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On the Approximability of the Exemplar Adjacency

Number Problem for Genomes with Gene Repetitions
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0A2, Canada.
eDepartment of Computer Science, University of New Orleans, New Orleans, LA 70148,

USA.
fDepartment of Computer Science, Montana State University, Bozeman, MT

59717-3880, USA.

Abstract

In this paper, we apply a measure, exemplar adjacency number, which com-
plements and extends the well-studied breakpoint distance between two per-
mutations, to measure the similarity between two genomes (or in general, be-
tween any two sequences drawn from the same alphabet). For two genomes G
and H drawn from the same set of n gene families and containing gene repeti-
tions, we consider the corresponding Exemplar Adjacency Number problem
(EAN), in which we delete duplicated genes from G and H such that the
resultant exemplar genomes (permutations) G and H have the maximum
adjacency number. We obtain the following results. First, we prove that
the one-sided 2-repetitive EAN problem, i.e., when one of G and H is given
exemplar and each gene occurs in the other genome at most twice, can be
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linearly reduced from the Maximum Independent Set problem. This implies
that EAN does not admit any O(n0.5−ǫ)-approximation algorithm, for any
ǫ > 0, unless P = NP. This hardness result also implies that EAN, pa-
rameterized by the optimal solution value, is W[1]-hard. Secondly, we show
that the two-sided 2-repetitive EAN problem has an O(n0.5)-approximation
algorithm, which is tight up to a constant factor.

Keywords: Genome comparison, adjacency, breakpoint, NP-hard,
approximation algorithm

1. Introduction

In genome comparison and rearrangement studies, the breakpoint dis-
tance is one of the most well-known distance measures [19]. The implicit
idea of breakpoints was initiated as early as in 1936 by Sturtevant and
Dobzhansky [18]. While gene duplication/loss, etc, is an inseparable part
of evolution, due to the difficulty of handling duplicated genes, until only a
few years ago, in computational genomics it had been largely assumed that
every gene appears in a genome exactly once. Under this assumption, the
genome rearrangement problem is essentially the problem of comparing and
sorting unsigned (or signed) permutations [12, 10]. Computing the break-
point distance between two permutations over the same alphabet can be done
in linear time.

Genomes in the form of permutations are hard to obtain and so far,
can only be obtained in several small virus genomes. In fact, these kinds
of ‘perfect’ genomes do not occur on eukaryotic genomes where paralogous
genes are common [16, 17]. In practice, it is important to compute genomic
distances between genomes in the form of permutations, such as is done by
using the Hannenhalli-Pevzner method [12]. However, more often than never,
one might have to handle the gene duplication problem. (Interested readers
are referred to a recent survey on this topic [20].) In 1999, Sankoff proposed
a way to select, from the duplicated copies of a gene, the common ancestral
gene such that the distance between the reduced genomes (called exemplar
genomes) is minimized. For this case, Sankoff produced a branch-and-bound
algorithm [17]. In a subsequent work, Nguyen, Tay and Zhang proposed
a divide-and-conquer method to compute the exemplar breakpoint distance
empirically [16].

From the algorithmic complexity research point of view, it has been shown
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that computing the exemplar signed reversal distance and computing the
exemplar breakpoint distance between two general genomes (i.e., with gene
duplications) are both NP-hard [3]. A few years ago, Blin and Rizzi further
proved that computing the exemplar conserved interval distance between two
such genomes is NP-hard [2]; furthermore, it is NP-hard to compute the min-
imum conserved interval matching, that is, without deleting the duplicated
copies of genes. On the approximability, for any exemplar genomic distance
measure d(·, ·) satisfying coincidence axiom (i.e., d(G, H) = 0 if and only if
G = H or the reversal of H), it was shown that the problem does not admit
any approximation algorithms, even when each gene appears at most three
times in each input genome unless P = NP [8, 6]. A few years later, this
bound was tightened, as deciding when d(G,H) = 0 is NP-complete even
if each gene appears in the input genomes G and H at most twice [1, 13].
It follows that for the exemplar breakpoint distance and the exemplar con-
served interval distance problems, there are no polynomial time approxima-
tion algorithms. Furthermore, even under a weaker definition of polynomial
time approximation algorithms, the exemplar breakpoint distance problem
is shown not to admit any weak O(n1−ǫ)-approximation algorithm, for any
0 < ǫ < 1, where n is the maximum length of the two input genomes [8]. The
exemplar conserved interval distance problem is also shown not to admit any
weak O(n1.5)-approximation algorithm [6, 7].

