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ABSTRACT

The topological state of covalently closed, double-
stranded DNA is defined by the knot type K and the
linking-number difference �Lk relative to unknotted
relaxed DNA. DNA topoisomerases are essential en-
zymes that control the topology of DNA in all cells. In
particular, type-II topoisomerases change both K and
�Lk by a duplex-strand-passage mechanism and
have been shown to simplify the topology of DNA
to levels below thermal equilibrium at the expense of
ATP hydrolysis. It remains a key question how small
enzymes are able to preferentially select strand pas-
sages that result in topology simplification in much
larger DNA molecules. Using numerical simulations,
we consider the non-equilibrium dynamics of tran-
sitions between topological states (K,�Lk) in DNA
induced by type-II topoisomerases. For a biological
process that delivers DNA molecules in a given topo-
logical state (K,�Lk) at a constant rate we fully char-
acterize the pathways of topology simplification by
type-II topoisomerases in terms of stationary prob-
ability distributions and probability currents on the
network of topological states (K,�Lk). In particular,
we observe that type-II topoisomerase activity is sig-
nificantly enhanced in DNA molecules that maintain
a supercoiled state with constant torsional tension.
This is relevant for bacterial cells in which torsional
tension is maintained by enzyme-dependent homeo-
static mechanisms such as DNA-gyrase activity.

INTRODUCTION

The topological state of covalently closed, double-stranded
DNA is defined by the knot type, K , and the linking num-
ber, Lk. DNA topoisomerases play a critical role in con-

trolling the topology of double-stranded DNA through tor-
sional relaxation and supercoiling, decatenation of inter-
locked DNA duplexes, and elimination of knotted DNA-
recombination products, which cannot support transcrip-
tion and replication (1–5). Supercoiling is quantitatively de-
fined in terms of the linking-number difference relative to
relaxed DNA, �Lk = Lk − Lk0, rather than Lk itself; here,
Lk0 = N/h0 where N is the number of DNA base pairs in
the DNA molecule and h0 is the number of base pairs per
helical turn in topologically relaxed DNA.

DNA topoisomerases are divided into two classes, type-
I and type-II, corresponding to mechanisms that involve
cleavage of one or both DNA strands, respectively (6). On
fully double-helical DNA type-I enzymes regulate the tor-
sional tension in double-stranded DNA by changing �Lk
exclusively whereas type-II enzymes can change both K and
�Lk by passing one duplex DNA segment through another
(it is known, however, that topoisomerase I can perform
strand passages, and therefore knot-type changes, by act-
ing at the site of a DNA nick (7)). Torsional relaxation
of DNA is energetically favorable and can be performed
by ATP-independent enzymes, such as topoisomerase I. In
contrast, type-II enzymes have a general cofactor require-
ment for ATP, in particular type-IIA enzymes such as bacte-
rial topoisomerase IV and eukaryotic topoisomerase II (8),
which hydrolyze ATP during supercoil relaxation and un-
knotting. Bacterial DNA gyrase is an exception in that this
type-II enzyme introduces (–) supercoils at the expense of
ATP hydrolysis and relaxes supercoils in the absence of ATP
(9,10). The cofactor requirement was poorly understood
until Rybenkov et al. showed in 1997 that type-II topoiso-
merases selectively perform strand passages that reduce the
steady-state fraction of knotted or catenated, torsionally re-
laxed plasmid DNAs to levels 80 times below that at thermal
equilibrium (11). In particular, the width of the �Lk distri-
bution for torsionally relaxed plasmid DNAs acted on by
type-IIA topoisomerases was found to be narrower, i.e. less
supercoiled, than that observed with ATP-independent en-
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zymes (11). Thus, type-II topoisomerases use the free energy
of ATP hydrolysis to drive the system away from thermal
equilibrium. However, it remains a key question how a rel-
atively small enzyme is able to preferentially select strand
passages that lead to unknotting rather than to formation
of knots in large DNA molecules because the topological
state of DNA is a property of the entire molecule that can-
not be determined by local DNA–enzyme interactions.

Since the seminal work by Rybenkov et al. several models
have been suggested to explain how ATP-hydrolysis-driven
type-II topoisomerases can selectively lower the frequency
of DNA knotting (11–22), These models are generally based
on geometric or kinetic mechanisms that increase the prob-
ability of strand-passage reactions and result in topology
simplification from an initial state. A widely accepted model
that has emerged from these studies is that of a hairpin-like
gate (G) segment, where the type-II enzyme strongly bends
the G-segment DNA and accepts for passage only a transfer
(T) segment from the inside to the outside of the hairpin-
formed G segment (Figure 1A) (12–14,21). For torsionally
unconstrained (nicked) DNA, the model predicts a large
decrease in the steady-state proportion of knots and cate-
nanes relative to those at equilibrium, although it is insuf-
ficient to explain the magnitude of the effect observed with
torsionally relaxed DNA plasmids (12,21). Indeed, strong
(∼150◦) protein-induced bending of the G segment, as re-
quired by the model, is observed in a co-crystal structure of
yeast topoisomerase II with G-segment DNA (Figure 1B)
(23). Experimental AFM measurements are consistent with
bend angles between 94◦ and 100◦, whereas FRET mea-
surements suggest somewhat larger bend angles of 126◦ and
140◦ (24).

Type-II topoisomerases drive the system away from ther-
modynamic equilibrium and cause topology simplification
due to a combination of two mechanisms, which are in-
corporated in the model of a hairpin-like G segment (12–
14,21). First, type-II enzymes use the energy of ATP hy-
drolysis to promote passage of the T segment in one
direction relative to the enzyme (unidirectional motion),
whereas at thermodynamic equilibrium segment passages
occur in both directions due to detailed balance. Secondly,
the strongly bent hairpin G segment creates local asym-
metry in the DNA, so that unidirectional segment passage
from inside to outside of the hairpin can reduce the fraction
of knotted DNA below thermodynamic-equilibrium values.
Thus, type-II enzymes work like a Maxwell’s demon that al-
lows only selected segment passages subject to consumption
of chemical energy (12–14,21). Conversely, for a straight G
segment all axial orientations of the enzyme bound to the
G segment have equal passage probabilities, and topology
simplification below equilibrium values does not occur.

Another group of studies did not directly address mecha-
nisms of topoisomerase action but considered the probabil-
ity distribution P(K,�Lk), and distributions derived there-
from, at thermal equilibrium (15,25–27). This distribution
is directly related to the free-energy landscape F(K,�Lk) =
−kBT ln P(K,�Lk) where T is the temperature and kB
is Boltzmann’s constant. The distribution P(K,�Lk) cor-
responds to a phantom-chain ensemble where the DNA
molecules are free to explore all topological states (K,�Lk)
at thermal equilibrium, referred to here as the equilibrium

segment-passage (ESP) ensemble (28). Characterization of
P(K,�Lk) therefore yields important insight about the
most likely relaxation path of a given DNA knot by a hy-
pothetical topoisomerase that lacks any bias towards topol-
ogy simplification and is driven only by the topological free-
energy gradient. Indeed, the actual extent of bias for an
ATP-driven type-II enzyme in favor of unknotting can only
be quantified if we know the probability of acting in the ab-
sence of any bias, corresponding to topoisomerase action in
absence of ATP hydrolysis. The system’s behavior at thermal
equilibrium thus provides a necessary reference state for in-
vestigating mechanisms of topoisomerase activity such as
chirality bias (29–31).

Motivated by the fact that type-II enzymes drive the sys-
tem away from equilibrium, we investigate a model of topoi-
somerase activity based on a network of topological states
(K,�Lk) of circular DNAs with knot type K and link-
ing number difference �Lk in which the dynamics of tran-
sitions between states (K,�Lk) mediated by type-II en-
zymes is described by a chemical master equation. Previ-
ous studies showed the existence of unknotting/unlinking
pathways followed by type-II topoisomerases that step-
wise progressively reduce the topological complexity of
knotted/catenated molecules (32,33). The main goal of
our study is to identify significant pathways along which
topology simplification by type-II enzymes occurs in terms
of non-equilibrium steady states (NESSs) for the network
(K,�Lk). We also quantify type-II topoisomerase activity
for a hairpin-like G segment compared to a straight (un-
bent) G segment. To address these questions we generated
a large set of equilibrium ensembles of knotted and super-
coiled 6-kbp DNAs by Monte Carlo simulations to find
transition rates and NESS parameters in the network of
topological states (K,�Lk).

Our analytical approach can be thought of as a two-level
model. At the macroscopic level, the model uses topologi-
cal states as the variable, so it allows DNA-topology transi-
tions between states (K,�Lk) according to a chemical mas-
ter equation. Transitions between topological states occur
with rates that are determined, in turn, by microscopic in-
teractions and geometric features of type-II enzyme action.
The master-equation formulation allows one to compute
the occupancies of the different macrostates, including their
dynamics. In principle, other mesoscopic models for knot-
ted supercoiled DNA can be used to capture the underlying
microscopic behavior of the system, such as those obtained
from Brownian or molecular dynamics (34).

A novel feature of our model is the capability to dynami-
cally account for processes that generate complex knots ex-
trinsically, either in vitro or in vivo. For example, the process
may describe the activity of an intracellular enzyme creat-
ing the knots, and is extrinsic in the sense that this enzyme
is not explicitly included in our model; instead, the activ-
ity of the enzyme is described by the presence of a source
rate creating the knots. The favorable unknotting pathways
were determined in terms of universal NESS probabilities
and probability currents, derived from transition rates. The
idea of an induced probability current stems from the pres-
ence of an idealized source of complex knots. For exam-
ple, type-II enzymes crucially maintain the integrity of ge-
nomic DNA during transcription and replication, requiring
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Figure 1. (A) Mechanistic details of duplex-DNA passage in type-II topoisomerases. Step 1: enzyme binding to gate (G) segment in duplex DNA, followed
by an encounter with transfer (T) segment; step 2: binding of two ATP molecules seals the gate; step 3: cleavage of the G segment duplex, catalyzed by the
binding of 2 Mg2+ ions; step 4: passage of the T segment through the G segment; step 5: hydrolysis of the first ATP molecule releases a phosphate group
and reseals the G segment strand; step 6: hydrolysis of the second ATP molecule dismantles the complex releasing both DNA strands; step 7: the enzyme
resets to its original conformation. (B) Structure of yeast type-II topoisomerase dimer bound to a doubly nicked 34-mer duplex DNA (PDB 4GFH) and
AMP-PNP. The DNA is bent 160◦ via interactions with an invariant isoleucine (64).

relaxation of (+) supercoils that build up ahead of RNA
and DNA polymerases (35,36). Moreover, knotting occurs
in site-specific recombination reactions, for example, cre-
ating torus knots with 5 and more nodes (32,37,38). In
vitro, type-IIA enzymes efficiently generate not-trivial knots
through processes that facilitate intramolecular interactions
among duplex-DNA segments, such as DNA supercoiling,
DNA looping, or segment-segment interactions promoted
by polycations and other DNA-condensing agents (39–41).
There is little information regarding endogenous knotting
of DNA in vivo, although recent studies in yeast suggest that
there can be low steady-state levels of knots in intracellular
chromatin (42). If such knots exist in vivo, there must be
mechanisms to efficiently resolve such topological entan-
glements, which are a potential death sentence for the cell
(2,43–45).

COMPUTATIONAL METHODS

DNA model and simulation procedure

Following previous studies (25,26,28,46) circular duplex
DNA is modeled as a discrete semi-flexible chain with N ex-
tensible segments of mean length b0 = 10 nm, correspond-
ing to a total chain length of L = Nb0; in this work we use
N = 200 corresponding to 6-kb DNA (each segment has
approximately 30 bp). The potential energy of a chain con-
formation is given by

U = kBT
N∑

i=1

[
cb [1 − cos (θi )] + cs

2

(
bi

b0
− 1

)2
]

+2π2

N
ctw(�Tw)2, (1)

where T = 300 K is the temperature and kB is Boltzmann’s
constant. θi is the bending angle between successive seg-
ments i and i + 1, bi is the length of segment i , and �Tw
is the double-helical twist relative to relaxed DNA. Dur-
ing a Monte Carlo simulation, the value of �Tw was cal-
culated for each chain conformation using White’s equa-
tion �Tw = �Lk − Wr where Wr is the writhe of the
chain conformation and �Lk was fixed during the simula-
tion. The bending energy constant cb is chosen such that
the persistence length P of the chain is equal to 5 seg-
ments, i.e., P = 5b0 = 50 nm, resulting in cb = 5.5157 (28).
The stretching energy constant is given by cs = Ksb0/(kBT)
where Ks is the stretch modulus of DNA; using the approx-
imate value Ks = 1000 pN for B-form DNA under phys-
iological conditions (47) results in cs = 2500. The twist-
ing energy constant is given by ctw = C/(b0kBT) where
C is the torsional rigidity constant of DNA; using C =
3 × 10−19 erg·cm for B-form DNA (46) results in ctw =
7.243. Excluded-volume and electrostatic interactions be-
tween DNA segments are modeled by an effective hard-
cylinder diameter d = 5 nm, corresponding to an ionic
strength of 150 mM (48).

Equilibrium ensembles of chains with fixed knot type
K and linking number difference �Lk were generated by
Monte Carlo (MC) simulation. In our procedure, chain
conformations evolved by crankshaft rotations and stretch-
ing moves of sub-chains (28), and sub-chain translations,
or reptations, along the local chain axis; the purpose of rep-
tation moves was to increase the probability of extrusion
and resorption of superhelix branches (see reference (46) for
the definition and numerical implementation of reptation
moves). Trial conformations were accepted with probability
Paccept = min[exp[−(Utrial − Ucurrent)/(kBT)] , 1] according
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to the Metropolis criterion, where Utrial and Ucurrent are
the potential energies of trial and current conformations,
respectively, according to Equation (1). Excluded-volume
interactions and preservation of knot type K were imple-
mented by rejecting any trial conformation in which chain
segments overlapped or which resulted in a change of K .
Knot types K of current and trial conformations were de-
termined by calculating the Alexander polynomial �(t) for
t = −1.1 and the HOMFLY polynomial P(a, z) (49). Aver-
ages for given knot type K and linking number �Lk were
calculated from ensembles containing 106 saved conforma-
tions for the unknot 0.1 and the trefoil knot 3.1, and 5 × 105

saved conformations for all other knot types K . The simu-
lation period between saved conformations entering these
ensembles was 1000 MC moves.

The calculation of P(K|�Lk) requires numerical calcu-
lation of the probability P(K) of a knot type K in an equi-
librium segment-passage (ESP) ensemble of torsionally un-
constrained (nicked) chains (see Supplementary Data, Sec-
tion S1, Figure S1 and Table S1 for details regarding the
calculation of P(K,�Lk)). To obtain numerically accurate
values of P(K) for a complex knot K , which occurs with
very low frequency in an unrestricted ESP ensemble due to
its large free energy, we use the method of restricted ESP
ensembles in which one or more dominating knot types are
excluded so that less dominant knot types occur with higher
frequency (Supplementary Figure S1) (28). If the knot K
occurs with sufficient frequency in the restricted ensemble
ESP’ its probability P′(K) in ESP’ can be accurately deter-
mined, which, in turn, yields the probability P(K) in the
unrestricted ensemble ESP.

Model of type-II enzymes

DNA-bound type-II enzymes with hairpin and straight G
segments were modeled by selecting four or two contigu-
ous chain segments, respectively, whose local geometry dur-
ing a trial move conformed to specific criteria (Figure 2). A
hairpin G segment formed two sides of an equilateral tri-
angle with side lengths 2b0 = 20 nm, corresponding to a
120◦ bend. A putative T segment was considered to be jux-
taposed with the G segment if it passed through the triangle
in such a way that none of the chain segments overlapped,
i.e., excluded-volume interactions were preserved for the
enzyme (Figure 2A). For a straight G segment, a poten-
tial T segment was considered to be juxtaposed if it passed
through an equilateral triangle with one side formed by the
straight G segment of length 2b0 = 20 nm (Figure 2B). The
orientation of this triangle about the center axis of the chain
was chosen randomly for each trial conformation. Again,
excluded-volume interactions of chain segments were pre-
served. The juxtaposition condition for a straight G seg-
ment using the same unilateral triangle as for a hairpin G
segment was guided by computational convenience; how-
ever, we note that our results for a straight G segment do
not depend on details of the juxtaposition condition such
as the shape and size of the juxtaposition sector for T seg-
ments. This is because of the universality of the NESS prob-
abilities and probability currents obtained by our model as
discussed below.

Figure 2. Simulation snapshots of the left-handed trefoil knot 3.1− with
(A) hairpin-like G segment and (B) straight G segment (74). The conforma-
tions shown correspond to states in which a T segment (green) is properly
juxtaposed with the G segment (red) to initiate strand passage. Deformed
chains used to determine knot type K ′ and linking number �Lk′ of the
chain conformation after strand passage are indicated by grey lines. We
use a modified Alexander-Briggs notation for knots, where the first num-
ber indicates the minimal crossing number, the subscript number indicates
the tabular position among the knots with the same minimal crossing num-
ber (75) and the subscripts + or – indicate right- or left-handed form of the
given knot.

Juxtaposition probabilities and transition rates

Strand passages by type-II enzymes generate transi-
tions from topological states a = (K,�Lk) to states b =
(K ′,�Lk′) with �Lk′ = �Lk ± 2. The associated transi-
tion rates kab are assumed to be of the form

kab = k0 j (a) Q (b| a) , (2)

where k0 is a constant which depends on enzyme activity
and concentration, but is independent of the topological
states a, b of the DNA (12,21). j (a) is the juxtaposition
frequency of the enzyme in state a, corresponding to the
fraction of DNA conformations in state a in which a poten-
tial T segment is properly juxtaposed with the G segment as
described above. Q(b|a) is the conditional probability that
strand passage from a juxtaposed conformation in state a
results in state b.

The state b = (K ′,�Lk′) of the chain that would result
from the juxtaposed state a = (K,�Lk) by passage of the
T segment through the G segment was determined by con-
sidering local, virtual deformations of the chain obtained
by replacing the red segments corresponding to the G seg-
ment by the gray segments shown in Figure 2. Note that
the virtual, deformed conformations were solely used as a
tool to identify knot type K ′ and �Lk′ of a passed confor-
mation; however, the virtual, deformed conformations were
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not part of the equilibrium ensembles, which implies that
elastic energies of the deformed conformations did not en-
ter the calculation. The knot type K ′ was determined by
calculating the Alexander and HOMFLY polynomials of
the deformed chain (49). �Lk′ was determined by calcu-
lating the writhe Wr ′ of the deformed chain and assuming
that strand passage leaves the twist �Tw nearly unchanged;
applying White’s equation �Lk = �Tw + Wr to original
and deformed chain, and using �Tw′ = �Tw, then gives
�Lk′ − �Lk = Wr ′ − Wr . Using the fact that the change
of �Lk occurs strictly in steps of ±2 allowed us to deter-
mine the sign of the change of �Lk by the corresponding
change of the writhe Wr , which was always close to ±2
in our simulations. Thus, both j (a) and Q(b|a) can be de-
termined by MC simulations of equilibrium ensembles of
chains in a fixed topological state a. The validity of this ap-
proach is based on the assumption that the reaction is not
diffusion limited, which implies that the probability j (a) of
finding a potential T segment properly juxtaposed with the
G-segment is equal to the equilibrium probability of this
juxtaposed conformation in the absence of strand passage
(12).

Master equation and non-equilibrium steady states

Consider an ensemble of circular duplex DNA molecules
acted on by type-II enzymes in the presence of ATP.
The rates kab for transitions from topological states a =
(K,�Lk) to states b = (K ′,�Lk′) induced by the enzyme
are given by Equation (2). The probability P(a, t) to find a
given DNA molecule in topological state a at time t obeys
the master equation

d
dt

P (a, t) =
∑
b �=a

[P (b, t) kba − P (a, t) kab]

≡
∑

b

Wab P (b, t), (3)

where the transition matrix Wab is given in terms of the
rates kab by Wab = (1 − δab)kba − δab

∑
c �=a kac. We con-

sider here the situation where the probabilities P(a, t)
are stationary, i.e. time-independent, for all topological
states a, corresponding to non-equilibrium steady states
(NESS). Stationary NESS probabilities P∗(a) were calcu-
lated as follows (the star symbol for P∗(a) is used to dis-
tinguish NESS probabilities from the equilibrium prob-
abilities P(a) obtained in ESP ensembles). According to
Equation (3), for stationary NESS probabilities P∗(a) with
d P∗(a)/dt = 0 one obtains

∑
b Wab P∗(b) = 0 for all topo-

logical states a present in the system, which implies that
the vector [P∗(b) ; states[pxe]Tilde;b] is an eigenvector of
the transition matrix Wab with eigenvalue 0. This eigen-
vector is uniquely determined by the normalization con-
dition

∑
b P∗(b) = 1 (50,51). Stationary NESS probability

currents from topological states a to states b are found
from iab = P∗(a)kab − P∗(b)kba . Note that at thermal equi-
librium the detailed balance condition implies iab = 0; con-
versely, in our study, NESS with appreciable probability
currents iab were generated by continuously delivering a
complex topology, e.g., knot type K = 10.139− with �Lk =

−12, to the ensemble by introducing a source rate kS(a, b)
with origin a = (0.1, 0) (the unknot with �Lk = 0) and
source state b = (10.139−,−12).

Universal NESS probabilities and probability currents

For nonzero source rates kS the NESS probabilities P∗(a)
and probability currents iab depend on enzyme properties
such as intrinsic rate and concentration in terms of the con-
stant k0 in Equation (2). In order to obtain results indepen-
dent of such largely unknown details (in this sense ‘univer-
sal’) we define normalized transition rates as

Kab ≡ kab

k0 j0
= j (a)

j0
Q (b |a ) ≡ J (a) Q (b |a ) , (4)

where j0 is the juxtaposition frequency in a reference state,
which we choose as (0.1, 0) (the unknot with �Lk = 0). The
normalization factor k0 j0 = ∑

b k(0.1, 0 ; b) in Equation (4),
with k(a ; b) = kab from Equation (4), corresponds to the to-
tal rate of enzyme reaction in the reference state a = (0.1, 0).
The normalized juxtaposition frequency J(a) = j (a)/j0 in
Equation (4) is the ratio of the actual juxtaposition fre-
quency j (a) in state a and the juxtaposition frequency
j0 in the reference state, where the unknown constant k0
drops out. Universal NESS probabilities P∗(a) as a func-
tion of the parameter κ = kS/(k0 j0) were calculated using
the normalized rates Kab in Equation (4) as described above,
and universal NESS probability currents are obtained as
Iab = P∗(a)Kab − P∗(b)Kba . The universal NESS proba-
bilities P∗(a) and probability currents Iab as functions of
the parameter κ are expected to depend only on geometric
properties of the enzyme, such as the bend angle of the G
segment. Thus these quantities are expected to be indepen-
dent of properties that do not involve the particular topo-
logical state of the DNA, for example the overall size of the
enzyme (as long as it is much smaller than the DNA) and
the precise form of the interaction potential between the G
and T segments. We tested the hypothesis that P∗(a) and Iab
are universal functions of the parameter κ by showing that
P∗(a) and Iab remained unchanged when altering the inter-
action between G and T segments (Supplementary Figure
S6). This test also provided an internal control for the va-
lidity of our computational approach.

Summary of computational procedure

To summarize, the reaction pathways presented below were
calculated as follows. For given knot type and linking
number (K,�Lk), equilibrium ensembles with NMC saved
conformations were generated by Monte Carlo simulation
(MC) for chains with straight G segment and chains with
hairpin G segment, respectively (Figure 2). Juxtaposed con-
formations in these ensembles were identified as described
above (Figure 2) resulting in Njuxt(K,�Lk) juxtaposed con-
formations. The juxtaposition frequency in Equation (2)
was calculated as j (K,�Lk) = Njuxt(K,�Lk)/NMC. For
each juxtaposed conformation in the ensemble for given
(K,�Lk), virtual, deformed chain conformations were con-
sidered to identify the state b = (K ′,�Lk′) of the chain
that would result from the juxtaposed state a = (K,�Lk)
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by passage of the T segment through the G segment (Fig-
ure 2). The knot type K ′ and linking number �Lk′ was
determined by calculating the Alexander and HOMFLY
polynomials and the writhe Wr ′ of the virtual, deformed
chains as described above. For given juxtaposed conforma-
tion a = (K,�Lk) the number Npass(b) of passed confor-
mations b = (K ′,�Lk′) was determined, resulting in tran-
sition probabilities Q(b|a) = Npass(b)/Njuxt(a) in Equation
(2). This procedure was repeated for a sufficiently large set
of states a = (K,�Lk). Normalized transition rates Kab =
kab/(k0 j0) were then calculated using Equation (4); in our
calculations, the parameter k0 in Equation (2) was set to
1 because it drops out in the ratio of Equation (4). Nor-
malized NESS probabilities P∗(a) were calculated from the
eigenvector of the transition matrix Wab in Equation (3)
with eigenvalue 0, and universal NESS probability currents
were calculated as Iab = P∗(a)Kab − P∗(b)Kba .

RESULTS

Equilibrium distribution and free-energy landscape

As outlined in the Introduction, the topological distribu-
tion at thermal equilibrium provides a reference state neces-
sary to understand ATP-driven type-II enzyme action that
results in topology simplification beyond equilibrium. The
equilibrium ensemble is characterized by the joint proba-
bility distribution P(K,�Lk), corresponding to an equilib-
rium segment-passage (ESP) ensemble of phantom chains,
and distributions derived therefrom (25,26). In particular,
Podtelezhnikov et al. found that P(K|�Lk), the conditional
distribution of K for given �Lk, is dominated by only a few
knots K for any fixed value of �Lk; moreover, the dom-
inating knots except for the unknot were all chiral (25).
Later, Burnier et al. pointed out that for chiral knots K
the level of supercoiling is characterized by the quantity
�Lke = �Lk − 〈Wr〉(K, nicked) rather than �Lk, where
〈Wr〉(K, nicked) is the signed, nonzero mean value of the
3D writhe for a torsionally unconstrained (nicked) DNA
molecule with chiral knot type K (Figure 3) (26). This
result can be easily understood by taking the average of
White’s equation for fixed �Lk, i.e. �Lk = 〈�Tw〉 + 〈Wr〉:
for a torsionally relaxed, i.e., not supercoiled, chain one
has 〈�Tw〉 = 0 and 〈Wr〉 = 〈Wr〉(K, nicked), thus �Lk =
〈Wr〉(K, nicked) and �Lke = 0 (Figure 3). Burnier et al.
found that the conditional distribution P(K|�Lke) is dom-
inated by the unknot for any fixed value of �Lke; moreover,
P(K|�Lke) decreases with increasing −�Lke for any knot
K , implying that increasing levels of supercoiling favor un-
knotting (26).

We first verified that our calculation reproduces the be-
havior of the equilibrium distribution P(K|�Lk) found ear-
lier (see Figure 4 in reference (25) and Figure 2A in ref-
erence (26)). For our 6-kb DNAs we indeed find that for
any fixed, small value of �Lk only a few knot types K
dominate the distribution. However, for −�Lk > 18, cor-
responding to superhelix density −σ = �Lk/Lk0 > 0.0315
for 6-kb DNAs, the distribution rapidly becomes degenerate
and many different knot types K contribute to P(K|�Lk)
(Supplementary Figure S2). This value of σ is closely sim-
ilar to the experimentally measured average level of in-vivo

Figure 3. Standard forms of (A) the unknot 0.1 and (B) the left-handed
knot 8.19−, and simulation snapshots of 6-kb DNAs of these knots with
values of �Lk and �Lke = �Lk − 〈Wr〉(K, nicked) as shown (74). The
mean writhe 〈Wr〉(K, nicked) of torsionally relaxed (nicked) DNA is 0 for
K = 0.1 and −8.76 for K = 8.19−. The states with �Lke = 0 appear re-
laxed, whereas for �Lke = −12 supercoiling is present.

plectonemic supercoiling in prokaryotes determined by site-
specific recombination assays (52,53). Such levels account
for only 40–50% of the plectonemic supercoiling present in
bacterial plasmids in vitro, the remainder presumed to be
constrained by the intracellular binding of specific and non-
specific DNA-binding proteins. If conditions inside the cell
increase the level of unconstrained supercoiling beyond this
|σ | value, the resulting distribution of knot types would be
expected to become highly degenerate.

Next, in order to understand the most-probable relax-
ation path of a given DNA knot K with linking number
�Lk by a topoisomerase that is driven only by the topolog-
ical free-energy gradient, we calculated the free energy land-
scape F(K,�Lk) = −kBT ln P(K,�Lk) including all knot
types K which dominate the distribution P(K|�Lk) and
have 12 or fewer crossings (Figure 4) (see Computational
Methods). The free-energy landscape also explains the dif-
ference between results for P(K|�Lk) and P(K|�Lke) ob-
tained in references (18) and (26), respectively, by noting
that distributions for fixed �Lk or �Lke correspond to
different sections of the free energy landscape F(K,�Lk)
(Figure 4). Along sections with fixed −�Lk > 5.5, the min-
imum value of F(K,�Lk) corresponds to the chiral knot
3.1−, whereas along sections with fixed �Lke = �Lk −
〈Wr〉(K, nicked), the minimum in F always coincides with
the unknot 0.1. The corresponding free-energy gradient to-
wards 0.1 is steeper for increasing −�Lke, in agreement
with earlier results (25,26). The latter situation, namely
involving sections of the free-energy landscape with fixed
�Lke, is relevant in biological systems in which a finite
amount of supercoiling is maintained for DNA undergoing
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Figure 4. Free energy landscape F(K,�Lk) = − ln[P(K,�Lk)] in units of kBT for 6-kb DNAs, where P(K,�Lk) is the joint probability distribution of
K and �Lk. Along sections with fixed −�Lk > 5.5, F(K,�Lk) is minimum for nontrivial knots, i.e., knots different from the unknot 0.1. This is indicated
for −�Lk = 7 (F minimum for K = 3.1−, orange line/dot) and −�Lk = 12 (F minimum for K = 8.19−, brown line/dot). The white curves are sections
for fixed values 0, −10 of the degree of supercoiling �Lke = �Lk − 〈Wr〉(K, nicked) where 〈Wr〉(K, nicked) is the mean writhe for torsionally relaxed
(nicked) DNA with knot type K . Along these sections, F is always minimum for the unknot 0.1 and the corresponding free energy gradient towards 0.1
becomes steeper with increasing −�Lke.

transitions changing the knot type K and therefore chang-
ing the equilibrium writhe 〈Wr〉(K, nicked). This is the case,
for example, for bacterial cells where the torsional tension
is maintained by a homeostatic mechanism involving topoi-
somerase I and DNA gyrase (58,59).

Steady-state knot distributions in supercoiled DNA and
topology simplification

In addressing the influence of DNA supercoiling on the un-
knotting efficiency of type-II enzymes, we first consider an
ensemble of supercoiled 6-kbp circular duplex DNAs in the
presence of type-II topoisomerase and ATP without addi-
tional components. Each round of type-II enzyme action
converts a DNA substrate in the state (K,�Lk) to a product
state (K ′,�Lk′) where �Lk′ = �Lk ± 2 and K ′ is a knot
that can be obtained from K by one intersegmental passage
(54). Figure 5 shows steady-state fractions P∗(K,�Lk) of
the unknot 0.1 and stereoisomers 3.1+ and 3.1− of the tre-
foil knot for type-II enzymes modeled in terms of hairpin-
like and straight G segments, respectively. Knots with more
than three crossings occurred with low frequency and were
omitted from Figure 5 for simplicity. As a comparison we
also show the equilibrium probabilities P(K,�Lk) corre-
sponding to ESP ensembles.

Figure 5 shows that the steady-state fraction of 3.1
knots is reduced for enzymes with hairpin G segments
compared to enzymes with straight G segments, consis-
tent with results obtained earlier for torsionally uncon-
strained (nicked) chains (12). For the sums P∗(0.1) =∑

�Lk P∗(0.1,�Lk) and P∗(3.1−) = ∑
�Lk P∗(3.1−,�Lk),

corresponding to steady-state probabilities of knots 0.1 and
3.1− for nicked chains, we find P∗(3.1−)/P∗(0.1) = 9.7 ×
10−4 (hairpin G segment) and P∗(3.1−)/P∗(0.1) = 8.3 ×
10−3 (straight G segment). This corresponds to a reduc-
tion by a factor of 8.5 (compare column Ck/Cu in Table 1
in reference (12), where both isoforms 3.1− and 3.1+ were
included in the statistics of the trefoil knot 3.1 for nicked 7-
kbp DNAs). The difference in reduction factors of 14 in ref-
erence (12) and 8.5 in our study may be explained by the fact
that the hairpin-like G segment considered in (12) had an
overall 180◦-bend compared to a smaller 120◦-bend in our
model (see Computational Methods). However, for fixed
values of �Lk the reduction factor depends strongly on the
value of �Lk; for example, for �Lk = −4 the reduction fac-
tor is only 1.3 whereas for �Lk = −2 it is 85 (Figure 5).
The dependence of the reduction factor on �Lk is related
to the fact that the free-energy gradient depends on the rel-
evant section of the free-energy landscape F(K,�Lk): the
gradient toward 0.1 is steeper for fixed �Lk = −2 than for
�Lk = −4 (Figure 4). Similarly, for fixed �Lke = �Lk −
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Figure 5. Steady-state fractions P∗(K,�Lk) for the unknot 0.1 and isoforms 3.1+ and 3.1− of the trefoil knot in the presence of type-II enzymes modeled
with hairpin-like and straight G segments, respectively, in the state space spanned by knot type K and linking number �Lk. Also shown are the correspond-
ing equilibrium fractions P(K, �Lk) for comparison. The group of numbers shown for each knot K are steady-state fractions P∗(K, �Lk), in percent,
for DNAs with hairpin-like G segments (upper entries, magenta), straight G segments (middle entries, green), and equilibrium fractions P(K,�Lk) cor-
responding to ESP ensembles (lower entries, blue). The fractions for right-handed isoforms of a chiral knot are the same as for left-handed isoforms by
symmetry. The upper panel displays sums of P∗(K,�Lk) over the �Lk- values shown in the figure. The arrows and associated numbers indicate residual
probability currents I(K, K ′) for enzymes with hairpin (magenta) and straight G segments (green).

〈Wr〉(K, nicked) the reduction factor is expected to depend
on the gradient along sections with fixed �Lke in the free-
energy landscape (Figure 4). We also found that the steady-
state fractions P∗(K,�Lk) for knots K different from the
unknot are slightly larger for type-II enzymes with straight
G segment than the corresponding equilibrium probabili-
ties P(K,�Lk) (Figure 5), again in agreement with results
obtained previously for nicked chains (compare reference
(12), Table 1).

Interestingly, for supercoiled DNA, residual cycle
(or closed-loop) probability currents appear. For ex-
ample, consider the probability currents for hairpin G
segment indicated by magenta arrows in Figure 5. For
�Lk ≤ 0 (right side in Figure 5), two cycles occur, namely
(0.1, 0) →(0.1,−2) →(3.1−,−4) →(3.1−,−2) → (0.1, 0)
and (0.1,−2) →(3.1−,−4) →(3.1−,−6) →(0.1,−4) →
(0.1,−2). For �Lk ≥ 0 (left side in Figure 5) the cor-
responding cycles occur by symmetry. Closed-loop
probability currents are typical for non-equilibrium steady
states (NESS) and occur because type-II enzymes drive the
reaction away from thermal equilibrium so that detailed
balance between directed fluxes (K,�Lk) → (K ′,�Lk′)
and (K ′,�Lk′) → (K,�Lk) is violated in general (50,51).
The numerical values for NESS probabilities and proba-
bility currents shown in Figure 5 are accurate within our
numerical calculation; however, these values are expected
to depend on finite-size effects and other approximations
involved with our simple model for the enzyme (Figure
2). Moreover, it is not clear whether the residual cyclic

probability currents have any significance regarding the
unknotting efficiency of type-II enzymes.

Apart from DNA unknotting, another aspect of DNA-
topology simplification by type-II enzymes is a reduction of
the degree of supercoiling, which translates into a narrower
�Lk-distribution about its mean value 〈Wr〉(K, nicked) for
a given knot type K . A metric used to quantify this type of
topology simplification is the topology simplification fac-
tor R = 〈�Lk2〉topoI/〈�Lk2〉topoI I where 〈�Lk2〉topoI I is the
variance of �Lk in the presence of type-II enzyme and ATP,
and 〈�Lk2〉topoI is the variance of �Lk in the presence of
type-I enzyme. The latter does not consume energy from
ATP hydrolysis and thus generates the �Lk distribution
corresponding to an ESP ensemble at thermal equilibrium.
In reference (11) the variance of the �Lk-distribution was
measured for the nicked unknot form of 7-kbp pAB4 DNA
in the presence of Escherichia coli topoisomerase IV and
ATP and gave the result 〈�Lk2〉 = 1.7 compared with the
equilibrium value 3.1, which yields R = 1.8.

Three other studies found values of R in the range 1.3–
1.7 (55–57). We studied the narrowing of the �Lk distribu-
tion for the unknot 0.1 in the presence of type-II enzymes
modeled with the hairpin-like G segment and compared
the standard deviations of the steady-state distribution
P∗(�Lk|0.1) and the equilibrium distribution P(�Lk|0.1)
(Supplementary Data, Section S3 and Figure S3). Note that
the distributions P∗(�Lk|0.1) for even and odd values of
�Lk are disjunct because type-II enzymes change �Lk in
steps of 2; conversely, type-I enzymes change �Lk in steps
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of 1. We thus find R = 1.21 for �Lk even and R = 1.35 for
�Lk odd, in reasonable agreement with the experimental
results (11,55–57) (Supplementary Data, Section S3).

Pathways of topology simplification in knotted, supercoiled
DNA

For DNAs in the size range considered here and in the
absence of a process that actively delivers a complex knot
type to the ensemble of DNAs, the equilibrium probabili-
ties P(K,�Lk) are very small for any knot K different from
the unknot. Thus, for single, decatenated DNA molecules at
thermal equilibrium practically no knotted DNAs appear.
In the presence of type-II enzymes these probabilities are
reduced even further. However, a typical situation in vivo
is that some biological process is present that actively gen-
erates knotted DNAs, and type-II enzymes are essentially
needed to remove these knots. To address this biologically
relevant situation, we now assume the presence of an ex-
trinsic process that continuously delivers DNA molecules
in a complex source state aS = (KS,�LkS). Specifically, we
assume that a process is present in the ensemble of 6-kbp
duplex DNAs that continuously converts unknotted DNAs
with �Lk = 0 to DNAs forming the knot 10.139− with
linking number �Lk = −12 at constant rate kS. The knot
10.139− contributes notably to the distribution P(K|�Lk)
at �Lk = −12 (Supplementary Figure S2) and is chosen
here to illustrate the pathway of topology simplification by
type-II topoisomerase given an initial complex topological
state.

The DNA molecules delivered in the source state aS =
(10.139−,−12) by the extrinsic process are converted by
type-II enzyme strand passages to simpler topological
forms in a stepwise manner, resulting in a pathway of inter-
mediate topological states. As discussed in the previous sec-
tion, each round of type-II enzyme action converts a DNA
substrate in the state (K,�Lk) to a product state (K ′,�Lk′)
where �Lk′ = �Lk ± 2 and K ′ is a knot that can be ob-
tained from the knot K by one intersegmental passage (54).
Eventually the DNAs are converted back to the originat-
ing state (0.1, 0), i.e., the unknot with �Lk = 0. The lat-
ter is then converted again to molecules in the source state
aS = (10.139−,−12) by the extrinsic process, resulting in
a continuous cycle. The cyclic process is characterized by
non-equilibrium steady state (NESS) probabilities P∗(a) for
DNAs in topological states a = (K,�Lk), and probabil-
ity currents Iab for transitions from states a = (K,�Lk) to
b = (K ′,�Lk′). The NESS probabilities P∗(a) are apprecia-
ble for the source state aS and all intermediate states a along
the pathway of topology simplification by topoisomerase-II
action. Note that for the case of a hairpin G segment, the
system is out of equilibrium by two mechanisms, namely
(i) the presence of a source rate creating the 10.139− knots
and resulting nonzero probability currents Iab, and (ii) the
action of the type-II enzyme modeled as hairpin G segment
which drives the system away from equilibrium even in the
absence of a source current (see Introduction).

Figure 6 shows resulting pathways of topology simplifi-
cation for type-II enzymes modeled by a hairpin-like (Fig-
ure 6A) and straight G segments (Figure 6B), respectively.
Steady-state probabilities P∗(a), in percent, are shown next

to each state a = (K,�Lk) (filled circles), and probabil-
ity currents Iab = P∗(a)Kab − P∗(b)Kba with normalized
transition rates Kab = kab/(k0 j0) defined in Equation (4)
are given by numbers next to the arrows (see Computa-
tional Methods). Accordingly, the source probability cur-
rent associated with the external process that converts
DNAs in the originating state (0.1, 0) to the source state
aS = (10.139−,−12) at constant rate kS is given by IS =
P∗(0.1, 0)κ with κ = kS/(k0 j0) (see Computational Meth-
ods). Only probability currents Iab with Iab/IS > 0.05 are
shown, where dominant currents with Iab/IS > 0.1 are
shown as dark blue arrows and subdominant currents with
0.05 < Iab/IS < 0.1 are shown as light blue arrows. Empty
circles indicate states (K,�Lk) for which �Lke = �Lk −
〈Wr〉(K, nicked) = 0, corresponding to torsionally relaxed
chains (cf. white curve on the left in Figure 4). It is appar-
ent that the pathways shown on the left sides in Figure 6A,
B closely follow the path �Lke = 0. Interestingly, only a
small number of intermediates contribute to the pathways
although there exist ∼250 different knot types with 10 or
fewer crossings.

For the pathways shown on the left sides in Figure 6A, B
we consider the limit of a large source rate kS for the external
process. In this limit, the originating state (0.1, 0) is depleted
by the external process, which implies that the steady-state
probability of the originating state vanishes as P∗(0.1, 0) ∝
1/kS. For all other states a the steady-state probabilities ap-
proach finite values P∗

∞(a) in the limit of a large source rate
kS. Likewise, all probability currents Iab approach finite val-
ues I∞

ab in the limit of large source rate kS, including the
source probability current IS. Therefore, the values of the
steady-state probabilities P∗(a) and probability currents Iab
in Figure 6A, B are universal in the sense that they are in-
dependent of the precise value of the source rate kS as long
as kS is large enough. The full dependence of P∗(a) and Iab
on the parameter κ = kS/(k0 j0) is shown in Supplementary
Figures S4 and S5.

In many biological systems a finite amount of super-
coiling is maintained. For example, for bacterial cells the
torsional tension is maintained by a homeostatic mecha-
nism involving topoisomerase I and DNA gyrase (58,59).
To study this situation, on the right sides in Figure 6A, B we
show pathways of topology simplification for the case that a
state of finite DNA supercoiling is maintained by introduc-
ing the constraint �Lke = �Lk − 〈Wr〉(K, nicked) < −5.
For these pathways we assume that an external process is
present that continuously converts DNAs in the originat-
ing state (0.1,−6) to the source state aS = (10.139−,−18).
The parameter κ = kS/(k0 j0) is adjusted so as to produce
the same source probability current IS as for the pathways
shown on the left sides in Figure 6A, B to facilitate compari-
son between cases in which a finite amount of supercoiling is
maintained (right sides in Figure 6A, B) and those for which
this is not the case (left sides in Figure 6A, B). However, the
qualitative shape of the decay pathway is largely indepen-
dent of the value of κ. Figure 6 reveals the dependence of
the unknotting capability of a type-II enzyme on the degree
of supercoiling. For the source state aS = (10.139−,−12) of
the pathways shown on the left sides in Figure 6A, B we find
P∗

∞(aS) = 0.84% for hairpin G segment and P∗
∞(aS) = 3.5%

for straight G segment, corresponding to a reduction by a
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Figure 6. Comparison of NESS probabilities and probability currents generated by type-II topoisomerase activity with (A) hairpin and (B) straight G
segment (74) in the state space spanned by knot type K and linking number �Lk. In both cases, we imposed an external process that converts unknotted
DNA with �Lk = 0 to DNA forming a (source) knot KS = 10.139− with �LkS = −12 in the limit of large source rate kS (pathways shown on the
left in (A) and (B)). Dominant probability currents with I∞(a, b)/I∞

S > 0.1 are shown as dark blue arrows and subdominant probability currents with
0.05 < I∞(a, b)/I∞

S < 0.1 are shown as light blue arrows. Steady-state probabilities P∗∞(K, �Lk), in percent, are shown next to each knot K . Open circles
indicate positions of �Lk = 〈Wr〉(K, nicked), i.e., �Lke = �Lk − 〈Wr〉(K, nicked) = 0 (cf. white curve on the left in Figure 4). The pathways shown on
the right in (A) and (B) show cases in which a supercoiled state is maintained by introducing the constraint �Lke < −5. In these cases, we assumed the
presence of an external process that converts unknotted DNA with �Lk = −6 to DNA forming a source knot KS = 10.139− with �LkS = −18, and the
source rate kS was adjusted to obtain the same source probability current IS = 76.3 as for the pathway shown on the left to facilitate comparison.
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factor of 4.2 (see numbers to the right of the filled circles rep-
resenting state aS = (10.139−,−12) in Figure 6A, B, respec-
tively). Conversely, for the source state aS = (10.139−,−18)
of the pathways shown on the right sides in Figure 6A, B,
for which the DNAs are more supercoiled, we find P∗(aS) =
0.15% for the hairpin G segment and P∗(aS) = 1.5% for the
straight G segment, corresponding to a larger reduction fac-
tor of 10 (see numbers to the right of the filled circles repre-
senting state aS = (10.139−,−18) in Figure 6A, B, respec-
tively). The larger reduction factor of 10 in the latter case
compared to 4.2 in the former implies that supercoiling fa-
vors unknotting for the present non-equilibrium situation
where a complex knot type is continuously delivered to the
ensemble of DNA conformations.

As discussed above, the knot 10.139− is chosen here to
illustrate the pathway of topology simplification by type-II
topoisomerase of a given initial complex topological state.
However, it should be noted that Figure 6A, B also im-
plicitly describe decay pathways of other knots located on
the pathway for 10.139−; e.g., the torus knots 3.1−, 5.1−,
and 7.1− occurring in site-specific recombination reactions
(32,37,38). For example, the decay pathway of 5.1− with
�Lk = −8 may be read off from Figure 6A, B by consider-
ing (5.1−,−8) as a source state with emanating probability
currents as shown in the figure.

How do type-II enzymes with hairpin G segments suppress
knotting below equilibrium?

Importantly, the pathways for hairpin and straight G seg-
ments are somewhat similar. This surprising result will now
be explained further in terms of juxtaposition probabilities
J(a) and transition probabilities Q(b|a) for enzymes with
hairpin and straight G segments. As discussed in the pre-
vious section, a type-II topoisomerase with hairpin G seg-
ment reduces the steady-state fraction of complex knots
below the equilibrium value relative to an enzyme with a
straight G segment; moreover, the unknotting efficiency of
the hairpin enzyme increases with DNA supercoiling. To
better understand the origin of this effect, Figure 7 com-
pares normalized juxtaposition probabilities J(K,�Lk) =
j (K,�Lk)/j0 and transition probabilities Q(b|K,�Lk) ap-
pearing in Equation (4) for type-II enzymes with straight
( j0 = 0.0017) and hairpin G segments ( j0 = 0.00013), re-
spectively. The quantity j0 denotes the juxtaposition prob-
ability for the reference state (0.1, 0) so that J(0.1, 0) = 1
by definition (see Computational Methods). Figure 7 shows
the dependence of J and Q on states (K,�Lk) for the knots
K = 0.1, 3.1−, 8.19− as a function of �Lk. In order to max-
imize the number of unknotted molecules, the type-II en-
zyme has to fulfill two tasks: 1. keep unknotted molecules
unknotted, i.e., avoid creation of nontrivial knots from the
unknot, and 2. simplify stepwise knotted molecules accord-
ing to the decay pathway (Figure 6) in order eventually to
generate unknotted products. Figure 7 focuses on these two
aspects 1. and 2. in parts 7A and 7B, respectively, using 3.1−
and 8.19− as examples for nontrivial knots. Accordingly, we
define Q(stay 0.1) = ∑

�Lk′=�Lk±2
Q(0.1, �Lk′|0.1, �Lk) as

the probability that strand passage in an unknot with link-
ing number �Lk again results in an unknot (with �Lk′ =

�Lk ± 2), i.e. no knotting occurs. For K = 3.1− and 8.19−,

Q (simplify) =
∑

K ′<K

∑
�Lk′=�Lk±2

Q
(

K ′,�Lk′∣∣ K,�Lk
)

(5)

is the probability that strand passage results in unknot-
ting, i.e., yields a knot K ′ with a smaller number of crossings
than K (denoted K ′ < K).

As shown in Figure 7 (upper panels), the normalized
juxtaposition probabilities J(K,�Lk) are larger for hair-
pin than for straight G segment, and this effect increases
with the complexity of the knot K and with the degree
of supercoiling �Lke = �Lk − 〈Wr〉(K, nicked). The fact
that J(K,�Lk) increases with knot complexity is expected
because complex knots are more compact than less com-
plex knots on average, so that more complex knots have
higher probabilities of segment juxtaposition. This is con-
sistent with the corresponding behavior of the unknot
0.1 compared with the trefoil knot 3.1− for nicked DNA
(12). However, for supercoiled DNA, J(K,�Lk) also in-
creases with the degree of supercoiling �Lke, and this ef-
fect is dramatically larger for type-II enzymes with hairpin
versus straight G segments. This can be qualitatively ex-
plained in terms of correlated juxtaposition of chain seg-
ments. In juxtaposed conformations of type-II enzymes
with hairpin G segments, typically two crossings of the
chain are made by the juxtaposed T and hairpin G seg-
ments (Figure 8C); conversely, in juxtaposed conforma-
tions with straight G segment typically only one crossing
is made by the juxtaposed T and straight G segments (Fig-
ure 8A) (12). This leaves, on average, one extra crossing that
has to be absorbed by the rest of the chain for a straight
G segment compared with the hairpin case. The free en-
ergy F of unknotted supercoiled DNA increases quadrat-
ically with the superhelix density −σ = �Lk/Lk0, i.e. F ∝
(�Lk/Lk0)2 (see, e.g. equation (8) in (60)). Assuming that
this relationship generalizes for knotted, supercoiled DNA
to F ∝ (�Lke/Lk0)2 and that the extra crossing involved
in the case of the straight G segment amounts to an in-
crement |�Lke(straight)| = |�Lke(hairpin)| + 1 in linking
number that has to be absorbed by the rest of the chain, we
find F(straight) − F(hairpin) ∝(|�Lke| + 1)2 − (�Lke)2=
2|�Lke| + 1 (here �Lke = �Lke(hairpin)). This linear in-
crease in free energy as a function of |�Lke| for a straight
G segment compared to a hairpin G segment results in
an exponential decrease in juxtaposition probability for a
straight G segment; that is, conversely, to an exponential in-
crease in juxtaposition probability for a hairpin G segment,
i.e. J(hairpin)/J(straight) ∼ exp(2|�Lke|) (Figure 7, upper
panel).

A similar argument also explains the behavior of
Q(stay 0.1) as a function of �Lk for hairpin compared
to straight G segments (Figure 7, lower panel, left). In a
conformation generated by the passage of a T segment
through a hairpin G segment, corresponding to the
juxtaposition of a straight segment to the outside of a
hairpin, typically the passed T and hairpin G segments do
not cross (Figure 8D). Thus, if the passed conformation
is knotted, all of the crossings of the knot have to be
absorbed by the rest of the chain. Conversely, in passed
conformations with straight G segments typically one
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Figure 7. Normalized juxtaposition frequencies J(K,�Lk) = j (K, �Lk)/j0 and transition probabilities Q(b|K,�Lk) for type-II enzymes modeled in
terms of a hairpin-like G segment (blue dots and lines) and straight G segment (green dots and lines) for knot types (A) 0.1 and (B) 3.1−, 8.19− (74).
The dots correspond to calculated values and the lines were obtained by linear interpolation. The quantity j0 denotes the juxtaposition probability for the
reference state (0.1, 0), with j0 = 0.00013 for hairpin G-segment and j0 = 0.0017 for straight G-segment. Note that J(0.1, 0) = 1 by definition. Q(stay 0.1)
is the probability that strand passage in an unknot with linking number �Lk again results in an unknot (with �Lk′ = �Lk ± 2), i.e. no knotting occurs.
For K = 3.1−, 8.19−, Q(simplify) is the probability that strand passage results in unknotting, i.e., in a knot K ′ with a smaller number of crossings than K
(see text). The vertical lines indicate values 〈Wr〉(3.1−, nicked) = 3.433 and 〈Wr〉(8.19−, nicked) = 8.761, respectively, corresponding to �Lk- values for
which the degree of supercoiling vanishes, i.e. �Lke = �Lk − 〈Wr〉(K, nicked) = 0 (cf. Figure 3). Supercoiled chains correspond to �Lk– values to the
left and right from these vertical lines.

Figure 8. Schematic depiction of juxtaposed and passed conformations of
type-II enzymes modeled by straight and hairpin G segments, respectively.
The G segment is indicated by the purple portion and the T segment by the
green portion of the chain. (A) Juxtaposed and (B) passed conformations
for straight G segment. (C) Juxtaposed and (D) passed conformations for
hairpin G segment. Note the different number of crossings made by the T
and G segments.

crossing is made by the passed T and straight G segments,
leaving one crossing less that has to be absorbed by the
rest of the chain if the passed conformation is knotted
(Figure 8B) (12). Thus, a similar argument as above leads to
Q(become knotted, hairpin)/Q(become knotted, straight) ∼
exp(−2|�Lk|); see Figure 7 (lower panel, left) where
Q(stay 0.1) = 1 − Q(become knotted). Interestingly, and
in opposition to the behavior of Q(stay 0.1), the probability

Q(simplify) that strand passage in the nontrivial knots
3.1−, 8.19− results in unknotting is similar for hairpin and
straight G segments, albeit somewhat larger for the hairpin
G segment (Figure 7, lower panel middle and right). This
may be explained as follows. Consider, for example, a
trefoil knot which is transformed to an unknot by strand
passage. Both for hairpin and straight G-segments, there is
no extra crossing that needs to be absorbed by the rest of
the chain in the resulting unknot after strand passage. Thus
the transition probabilities Q(0.1,�Lk ± 2|3.1,�Lk) are
expected to be similar for hairpin and straight G segments
regardless of the value of �Lk (Figure 7, lower panel,
middle).

Thus, the unknotting capability of type-II enzymes for
complex knots is enhanced for a type-II enzyme with hair-
pin G segment compared to a type-II enzyme with straight
G segment mainly due to a combination of two effects: (i)
enhanced juxtaposition probability J(K,�Lk) for complex
knots and (ii) enhanced probability Q(stay 0.1) for an un-
knot to stay unknotted after strand passage. Both these ef-
fects increase exponentially with the degree of supercoil-
ing �Lke = �Lk − 〈Wr〉(K, nicked). Note that this effect
cannot be explained alone by the free-energy landscape
F(K,�Lk) (Figure 4) but is a result of the non-equilibrium
dynamics associated with type-II action. Conversely, the
probability Q(simplify) that strand passage in a complex
knot results in unknotting is similar for hairpin and straight
G segments, and thus does not contribute much to the un-
knotting capability of type-II enzymes with a hairpin ver-
sus a straight G segment. In this sense, type-II enzymes
with hairpin G segments are not ‘smarter’ than type-II en-
zymes with straight G segments (the latter corresponding to
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the equilibrium situation) but are more efficient mainly due
to enhanced frequencies of juxtaposition J(K,�Lk) and
probabilities Q(stay 0.1).

DISCUSSION

Although much attention, experimentally and theoretically,
has been devoted to understanding the action of type-II
topoisomerases on unknotted, supercoiled DNA and re-
laxed or nicked, knotted DNA, respectively, there has been
little examination of type-II enzyme activity on DNAs
that are both knotted and supercoiled. Whereas negative
(–) supercoiling is acknowledged to be essential for nor-
mal transactions involving DNA in living systems, unre-
solved knotting of a genome is generally believed to be
fatal to the cell (2,43–45). The question of how homeo-
static mechanisms properly regulate supercoiling and, at the
same time, completely eliminate knots hinges on detailed
understanding of the respective rates for linking-number
changes versus unknotting. Toward that end we have de-
veloped a model based on a network of topological states
(K,�Lk) of circular DNAs with knot type K and linking-
number difference �Lk in which the dynamics of transi-
tions between states (K,�Lk) mediated by type-II enzymes
is described by a chemical master equation. For the special
case that the non-equilibrium fractions of states (K,�Lk)
are time-independent, corresponding to non-equilibrium
steady states (NESS), we fully characterize pathways of
topology simplification mediated by type-II enzymes as net-
work graphs having steady-state probabilities P∗(K,�Lk)
and probability currents I[(K,�Lk) → (K ′,�Lk′)] (Fig-
ures 5, 6). Our approach thus comprehensively and simulta-
neously addresses the kinetics of superhelix relaxation and
knot resolution. One novel feature of our model is that we
consider the biologically relevant case that complex knots
are generated extrinsically, e.g. by an intracellular knot-
ting activity independent of the topology-resolving activity
inherent in the network (Figure 6). Our analysis comple-
ments the work of Shimokawa and colleagues, who con-
sidered stepwise unlinking of DNA-replication catenanes
by the Xer site-specific recombinase (32). Indeed, our ap-
proach can be generalized to quantitatively analyze rates of
linking/unlinking and other topological changes resulting
from diverse processes including genetic recombination.

As a starting point for our non-equilibrium model,
we first investigated the equilibrium probability distribu-
tion P(K,�Lk) and free-energy landscape F(K,�Lk) =
−kBT ln P(K,�Lk) to obtain the most likely relaxation
pathway of a given DNA knot by a hypothetical topoi-
somerase that lacks any bias towards topology simplifica-
tion and is driven only by the topological free-energy gradi-
ent. In particular, we clarify two apparently contradictory
results in the literature concerning how supercoiling and
knotting affect the thermodynamically most-stable topol-
ogy of a circular DNA molecule. A previous study used
Monte Carlo simulations to address the dependence of the
topological free energy of knotted circular DNA on su-
percoiling and showed that non-trivially knotted species
were free-energy minima for even modest, fixed values of
|�Lk| (25). Moreover, complexity of the knots correspond-
ing to the free-energy minimum increases with increasing

|�Lk| (Supplementary Figure S2); thus, supercoiling favors
more complex knots according to this view (25). In a study
published nine years later a different team argued that in
type-II enzyme action an effective linking number differ-
ence, �Lke = �Lk − 〈Wr〉(K, nicked), is fixed instead of
�Lk (cf. Figure 3), and concluded that the unknot is a uni-
versal free energy minimum, consistent with a picture in
which supercoiling inhibits DNA knotting (26). The dif-
ference between these results can be understood by con-
sidering the full free-energy landscape F(K,�Lk) of knot-
ted supercoiled DNA, in which distributions for fixed �Lk
or �Lke correspond to different paths along the contours
of this landscape (Figure 4). However, for biological sys-
tems in which a finite amount of supercoiling is maintained
by DNA gyrase (58,59), for example, the relevant sections
of the free-energy landscape correspond to fixed values of
�Lke (26).

Our non-equilibrium model recapitulates the experimen-
tal observation that type-II topoisomerases remove cross-
ings in trefoil knots in DNA below the level expected at
thermal equilibrium (11) (Figure 5). As found previously,
the efficiency of unknotting strongly depends on the pres-
ence or absence of a topoisomerase-induced bend in the gate
(G) segment (12,21): a hairpin-like G segment having an in-
duced bend of 120◦ gave more efficient unknotting than an
unbent G segment, resulting in an 8-fold reduction of trefoil
knots in the hairpin G segment case compared to a straight
G segment. In addition, for our �Lk-resolved model we
show that the efficiency of unknotting (the reduction fac-
tor for trefoil knots) depends strongly on the value of �Lk
(Figure 5). We find that the �Lk distribution in the unknot
is narrower, i.e. the DNA is less supercoiled on average in the
presence of type-II enzyme activity compared to the prod-
uct �Lk distribution for a type-I enzyme, in agreement with
experimental results (11) (Supplementary Figure S3). The
latter does not consume the energy of ATP hydrolysis and
therefore generates the �Lk distribution expected at equi-
librium.

Introducing an extrinsic biological process that con-
tinuously converts unknotted DNAs with �Lk = 0 to
a complex topological form (KS,�LkS) (chosen to be
(10.139−,−12) in our study) at a constant rate kS leads to
the following main results for the pathways of topology sim-
plification mediated by type-II enzymes (Figure 6):

1. Only a small number of intermediate topological states
contribute to the pathways, namely those that dominate
the equilibrium distribution P(K|�Lk) (Supplementary
Figure S2);

2. Pathways of knots generated with �Lke ≈ 0 closely fol-
low the path �Lke ≈ 0 (pathways shown on the left in
Figure 6A, B) corresponding to the minimum in the free-
energy landscape F(K,�Lk) = −kBT ln P(K,�Lk)
(white line on the left in Figure 4). Similarly, pathways of
knots for which finite DNA supercoiling is maintained
by imposing the constraint �Lke < −5 closely follow
the path �Lke ≈ −5 (pathways shown on the right
in Figure 6A, B). Apparently, intersegment collisions
that lead to torsional relaxation are more common
than those for unknotting, so that the chain adopts the
minimum value of |�Lke| allowed by the conditions
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for a given knot type before the knot type changes, i.e.,
unknotting is the rate-limiting step;

3. The unknotting efficiency strongly depends on the ge-
ometry of the G segment and on the degree of DNA su-
percoiling, being largest for a hairpin-like G segment ac-
tivity in DNA for which a finite degree of supercoiling is
maintained (pathway shown on the right in Figure 6A).
These results suggest that only the combined effects of
type-II topoisomerase activity, driving the system away
from equilibrium, and increased DNA supercoiling can
generate the degree of topology simplification observed
in experimental measurements;

4. The dominating pathways for hairpin and straight G seg-
ments are closely similar. This surprising result can be
explained by the fact that the unknotting capability of a
type-II enzyme with a hairpin G segment compared to
a straight G segment is enhanced mainly due to an en-
hanced juxtaposition probability in complex knots and
enhanced probability for an unknot to remain unknot-
ted after strand passage, as opposed to a different selec-
tion of strand passages in knotted DNA (Figure 7). In
this sense, the requirement for a bent G segment acts as
a topological filter. Type-II enzymes that require a hair-
pin G segment are not ‘smarter’ than type-II enzymes
that employ a straight G segment (the latter closely cor-
responding to the equilibrium situation), but rather are
more active.

Other models apart from the hairpin-like G segment have
considered the ramifications of ‘hooked’ juxtapositions on
topology simplification (17). The main difference between
the hooked-juxtaposition model and the hairpin-like G seg-
ment model is that the enzyme binds two juxtaposed DNA
segments simultaneously rather than successively. Thus the
principle of both models is essentially the same, apart from
the fact that hooked juxtapositions occur much more rarely
than juxtapositions with a hairpin-like G segment (12,21).
Moreover, it is difficult to imagine how the enzyme could
impose a geometric requirement for hooked juxtapositions
on the transiently passed T segment. For this to be the
case the enzyme would need to have preferential affinity for
a pre-bent incoming T segment, implying also that there
should be a preferred geometric orientation of this segment.
We are not aware of any experimental evidence to support
the latter requirement.

Results obtained in this study are based on the assump-
tion that the affinity of type-II enzymes to bind to DNA
and generate an appropriate G segment geometry is inde-
pendent of the topological state (K,�Lk) of the DNA, in
particular, independent of the degree of supercoiling. This
implies that the constant k0 in Equation (2), describing the
affinity and concentration of the enzyme, is assumed to be
independent of the topological state (K,�Lk) of the DNA.
Thus the constant k0 drops out in the ratio in Equation (4)
so that our results are universal in the sense that they do
not depend on the value of k0. However, recent experimen-
tal results suggest that type-II enzymes have a propensity to
bind to DNA and form G segments in highly supercoiled
DNA, presumably because the latter is strongly bent on av-
erage, thereby facilitating the formation of bent G segments
(61). This effect can be implemented in our model by mak-

ing k0 in Equation (2) a function of the degree of supercoil-
ing �Lke = �Lk − 〈Wr〉(K, nicked). Our results were ob-
tained for 6-kbp DNA; however, the transition rates and re-
sulting decay pathways are expected to depend on the total
length of the DNA. Moreover, in many cases DNA in vivo
is spatially confined (e.g. inside the nucleus in eukaryotes)
or subject to molecular crowding. It would be of interest
to study the dependence of transition rates on DNA length
and confinement in future work.

It has long been argued that, for thermodynamic reasons,
type-II enzyme action requires the energy of ATP hydroly-
sis to move the system out of topological equilibrium. Bates
et al. have argued that only a small portion of the free energy
gained from ATP hydrolysis is needed to achieve topology
simplification (62). However, recent reviews by Rybenkov
(14) and Grosberg (63) point out that there is additional
free-energy dissipation potentially required by various ir-
reversible steps in the type-II mechanism. In a study of E.
coli topoisomerase-IV mutants, Lee et al. found that the ex-
tent of topoisomerase II-induced DNA bending in the sub-
strate DNA G segment, but not DNA binding, was cor-
related with ATP-hydrolysis activity (64). Type-II enzymes
can vary widely in terms of topology-simplification effi-
ciency and also optimum reaction conditions, so it is per-
haps not surprising that a mechanism that dissipates ex-
cess free energy is both biochemically and evolutionarily ad-
vantageous. In summary, many questions remain pertain-
ing to when, during the segment-passage reaction, energy
gained from ATP hydrolysis is used by the enzyme and for
what purpose. Even without ATP hydrolysis the enzyme can
bind to DNA and perform strand passage (65,66); this im-
plies that these steps are essentially driven by the free-energy
gradient so that the enzyme–DNA complex after passage
should be very stable. It has been proposed that ATP hy-
drolysis serves to release the energy necessary for dissociat-
ing the stable enzyme-DNA complex after segment passage,
thereby resetting the original conformation of the protein
(19,67) (Figure 1A). Other studies suggested that two ATP
molecules are hydrolyzed sequentially before and after seg-
ment passage, respectively (68,69). It would be interesting
to address these questions by modeling the enzymatic re-
action in terms of graphs on networks formed by chemical
and conformational states of the enzyme–DNA complex,
similar as has been recently done for molecular motors and
other nanomachines (70–73).

The work by Rybenkov et al. (11) remains to our knowl-
edge the only paper that has comprehensively and quan-
titatively addressed topology simplification by type-II en-
zymes. We hope that our study will motivate new experi-
mental work that addresses topology simplification of com-
plex knots in supercoiled DNA.
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3. Massé,E. and Drolet,M. (1999) Escherichia coli DNA topoisomerase
I inhibits R-loop formation by relaxing transcription-induced
negative supercoiling. J. Biol. Chem., 274, 16659–16664.

4. Mondal,N., Zhang,Y., Jonsson,Z., Dhar,S.K., Kannapiran,M. and
Parvin,J.D. (2003) Elongation by RNA polymerase II on chromatin
templates requires topoisomerase activity. Nucleic Acids Res., 31,
5016–5024.

5. Mondal,N. and Parvin,J.D. (2001) DNA topoisomerase II� is
required for RNA polymerase II transcription on chromatin
templates. Nature, 413, 435–438.

6. Champoux,J.J. (2001) DNA topoisomerases: structure, function, and
mechanism. Annu. Rev. Biochem., 70, 369–413.

7. Dean,F.B., Stasiak,A., Koller,T. and Cozzarelli,N.R. (1985) Duplex
DNA knots produced by Escherichia coli Topoisomerase I. J. Biol.
Chem., 260, 4975–4983.

8. Wang,J.C. (1998) Moving one DNA double helix through another by
a type II DNA topoisomerase: The story of a simple molecular
machine. Q. Rev. Biophys., 31, 107–144.

9. Gellert,M., Mizuuchi,K., O’Dea,M.H., Itoh,T. and Tomizawa,J.-I.
(1977) Nalidixic acid resistance: A second genetic character involved
in DNA gyrase activity. Proc. Natl. Acad. Sci. U.S.A., 74, 4772–4776.

10. Sugino,A, Peebles,C.L., Kreuzer,K.N. and Cozzarelli,N.R. (1977)
Mechanism of action of nalidixic acid: purification of Escherichia coli
nalA gene product and its relationship to DNA gyrase and a novel
nicking-closing enzyme. Proc. Natl. Acad. Sci. U.S.A., 74, 4767–4771.

11. Rybenkov,V.V., Ullsperger,C., Vologodskii,A.V. and Cozzarelli,N.R.
(1997) Simplification of DNA topology below equilibrium values by
type II topoisomerases. Science, 277, 690–693.

12. Vologodskii,A.V., Zhang,W., Rybenkov,V.V., Podtelezhnikov,A.A.,
Subramanian,D., Griffith,J.D. and Cozzarelli,N.R. (2001)
Mechanism of topology simplification by type II DNA
topoisomerases. Proc. Natl. Acad. Sci. U.S.A., 98, 3045–3049.

13. Vologodskii,A.V. (2016) Disentangling DNA molecules. Phys. Life
Rev., 18, 118–134.

14. Rybenkov,V.V. (2016) When Maxwellian demon meets action at a
distance: Comment on “Disentangling DNA molecules” by
Alexander Vologodskii. Phys. Life Rev., 18, 150–153.

15. Flammini,A., Maritan,A. and Stasiak,A. (2004) Simulations of
action of DNA topoisomerases to investigate boundaries and shapes
of spaces of knots. Biophys. J., 87, 2968–2975.

16. Liu,Z., Mann,J.K., Zechiedrich,E.L. and Chan,H.S. (2006)
Topological information embodied in local juxtaposition geometry
provides a statistical mechanical basis for unknotting by Type-2 DNA
topoisomerases. J. Mol. Biol., 361, 268–285.

17. Buck,G.R. and Zechiedrich,E.L. (2004) DNA disentangling by type-2
topoisomerases. J. Mol. Biol., 340, 933–939.

18. Yan,J., Magnasco,M.O. and Marko,J.F. (1999) A kinetic
proofreading mechanism for disentanglement of DNA by
topoisomerases. Nature, 401, 932–935.

19. Burnier,Y., Weber,C., Flammini,A. and Stasiak,A. (2007) Local
selection rules that can determine specific pathways of DNA

unknotting by type II DNA topoisomerases. Nucleic Acids Res., 35,
5223–5231.

20. Witz,G., Dietler,G. and Stasiak,A. (2011) Tightening of DNA knots
by supercoiling facilitates their unknotting by type II DNA
topoisomerases. Proc. Natl. Acad. Sci. U.S.A., 108, 3608–3611.

21. Vologodskii,A.V. (2009) Theoretical models of DNA topology
simplification by type IIA DNA topoisomerases. Nucleic Acids Res.,
37, 3125–3133.

22. Yan,J., Magnasco,M.O. and Marko,J.F. (2001) Kinetic proofreading
can explain the suppression of supercoiling of circular DNA
molecules by type-II topoisomerases. Phys. Rev. E, 63, 031909.

23. Schmidt,B.H., Osheroff,N. and Berger,J.M. (2012) Structure of a
topoisomerase II-DNA-nucleotide complex reveals a new control
mechanism for ATPase activity. Nat. Struct. Mol. Biol., 19,
1147–1154.

24. Hardin,A.H., Sarkar,S.K., Seol,Y., Liou,G.F., Osheroff,N. and
Neuman,K.C. (2011) Direct measurement of DNA bending by type
IIA topoisomerases: Implications for non-equilibrium topology
simplification. Nucleic Acids Res., 39, 5729–5743.

25. Podtelezhnikov,A.A., Cozzarelli,N.R. and Vologodskii,A.V. (1999)
Equilibrium distributions of topological states in circular DNA:
interplay of supercoiling and knotting. Proc. Natl. Acad. Sci. U.S.A.,
96, 12974–12979.

26. Burnier,Y., Dorier,J. and Stasiak,A. (2008) DNA supercoiling
inhibits DNA knotting. Nucleic Acids Res., 36, 4956–4963.

27. Rawdon,E.J., Dorier,J., Racko,D., Millett,K.C. and Stasiak,A. (2016)
How topoisomerase IV can efficiently unknot and decatenate
negatively supercoiled DNA molecules without causing their
torsional relaxation. Nucleic Acids Res., 44, 4528–4538.

28. Giovan,S.M., Scharein,R.G., Hanke,A. and Levene,S.D. (2014)
Free-energy calculations for semi-flexible macromolecules:
Applications to DNA knotting and looping. J. Chem. Phys., 141,
174902.

29. Roca,J. (2001) Varying levels of positive and negative supercoiling
differently affect the efficiency with which topoisomerase II catenates
and decatenates DNA. J. Mol. Biol., 305, 441–450.

30. Charvin,G., Bensimon,D. and Croquette,V. (2003) Single-molecule
study of DNA unlinking by eukaryotic and prokaryotic type-II
topoisomerases. Proc. Natl. Acad. Sci. U.S.A, 100, 9820–9825.

31. Seol,Y., Gentry,A.C., Osheroff,N. and Neuman,K.C. (2013) Chiral
discrimination and writhe-dependent relaxation mechanism of
human topoisomerase II�. J. Biol. Chem., 288, 13695–13703.

32. Shimokawa,K., Ishihara,K., Grainge,I., Sherratt,D.J. and
Vazquez,M. (2013) FtsK-dependent XerCD-dif recombination
unlinks replication catenanes in a stepwise manner. Proc. Natl. Acad.
Sci. U.S.A., 110, 20906–20911.

33. Seol,Y., Hardin,A.H., Strub,M.-P., Charvin,G. and Neuman,K.C.
(2013) Comparison of DNA decatenation by Escherichia coli
topoisomerase IV and topoisomerase III: Implications for
non-equilibrium topology simplification. Nucleic Acids Res., 41,
4640–4649.

34. Coronel,L., Suma,A. and Micheletti,C. (2018) Dynamics of
supercoiled DNA with complex knots: Large-scale rearrangements
and persistent multi-strand interlocking. Nucleic Acids Res., 46,
7533–7541.

35. Liu,L.F. and Wang,J.C. (1987) Supercoiling of the DNA template
during transcription. Proc. Natl. Acad. Sci. U.S.A., 84, 7024–7027.

36. Wu,H.-Y., Shyy,S., Wang,J.C. and Liu,L.F. (1988) Transcription
generates positively and negatively supercoiled domains in the
template. Cell, 53, 433–440.

37. Grainge,I., Bregu,M., Vazquez,M., Sivanathan,V., Ip,S.C.Y. and
Sherratt,D.J. (2007) Unlinking chromosome catenanes in vivo by
site-specific recombination. EMBO J., 26, 4228–4238.

38. Grainge,I., Lesterlin,C. and Sherratt,D.J. (2011) Activation of
XerCD-dif recombination by the FtsK DNA translocase. Nucleic
Acids Res., 39, 5140–5148.

39. Hsieh,T. (1983) Knotting of the circular duplex DNA by type II
DNA topoisomerase from Drosophila melanogaster. J. Biol. Chem.,
258, 8413–8420.

40. Wasserman,S.A. and Cozzarelli,N.R. (1991) Supercoiled
DNA-directed knotting by T4 topoisomerase. J. Biol. Chem., 266,
20567–20573.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/47/1/69/5204334 by Intarcia Therapeutics, Inc. user on 01 August 2019



84 Nucleic Acids Research, 2019, Vol. 47, No. 1

41. Roca,J., Berger,J.M. and Wang,J.C. (1993) On the simultaneous
binding of eukaryotic DNA topoisomerase II to a pair of
double-stranded DNA helices. J. Biol. Chem., 268, 14250–14255.

42. Valdés,A., Segura,J., Dyson,S., Martı́nez-Garcı́a,B. and Roca,J.
(2017) DNA knots occur in intracellular chromatin. Nucleic Acids
Res., 46, 650–660.

43. Deibler,R.W., Mann,J.K., Sumners,D.W.L. and Zechiedrich,E.L.
(2007) Hin-mediated DNA knotting and recombining promote
replicon dysfunction and mutation. BMC Mol. Biol., 8, 44.

44. Portugal,J. and Rodrı́guez-Campos,A. (1996) T7 RNA polymerase
cannot transcribe through a highly knotted DNA template. Nucleic
Acids Res., 24, 4890–4894.

45. Olavarrieta,L., Martı́nez-Robles,M.L., Sogo,J.M., Stasiak,A.,
Hernández,P., Krimer,D.B. and Schvartzman,J.B. (2002)
Supercoiling, knotting and replication fork reversal in partially
replicated plasmids. Nucleic Acids Res., 30, 656–666.

46. Vologodskii,A.V., Levene,S.D., Klenin,K.V., Frank-Kamenetskii,M.
and Cozzarelli,N.R. (1992) Conformational and thermodynamic
properties of supercoiled DNA. J. Mol. