0.68 ± 0.50 54584 1.8 −0.20
J1012+5307 1.47 ± 0.79 54062 3.4 −0.54
J1455−3330 −2.57 ± 3.35 54211 0.5 −0.02
J1640+2224 −2.65 ± 1.45 53801 3.3 −0.52
J1713+0747 0.08 ± 0.07 54808 1.4 −0.13
J1744−1134 −2.06 ± 1.19 53541 2.9 −0.45
B1855+09 1.00 ± 0.73 53578 1.8 −0.21
J1909−3744 −1.29 ± 0.74 54994 3.0 −0.45
J1918−0642 −8.29 ± 3.39 54994 5.9 −1.15
J2145−0750 26.60 ± 11.51 54994 5.3 −0.99
J2317+1439 −2.40 ± 1.20 53541 3.9 −0.67

Note. Description of most significant BWM-like signal detected in the pulsar
term of each of 12 NANOGrav data sets. From left to right, the columns are the
name of the pulsar, the most significant projected BWM amplitude calculated
from least-squares fitting, the trial burst epoch at which the most significant

amplitude was found, the corresponding Dmaxˆ value, and the logarithm of the
anticipated false alarm probability for that value of Dmaxˆ assuming NI, the
number of effectively independent trial burst epochs tested, is five.

23 See https://github.com/vhaasteren/piccard for access to the publicly
available code, a description of its capabilities, implementation details, and
several illustrative examples.
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considered. Further echoing this, in the third panel from the
bottom, we show the value of D̂ as it varies with trial burst
epoch. Never does D̂ approach the values necessary to be
inconsistent with noise at the five- or one-percent level. In the
remaining panels of Figure 4, we show a “heat map” of the
two-dimensional likelihood ratio surface, as in Equation (12),
that we use in our Earth-term search.

8. EARTH TERM RESULTS

In Figure 5, we show a two-dimensional slice of our Earth-
term search results. For fixed trial burst polarization angle and
epoch, we depict the quantity DG

1 2˜ as it varies with trial burst

source location. The quantity DG
1 2˜ is the best-fit BWM

amplitude, hB
˜ , in units of the uncertainty on the amplitude,

hs (see Equation (22)). The slice we show contains the smallest
value of hs found in our entire search, i.e., the point in our
parameter space where we are most sensitive to a BWM; its
location on the sky is indicated by the black circle very near the
location of J1713+0747.

The single largest value of DG˜ we find is D 6.03G,max˜ = ,
which corresponds to h 2.46G h

˜ s= . We mentioned at the end
of Section 6.1 that the effective number of trials tested in an
Earth-term BWM search, NG, will be larger than NI = 5
because of the search over not just many trial burst epochs, but
also over many trial burst source locations and polarizations,
implying that for a fixed allowable false-alarm probability we
have to raise the threshold we impose on DG˜ above the
threshold used on the detection statistic in a pulsar-term search.
However, DG,max˜ is small enough that even if NG were only
five, this result would be entirely consistent with more than
95% of realizations of our noise.

In the BWM analysis carried out by Wang et al. (2015),
when faced with marginally high values of their test statistic,
they conducted an extensive suite of simulations to assess NG,
comparable to what we have done to assess NI (and depicted in
Figure 3), and were able to justifiably raise the detection
threshold on their test statistic and rule out a detection. We find
no comparably large values of DG˜ that exceed our detection
threshold even if we underestimate NG as five.

We do still want an estimate of NG as it will allow us to apply
upper limits to the population of BWMs given our non-detection.
Several recent papers have demonstrated that the response of a
PTA to GWs of any waveform can be decomposed into a linear
combination of a finite number of modes, or sky maps (Cornish
& van Haasteren 2014; Gair et al. 2014). The number of modes
required is equal to twice the number of pulsars in the array (the
factor of two accounts for the two possible polarization modes of
GWs). We use their result to estimate that the number of
statistically independent samples in our Earth-term search over
source-position and polarization space is 24, twice the number of
pulsars used in our analysis. Given five independent samples in
time, we thus adopt NG= 120.

AdoptingNG= 120 is a conservative estimate as our sensitivity
to BWMs is so strongly dominated by a single pulsar, so the
effective number of pulsars in our array is fewer than 12. As
mentioned following Equation (19), for a fixed allowable false
alarm probability, if N 1G  , DG,thresh˜ only diverges logarith-
mically with NG, so overestimates of NG are not exceedingly
deleterious for the purpose of setting upper limits. WithNG= 120,
setting D 12.4G,thresh˜ = assures a false alarm probability of less
than five percent. This is equivalent to requiring that hB

˜ be greater

than 3.52 hs in order for it to be inconsistent with 95% of
realizations of noise. Again, in our Earth-term search, we find no
signal that meets or exceeds this level of significance.
In Figure 6, we have averaged hs over trial burst polarization

angles and epochs and shown the maximum luminosity distance
at which a SMBHB merger with an inclination angle of 3p and

M109m =  (consistent with Equation (2)) would be detectable
with our data set with 95% confidence, or where
h 3.52B h ,t
˜ 〈s= ñy . As per Equation (2), these luminosity distance
limits scale linearly with the fiducial reduced mass which we
have here set to M109

. The total volume in which we would be
sensitive to such an event is approximately 25.6 103´ Mpc3.
Our sensitivity is worst near the position of PSR J0613−0200.
This has little to do with J0613−0200, but is instead because
these sky positions are antipodal to our greatest concentration of
pulsars, especially our most sensitive pulsar, J1713+0747. The
green triangle in Figure 6 indicates the position of the Virgo
Cluster. Just 16.5Mpc from Earth, the Virgo Cluster falls very
near the edge of the volume over which we are sensitive to
BWMs from M109m = , 3 p= binary mergers.

9. BWM RATE-AMPLITUDE CONSTRAINTS

To synthesize the results from both our Earth- and pulsar-
term analyses, we derive constraints on hB( )L > , the annual
rate of BWMs from any part of the sky with any polarization
having amplitudes greater than hB, assuming they occur as a
Poisson process. This quantity is readily relatable to astro-
physical models of processes producing BWMs, i.e., Equation
(15) of Cordes & Jenet (2012), Equation (21) of Madison et al.
(2014), or Equation (17) of Wang et al. (2015).
Toward this end, define the quantities,
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where tD , DW, and yD describe the grid spacing in the Earth-
term search, Kh,p,s is the uncertainty on the projected burst
amplitude from the Kth pulsar timing data set, and ijkh,s is the
uncertainty on the true (unprojected) burst amplitude evaluated at
the ith trial burst time, jth trial burst sky location, and kth trial
burst polarization angle. The quantities Et and Pt are the total
time that the PTA had n-σ sensitivity to a BWM of amplitude at
least hB in the Earth-term and pulsar-term, respectively, weighted
by the fraction of the total source-location and polarization angle
space over which that sensitivity was achieved. Our definitions
for Et and Pt differ from nearly identical definitions in Madison
et al. (2014) by an overall factor of two. In that work, it was
mistakenly assumed that only BWM polarization angles between
0 and 2p must be considered. We here correctly carry out a
search that tests polarization angles between 0 and π.
With the definitions for Et and Pt in place, we can derive

constraints on hB( )L > from our Earth-term and pulsar-term
analyses:

h
Qln 1

, 26
i

B( ) ( ) ( )
t

L > < -
-
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where Q is the probability that at least one BWM occurring at
rate hB( )L > encounters the PTA during the time it and i is a
placeholder for either E or P.

In Figure 7, we show our constraints on hB( )L > from our
Earth- and pulsar-term analyses. We have set Q= 0.95. We
have set n= 3.52 for both our Earth- and pulsar-term
constraints. This number comes from requiring a false alarm
probability of less than five-percent in an Earth-term search
with NG= 120. Our estimate of NG is likely larger than it needs
to be. We can compare our choice of NG= 120 to the work
done in Wang et al. (2015). They determined, through
extensive simulations, that the number of independent trials
in their analysis was approximately 80. They used 20 pulsars in
their analysis (compared to our 12) and avoided a search
through burst polarization space by fitting for the polarization
angle. If we had conducted our search as they did, based on the
arguments we used to arrive at our chosen value of NG= 120,
we would increase NG by a factor of 5 3 to account for the use
of 20 rather than 12 pulsars and then divide it by two to account
for the lack of search through polarization space to arrive at 100
independent trials. This is more conservative than the value of
80 that they used, but for a fixed allowable false alarm
probability, the amplitude a BWM must exceed to be
inconsistent with the noise scales as the square root of the
natural logarithm of NG, so modest overestimates of NG have a
minimal impact on upper limits. With the chosen values for Q
and n, we are setting a 95% confidence frequentist upper limit.
We do this because it is a reasonably stringent and commonly
used confidence threshold and to facilitate direct comparison
with the results of Wang et al. (2015).
Since there are fewer effectively independent trials in a

pulsar-term search, we should use a lower value of n for a 95%
confidence upper limit. But, by treating the Earth- and pulsar-
terms comparably, we are able to highlight an important fact
about our data set. The near-total convergence of our Earth-
and pulsar-term constraints for low values of hB indicates that
our upper limits are almost entirely dominated by a single
pulsar data set: J1713+0747. This was anticipated by Madison
et al. (2014) and holds true even with the more sophisticated
noise modeling we have employed in this analysis. The pulsar-
term constraint plunges to lower rates than the Earth-term
constraint for high values of hB because the pulsar terms can be
treated as causally independent and the effective time baseline
in the pulsar term search is greater than for the Earth term.
Asymptotically, the two curves will differ by a factor of 12 for
large hB since our analysis uses equal amounts of observing
time from 12 different pulsars.

10. CONCLUSION

In this paper, we have conducted a search for BWMs in the
first five years of NANOGrav data. We did not detect any
BWMs. Based on our current understanding of SMBHBs, the
most conventional anticipated source of bright BWMs, it is
unsurprising that we did not. Wang et al. (2015) predict that
BWMs from SMBHB mergers exceeding amplitudes of 10−14

occur at a rate of just a few every 105 year. However, Cordes &
Jenet (2012) conclude that because of large uncertainties in
things such as the inspiral rate of SMBHBs, the actual rate of
BWMs is essentially unconstrained. If, for example, the rate at
which SMBHBs inspiral is enhanced through interactions with
gas or stars in the innermost portions of a galaxy, the amount of
time that individual binaries dwell at a single orbital frequency
will decrease and low-frequency power in the stochastic GW
background will be attenuated. This could adversely affect the
prospects for detecting individual isolated inspiralling

Figure 4. Results of a search for a BWM in the NANOGrav five-year data set for
PSR J1713+0747, the single most sensitive data set in our sample for such
searches. The bottom panel shows the epoch-averaged timing residuals for J1713
+0747 as they are in Figure 2. The second panel from the bottom shows
hp h,p
ˆ s for the 40 trial burst epochs we tested. The third panel from the bottom
shows the detection statistic D̂ varying over the span of trial burst epochs tested.
The remaining panels show a “heat map” of the two-dimensional likelihood ratio
surface, as in Equation (12), that we use for our Earth-term analysis.

Figure 5. Time and polarization slice of our Earth-term search. The plotted

quantity, DG
1 2˜ , is equivalent to the best-fit BWM amplitude, hB

˜ , in units of the
1-σ uncertainty on the amplitude, hs . At the location indicated by the black circle,

6.07 10h
15s = ´ - , the smallest value of hs in our entire search. In our whole

search, the maximum value of DG
1 2˜ we find is approximately 2.46, entirely

consistent with our noise models at the 95% level even if NG is no greater than 5
as we used in our pulsar-term searches. The diamonds indicate the positions of
the 12 pulsars in our analysis. The largest diamond represents J1713+0747.
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SMBHBs and could delay the detection of a stochastic
background, but the rate of BWMs would be enhanced. Also,
we stress that memory is a very general feature of bright GW
events and large-amplitude BWMs may be produced by wholly
unexpected phenomena occurring at unconstrained rates;
ongoing searches for BWMs are crucial for utilizing the raw
discovery potential of PTA observations (Cutler et al. 2014).
The methods developed in this paper are readily generalizable
to future, more sensitive data sets and the accelerated search
techniques we have developed for Earth-term analyses will
greatly expedite future BWM searches.

Our Figure 7 and Figure 10 from Wang et al. (2015) show
constraints on the rate of BWMs from initial NANOGrav and
PPTA data releases, respectively. Both probe to minimum
BWM amplitudes of approximately 2 10 14´ - . The PPTA
limits the rate of BWMs with amplitudes of 10−13 and
4 10 14´ - to less than approximately 0.8 and 3 yr−1,
respectively. Our upper limits on the rate of BWMs at these
amplitudes are 1.5 and 6.2 yr−1, respectively, a factor of
approximately two less constraining. This difference can be in
part attributed to the slightly longer timing baseline used in the
PPTA’s analysis as the amplitude of the minimum detectable
BWM scales as T 3 2- where T is the length of the data set.
Another contribution to the difference in our upper limits is that
the PPTA and NANOGrav observe different sets of pulsars; the
PPTA data set for PSR J0437−4715, a very bright and well-
timed MSP that is too far south to be observed with Arecibo or
the GBT, is a powerful tool in constraining BWMs.

Our Figure 6 and Figure 9 from Wang et al. (2015) illustrate
the sensitivity of NANOGrav and the PPTA to BWMs as it
varies over the sky. Combined, these figures help support the
science case of the IPTA. The area of the sky where
NANOGrav’s sensitivity to BWMs is worst is non-concentric
with the area of the sky where the PPTA’s sensitivity is worst.
Joint analysis of data from NANOGrav and the PPTA will lead
to more uniform sensitivity to BWMs over the whole sky and
more constraining upper limits. Though the EPTA has not yet
conducted a search for BWMs with their data, the inclusion of
their data in the joint IPTA data set will likely play a similarly
important role in improving the uniformity of the IPTA’s
BWM sensitivity.

NANOGrav has made great strides in improving its BWM
sensitivity since the collection of this initial data set. The pulsar

timing backends at Arecibo and Green Bank, ASP and GASP,
have been upgraded to the Puerto Rican Ultimate Pulsar
Processing Instrument and the Green Bank Ultimate Pulsar
Processing Instrument (DuPlain et al. 2008), backends with
exceptionally wide bandwidths that have reduced the rms
timing errors on most pulsars being timed by a factor of two to
three. Furthermore, NANOGrav is now regularly timing more
than 40 pulsars rather than just 17 as in the first five years.
Finally, just having a longer timing baseline on the pulsars we
have analyzed in this paper is a great boon to our BWM
sensitivity. We reiterate that all else being equal, sensitivity to
BWMs scales approximately as T 3 2- , where T is the span of
the data set. Contrast this with the T 1 2- scaling of a PTA’s
sensitivity to individual inspiralling SMBHBs. If we focus on
SMBHBs above a minimum reduced mass (as in Figure 6), the
volume of space in which we are sensitive to memory from
their mergers grows as T 9 2. The volume of space to which we
are sensitive to individual inspiralling SMBHBs of a fixed
chirp mass grows only as T3 2. As the volume in which we are
sensitive to billion solar mass mergers already encompasses
parts of the Virgo cluster, this strong scaling of volume probed
with time means that many more astrophysically interesting
systems will enter our detection horizon with continued PTA
observations. NANOGrav is preparing a collection of nine
years worth of data that will be a significantly more sensitive
probe of BWMs than any PTA data set that has yet been
analyzed. We plan to apply the techniques used in this paper to
the nine-year NANOGrav data set to produce unprecedented
constraints on BWMs.

We thank our anonymous referee for many thoughtful and
thorough comments that helped us to improve this manuscript.
We thank T. Loredo for helping us to appropriately treat
extreme-value statistics and G. Hobbs for his maintenance of
and continual improvements to TEMPO2. The work of Z.A.,
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Figure 6. Maximum luminosity distance of a SMBHB merger causing a BWM
detectable with 95% confidence given our sensitivity averaged over burst
epoch and polarization angle. We have assumed the binary had a typical
inclination angle of 3p and a reduced mass of M109

; the plotted distances
scale linearly with this fiducial reduced mass. The diamonds indicate the
positions of the 12 pulsars in our analysis. The largest diamond represents
J1713+0747. The green triangle represents the position of the center of the
Virgo Cluster. Just 16.5 Mpc from Earth, the Virgo Cluster is near the edge of
the volume in which we can detect BWMs with these properties. Figure 7. 95% confidence Earth- and pulsar-term upper bound on the rate,

hB( )L > , of BWMs occurring with amplitudes at or above amplitudes hB. The
two curves come from our Earth-term and pulsar-term analyses. The pulsar-
term probes lower-rate events at high amplitudes because individual pulsar
terms contain causally independent information. The near total convergence of
the Earth- and pulsar-term curves at low BWM amplitudes demonstrates that a
single pulsar, J1713+0747, is dominating our sensitivity.
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APPENDIX

In Table 2 we list and briefly describe the key symbols used
throughout this paper.

Table 2
Table of Key Symbols

Symbol Description Dimensions

ˆ L a “hat” on any quantity indicates that the BWM amplitude used to calculate it is L dimensionless
the result of least-squares fitting

˜ L a “tilde” on any quantity indicates that the BWM amplitude used to calculate it maximizes L dimensionless
the global likelihood (i.e., Equation (20)) among trial amplitudes in a grid search

B ,( )q f L projection factor accounting for the geometric configuration of the Earth, L dimensionless
pulsar, and burst source and the burst polarization angle

C ,nn tt¢ ¢ L covariance from noise between a TOA from epoch τ and frequency L time2

channel ν and a TOA from epoch t¢ and frequency channel n¢ L
D h t,p B( ) L h t2 ln ,p B( )G L dimensionless

DG L 2 ln GG L dimensionless
DL L luminosity distance from Earth to BWM source L distance
E L EFAC, a constant multiplier on the rms perturbation attributed to radiometer noise L dimensionless
fk L the p.d.f. for the maximum of k random numbers drawn from a 2c L dimensionless

distribution with one degree of freedom
Fk L the c.d.f. associated with fk L dimensionless

k L one minus the c.d.f. associated with fk L dimensionless
hB L amplitude of a BWM L dimensionless
hp L projected BWM amplitude, h B ,B ( )q f L dimensionless
 L jitter-like covariance between TOAs from the same epoch but different frequency channels L time
NI L the effective number of trial BWM epochs tested in a single-pulsar BWM search L dimensionless
NG L the effective number of trials in the space of BWM epoch, sky position, L dimensionless

and polarization angle in a global Earth-term BWM search
 L EQUAD, the rms of a Gaussian noise process added in quadrature to radiometer noise L time
t0 L time at which BWM wavefront encounters the Earth L time
t1 L time at which BWM wavefront is observed from Earth to encounter a pulsar L time
tB L epoch BWM is observed to occur, either t0 or t1 L time
U L the “exploder” matrix that maps observation epochs to the full set L dimensionles

of TOAs, as discussed in Arzoumanian et al. (2014)
h t,p B( )G L likelihood of a pulsar’s TOAs assuming a BWM of projected amplitude hp occurred L dimensionless

at epoch tB divided by the likelihood of the TOAs assuming no BWM occurred

GG L the global likelihood ratio, or product of pulsar-wise likelihood ratios (i.e., Equation (20)) L dimensionless
for a trial BWM of fixed sky location, polarization, epoch, and amplitude

tD L perturbation to pulse times of arrival L time
hB( )L > L the rate that BWMs with amplitudes greater than hB encounter our PTA L time−1

μ L reduced mass of a SMBHB, M M M M1 2 1 2( )+ L mass

hs L uncertainty on the amplitude of a BWM L dimensionless

h,ps L uncertainty on the projected amplitude of a BWM L dimensionless

Js L rms timing perturbation from pulse phase jitter noise L time

S Ns L rms timing perturbation from radiometer noise L time

h n,E B( )t L total time that an Earth-term search could yield n- hs detections of L time
a BWM with an amplitude greater than hB

h n,P B( )t L total time that a pulsar-term search could yield n- hs detections of L time
a BWM with an amplitude greater than hB

h t,2
p B( )c L the square of the timing residuals when a BWM is included in the timing model L dimensionless

weighted by the inverse noise covariance matrix (see Equation (13))

Note. For reference, descriptions of important or frequently used symbols.
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