Complementary to the genomic distances, computing certain genomic
similarities between two genomes has also been studied in [4]. In general,
genomic similarity measures do not satisfy coincidence axiom. Among oth-
ers, Chauve et al. proved that computing the maximum exemplar common
interval similarity between two general genomes is NP-hard, while leaving
open the problem approximability [4].

Here we study the exemplar adjacency number between two (general)
genomes, which complements the breakpoint distance measure. Formally,
given an alphabet Σ of n genes and two genomes G and H drawn from Σ, the
Exemplar Adjacency Number problem (EAN for short) is to delete duplicated
genes from G and H such that the number of adjacencies between the two
resultant exemplar genomes (i.e., permutations), G and H , is maximized.
The EAN problem is NP-hard, and here we study the approximability. When
one of the input genomes is already exemplar, the problem is called one-
sided EAN; the general case is also called two-sided EAN. We first present a
linear reduction from the Maximum Independent Set (MIS) problem to the
one-sided 2-repetitive EAN problem. This reduction implies that the one-
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sided EAN problem is W[1]-hard, and that it does not admit an O(n0.5−ǫ)-
approximation algorithm, for any ǫ > 0, unless P = NP. The W[1]-hardness
(see [9] for details) and the recent lower bound results [5] imply that, if k is
the optimal solution value to the one-sided EAN problem, then barring an
unlikely collapse in the parameterized complexity hierarchy, the problem is
not solvable in time f(k)no(k), for any function f . Our second positive result
is an O(n0.5)-approximation for the two-sided 2-repetitive EAN problem.
Ignoring constants, the negative hardness result and the positive algorithmic
result match perfectly for this case.

The rest of the paper is organized as follows. In Section 2, we summa-
rize some of the necessary background definitions. Section 3 presents the
linear reduction from the MIS problem to the one-sided EAN problem, and
we draw the conclusion on inapproximability. The positive algorithmic re-
sult is presented in Section 4, with both the design and the analysis of the
O(n0.5)-approximation algorithm. Section 5 concludes the paper with some
discussions.

2. Preliminaries

In the (pairwise) genome comparison and rearrangement problems, we
are given two genomes, each of which is a sequence of signed (or unsigned)
genes. Note that in general a genome can be a set of such sequences (i.e.,
with multiple chromosomes); yet in this paper we focus on such one-sequence
genomes, often called singletons. The order of the genes in one genome
corresponds to their physical positions on the genome, and the sign of a gene
indicates which one of the two DNA strands the gene is located. In the
literature, most of the research assumes that each gene occurs exactly once
in a genome; such an assumption is problematic in reality for eukaryotic
genomes and the like where duplications of genes exist [17]. For such a
general genome, Sankoff proposed to select an exemplar genome, by deleting
duplicated copies of each gene, in which every gene appears exactly once.
The deletion is to minimize certain genomic distance between the resultant
exemplar genomes [17].

The following definitions are very much the same as those in [3, 8]. In this
paper, we consider only unsigned genomes, though our results can be applied
to signed genomes. We assume a gene alphabet Σ that consists of n distinct
genes. A genome G is a sequence of elements of Σ, under the constraint that
each element occurs at least once in G. We allow repetitions of every gene
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in any genome. Specifically, if each gene occurs exactly once in a genome,
then the genome is called exemplar; otherwise non-exemplar. A genome G is
called r-repetitive if each gene occurs at most r times in G. For example, if
Σ = {a, b, c}, then genome G = abcbaa is 3-repetitive.

Given a non-exemplar genome G, for each gene family one can delete
all but one duplicated genes to obtain an exemplar sub-genome G. In G,
each gene from Σ occurs exactly once. Hence G is a permutation of Σ.
For example, if Σ = {a, b, c} and genome G = abcbaa, then there are four
distinct exemplar genomes for G by deleting two copies of a and one copy of
b: G1 = abc, G2 = acb, G3 = bca, and G4 = cba.

For two exemplar genomes G and H drawn from a common n-gene alpha-
bet Σ, a breakpoint in G is a two-gene substring gigi+1 such that gigi+1, and its
reversal gi+1gi, do not occur as a substring in H . The number of breakpoints
in G (symmetrically the number of breakpoints in H) is called the break-
point distance between G and H , and denoted as bd(G, H). For two non-
exemplar genomes G and H, their exemplar breakpoint distance ebd(G,H) is
the minimum bd(G, H), where G and H are exemplar genomes of G and H,
respectively.

For two exemplar genomes G and H drawn from a common n-gene alpha-
bet Σ, an adjacency in G is a two-gene substring gigi+1 such that gigi+1, or
its reversal gi+1gi, also occurs as a substring in H . Likewise, the number of
adjacencies in G (symmetrically the number of adjacencies in H) is called the
adjacency number between G and H , and denoted as an(G, H). Similarly,
for two non-exemplar genomes G and H, their exemplar adjacency number
ean(G,H) is the maximum an(G, H), where G and H are exemplar genomes
of G and H, respectively. Clearly, for permutations, (exemplar) breakpoint
distance and (exemplar) adjacency number are complement to each other,
and they sum to exactly n − 1.

We comment that the adjacency definition we used is really on permu-
tations, while in [1] the adjacency definition is directly on strings without
any element deletion. In the latter case, even if two strings P, Q have no
breakpoint between them, it does not mean P = Q or Q’s reversal. The
recent work on filling scaffolds (to construct a complete genome) also uses
the latter (string) adjacencies [14, 15].

Formally, in the Exemplar Adjacency Number (EAN) problem, we are
given two genomes G and H drawn from a common n-gene alphabet Σ, and
the goal is to compute ean(G,H) and the associated exemplar genomes G
and H of G and H respectively.
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The EAN problem is a maximization problem. For any instance I, we
use OPT (I) to denote the optimal solution value of I. For an approxima-
tion algorithm A designed for the EAN problem, we use A(I) to denote the
solution value returned by A on I. Algorithm A has a performance guar-
antee of α, if A(I) ≥ OPT (I)/α for all I. In this case, A is also called an
α-approximation algorithm. We note that an approximation algorithm, by
default, runs in polynomial time.

3. Inapproximability Result

For (any instance of) the EAN problem, OPT denotes the optimal solu-
tion value. We first have the following lemma.

Lemma 1. 0 ≤ OPT ≤ n−1, where n (≥ 4) is the size of the gene alphabet.

Proof. Let the n (≥ 4) distinct genes be denoted as 1, 2, 3, . . . , n. We only
consider the exemplar genomes. The upper bound of OPT is achieved
by setting G = H ; the lower bound of OPT is achieved by setting G =
123 . . . (n − 1)n (the identity permutation) and H as follows:

H =

{

(n − 1)(n − 3) . . . 531n(n − 2) . . . 642, if n is even,
(n − 1)(n − 3) . . . 642n135 . . . (n − 4)(n − 2), otherwise.

It can be easily confirmed that between this pair of G and H there is no
adjacency.

It is interesting to note that, given G and H, whether or not OPT = 0
can be easily decided in polynomial time. For instance, one can use a brute-
force method on each pair of distinct genes to check whether it is possible
to make them into an adjacency. Such an observation implies that there
is a trivial O(n)-approximation algorithm for the EAN problem. Note that
the complement Exemplar Breakpoint Distance problem is different, which
does not admit any polynomial time approximation at all since deciding
whether its optimal solution value is zero is NP-complete [8, 1, 13]. The
next theorem shows that the one-sided EAN problem does not admit any
O(n0.5−ǫ)-approximation algorithm, for any 0 < ǫ < 0.5.

Theorem 1. Even if one of G and H is exemplar and the other is 2-repetitive,
the EAN problem does not admit any O(n0.5−ǫ)-approximation algorithm, for
any 0 < ǫ < 0.5, unless P = NP, where n is the size of the gene alphabet.
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Proof. It is easy to see that the decision version of the EAN problem is
in NP. We next present a reduction from the Maximum Independent Set
(MIS) problem to the EAN problem in which the optimal solution value is
preserved. The MIS problem is a well known NP-hard problem that cannot
be approximated within a factor of |V |1−ǫ, for any 0 < ǫ < 1, unless P = NP,
where V is the vertex set of the input graph [21].

Let (V, E) be an instance of the MIS problem, where V is the vertex set
and E is the edge set. Let N = |V | and M = |E|, and the vertices of V are
v1, v2, v3, . . . , vN , the edges of E are e1, e2, e3, . . . , eM . We construct a gene
alphabet Σ and two genomes G and H as follows. For each vertex vi, two
distinct genes vi and v′

i are created; for each edge ej , three distinct genes ej ,
xj and x′

j are created. The alphabet Σ contains in total 2N + 3M distinct
genes. Let Ai denote the sequence of all edges incident at vertex vi, sorted
by their indices. Let Yi = viAiv

′

i, for i = 1, 2, . . . , N , and YN+j = xjx
′

j , for
j = 1, 2, . . . , M .

Let
G = v1v

′

1v2v
′

2 . . . vNv′

Nx1e1x
′

1x2e2x
′

2 . . . xMeMx′

M .

Clearly, G is exemplar. We distinguish two cases to construct H (as in the
proof of Lemma 1):

H =

{

YN+M−1YN+M−3 . . . Y1YN+MYN+M−2 . . . Y2, if N + M is even,
YN+M−1YN+M−3 . . . Y2YN+MY1Y3 . . . YN+M−2, otherwise.

Clearly, in either case, H is 2-repetitive. The remaining argument is identical
for both cases.

We claim that the graph (V, E) has a maximum independent set of size
k iff ean(G,H) = k. First of all, since G is exemplar, G = G. If the graph
(V, E) has an independent set of size k, then the claim is trivial. To see
this, we construct the exemplar genome H as follows. For all i, if vi is in
the independent set, then we delete Ai from Yi = viAiv

′

i. Next, all other
redundant edges can be arbitrarily deleted to form H . This way, viv

′

i is an
adjacency between G and H , and thus ean(G,H) = k. On the other hand, if
ean(G,H) = k, the first thing to notice is that Yj = xjx

′

j (N+1 ≤ j ≤ N+M)
cannot give us any adjacency; so the adjacency between G and H must all
come from Yi = viAiv

′

i (1 ≤ i ≤ N), with Ai being deleted to create an
adjacency viv

′

i. It follows that there are exactly k such Ai’s being deleted.
For any two such deleted Ai and Aj , there is no edge between vi and vj ,
for otherwise both copies of the edge would be deleted and consequently H
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would not be exemplar. Therefore, these vertices form into an independent
set in graph (V, E).

The above reduction takes polynomial time. Since n = |Σ| = 2N +3M ∈
O(N2) and the MIS problem does not admit any O(N1−ǫ)-approximation
algorithm, for any 0 < ǫ < 1, unless P = NP, our EAN problem does not
admit any O(n0.5−ǫ)-approximation algorithm, with ǫ subsequently scaled to
0 < ǫ < 0.5.

v v

vv

1 2

3
v
54

e

e e

e

e

1

2

3

5

4

Figure 1. Illustration of a simple graph for the reduction.

In the example shown in Figure 1, we have
G : v1v

′

1v2v
′

2v3v
′

3v4v
′

4v5v
′

5x1e1x
′

1x2e2x
′

2x3e3x
′

3x4e4x
′

4x5e5x
′

5 and
H : x4x

′

4x2x
′

2v5e4e5v
′

5v3e1v
′

3v1e1e2v
′

1x5x
′

5x3x
′

3x1x
′

1v4e3e5v
′

4v2e2e3e4v
′

2.
Corresponding to the optimal independent set {v3, v4}, we have
H : x4x

′

4x2x
′

2v5e5v
′

5v3v
′

3v1e1e2v
′

1x5x
′

5x3x
′

3x1x
′

1v4v
′

4v2e3e4v
′

2. The two adjacen-
cies are [v3v

′

3] and [v4v
′

4].
It is natural to consider using fixed-parameter tractable (FPT) algorithms

for this kind of problems. However, regarding the FPT-tractability of the
EAN problem, parameterized by the optimal solution value k, we note that
the above reduction is an fpt-reduction. This is due to that, in the con-
structed EAN instance, the optimal solution value only depends on the size
of the independent set (and not on the rest of the input at all). Hence,
EAN is as hard as the parameterized version of Independent Set, which is
W[1]-hard. (See [9] for the details regarding the hierarchies on the parame-
terized complexity, e.g., W[1].) This implies that, unless an unlikely collapse
of the parameterized complexity hierarchies occurs, EAN cannot be solved
in time f(k)no(k), where f is any computable function [5]. We hence have
the following corollary.

Corollary 1. Even if one of G and H is exemplar and the other is 2-
repetitive, the EAN problem parameterized by the optimal solution value k
is W[1]-hard.
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4. An O(n0.5)-Approximation Algorithm

Here we consider the two-sided 2-repetitive EAN problem in this section.
Let Σ = {1, 2, . . . , n} be the gene alphabet, and G = (g1g2 . . . gp) and H =
(h1h2 . . . hq) be the two 2-repetitive genomes. For the ease of presentation, for
each gene i ∈ Σ, an occurrence in G or its exemplar sub-genomes is denoted
by i+, while an occurrence in H or its exemplar sub-genomes is denoted by i−.
To implement our algorithm, we construct an interval element y+

i between
gi and gi+1 for i = 1, ..., p − 1; likewise, we construct an interval element
y−

j between hj and hj+1 for j = 1, ..., q − 1. Moreover, for each gene i we
construct a gene element xi.

4.1. The Algorithm

Between any two exemplar genomes G and H derived from G and H
respectively, an adjacency ij un-ambiguously points to two positions i1 and
j1 in G and two positions i2 and j2 in H such that {gi1, gj1} = {i+, j+}
and {hi2 , hj2} = {i−, j−}; furthermore, to obtain G from G, the substring
G[i1 + 1..j1 − 1] is deleted (similarly, to obtain H from H, the substring
H[i2 + 1..j2 − 1] is deleted). Motivated by this observation, we create a set
S(i1, j1; i2, j2) when {gi1 , gj1} = {i+, j+} and {hi2 , hj2} = {i−, j−} for some
pair of distinct genes i and j (i < j), for all possible quadruples 1 ≤ i1 <
j1 ≤ p and 1 ≤ i2 < j2 ≤ q. Set S(i1, j1; i2, j2) contains those genes in G[i1 +
1..j1 −1] and those genes in H[i2 +1..j2 −1], and additionally j1 − i1 interval
elements y+

i1
, y+

i1+1, . . . , y
+
j1−1, j2− i2 interval elements y−

i2
, y−

i2+1, . . . , y
−

j2−1, and
two gene elements xi and xj . Clearly, the total number of such constructed
sets is O(n2).

We next remove some of these constructed sets for further consideration,
since they do not correspond to feasible adjacencies. There are two cases: In
one case, G[i1 +1..j1 − 1] contains a gene which occurs only once in G; in the
other case, G[i1 +1..j1 −1] contains both copies of a gene. Since deleting the
whole substring G[i1 +1..j1−1] of genes leads to no exemplar sub-genomes of
G, gi1gj1 is not a feasible adjacency. The same procedure applies to H, that if
H[i2 +1..j2−1] contains a gene which occurs only once in H or contains both
copies of a gene, then hi2hj2 is not a feasible adjacency either. Let S denote
the collection of the constructed sets after the above removing procedure,
where each set corresponds to a feasible adjacency.

Let Σ+ = {1+, 2+, . . . , n+}, Σ− = {1−, 2−, . . . , n−}, X = {x1, x2, . . . , xn},
Y + = {y+

1 , y+
2 , . . . , y+

p−1}, and Y − = {y−

1 , y−

2 , . . . , y−

q−1}. We construct an
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instance I of Set Packing using the ground set U = Σ+∪Σ−∪X∪Y +∪Y − and
the collection S of subsets of U . Then, the linear time (in |U |) approximation
algorithm in [11] for the Set Packing problem can be applied on I to produce
an approximate solution, which is a sub-collection Approx(I) of S containing
mutually disjoint sets. By the following Lemma 3, the set of adjacencies
extracted from Approx(I) can be extended into an exemplar genome G of
G and an exemplar genome H of H, such that an(G, H) ≥ |Approx(I)|.
We return the pair G and H as the final solution to the EAN problem. A
high-level description of the approximation algorithm A is in Figure 1.

Input: Σ = {1, 2, . . . , n} and two 2-repetitive genomes G and H
Output: Two exemplar genomes G and H of G and H respectively

1. Construct set S(i1, j1; i2, j2) for all possible quadruples;
2. Remove infeasible sets and form set collection S;
3. Construct an instance I of Set Packing:

ground set U = Σ+ ∪ Σ− ∪ X ∪ Y + ∪ Y − and collection S;
4. Run the linear time Set Packing approximation algorithm on I:

obtain a solution Approx(I);
5. Extend Approx(I) into exemplar genomes G and H .

Figure 1: A high-level description of the approximation algorithm A.

4.2. Performance Analysis

We first have the following result for the Set Packing problem:

Lemma 2. [11] The Set Packing problem admits an O(|U |+ |S|)-time |U |0.5-
approximation algorithm, where U is the ground set and S is the collection
of subsets.

Next, we exploit relationships between the feasible solutions of the EAN
and the Set Packing problems.

Lemma 3. If there is a set packing S ′ ⊆ S of size k, then there is a pair of
exemplar genomes G and H, derived from G and H respectively, such that
an(G, H) ≥ k.

Proof. Let S1, S2, . . . , Sk be the sets in the set packing S ′. Note that these
k sets are mutually disjoint, i.e., no two of them contain a common element
from U = Σ+ ∪ Σ− ∪ X ∪ Y + ∪ Y −.

10



From the construction process of the sets of S, we know each Si is as-
sociated with an interval of G and an interval of H, and Si contains all the
associated interval elements. Two disjoint sets Si and Sj are thus associated
with two non-overlapping intervals of G (and of H, respectively). There-
fore, all the adjacencies corresponding to sets S1, S2, . . . , Sk can be formed
by deleting all genes from the intervals associated with sets S1, S2, . . . , Sk.
Moreover, if a gene i occurs only once in G (in H, respectively), then i+ (i−,
respectively) does not belong to any of S1, S2, . . . , Sk. Likewise, if a gene i
occurs twice in G (in H, respectively), then i+ (i−, respectively) belongs to
at most one of S1, S2, . . . , Sk. If it belongs to exactly one Si, gene i will form
an adjacency together with some other gene. Otherwise, there will still be
two copies of the gene remaining in each of the two genomes after deleting
the intervals associated with S1, S2, . . . , Sk.

In the former case, element xi is covered by exactly one of S1, S2, . . . , Sk

and thus gene i is in a unique adjacency. In the latter case, we may keep an
arbitrary copy of i+ in G and an arbitrary copy of i− in H, while deleting
the others if any. This way, we obtain an exemplar genome G from G and an
exemplar genome H from H, for which all the adjacencies corresponding to
sets S1, S2, . . . , Sk are kept. That is, an(G, H) ≥ k. This proves the lemma.
In addition, we see that such a pair of exemplar genomes can be obtained
from S ′ in a linear scan through the genomes G and H.

Lemma 4. If ean(G,H) = k, then the optimal set packing has size at least
k
2
.

Proof. Let G∗ and H∗ denote the exemplar genomes of G and H respec-
tively such that an(G∗, H∗) = ean(G,H). Clearly, adjacencies between G∗

and H∗, when regarded as edges connecting the two involved genes, form
disjoint paths. For each such path containing ℓ adjacencies, a maximum of
⌈ ℓ

2
⌉ disjoint adjacencies can be obtained; here two adjacencies are disjoint if

they do not share any common gene. It follows from the proof of Lemma 3
that the optimal set packing has size at least k

2
.

Theorem 2. The two-sided 2-repetitive EAN problem admits an O(n3)-time
O(n0.5)-approximation algorithm, where n is size of the gene alphabet.

Proof. Let the two 2-repetitive genomes be G and H. Their lengths are thus
bounded above by 2n. For each position pair (i1, j1) in G, we only need to
look up at most 4 possibilities to construct sets, each of which contains O(n)
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elements. Therefore, the instance I of Set Packing can be constructed in
O(n3) time, with |U | ≤ 7n and |S| ∈ O(n2). Running the approximation
algorithm for Set Packing on I takes O(n2) time, with the returned solution
|Approx(I)| ≤ n. Finally, a pair of exemplar genomes G and H can be
extended from Approx(I) in O(n) time. Therefore, the overall running time
is O(n3).

From Lemmas 2–4,

an(G, H) ≥ |Approx(I)| ≥ ean(G,H)

2
/|U |0.5 =

ean(G,H)

2
√

7n0.5
.

Therefore, our approximation algorithm has a performance ratio in O(n0.5).

5. Concluding Remarks

In this paper we studied the exemplar adjacency number problem, which
complements and extends the exemplar breakpoint distance problem, be-
tween two general genomes (with gene repetitions). (An earlier version of
this paper appeared at CPM’07, where some different terminologies were
used.) We proved that the EAN problem cannot be approximated within
O(n0.5−ǫ) for 0 < ǫ < 0.5, even in the one-sided 2-repetitive case, where
n is the size of the gene alphabet. On the positive side, we presented a
cubic time O(n0.5)-approximation algorithm for the two-sided 2-repetitive
EAN problem. Therefore, within the context of 2-repetitiveness, our nega-
tive inapproximability and positive algorithmic results merge perfectly. We
believe that our techniques could extend the approximation algorithm for
the r-repetitive case, for any fixed r; but we are not sure whether the gen-
eral EAN problem admits an O(n0.5)-approximation algorithm, even in the
one-sided case.

On the other hand, the approximability for the (complement) one-sided
Exemplar Breakpoint Distance problem, even when each gene appears in the
non-exemplar genome at most twice, is still open. The only known negative
result is APX-hardness [1], and the only positive result is the trivial O(n)-
factor approximation.

Finally, while the EAN problem we discussed in this paper is hard in
terms of designing efficient FPT algorithms, using FPT algorithms to handle
problems in computational genomics, in many situations, is feasible. We refer

12



interested readers to the recent survey for the current status of this research
direction [20].
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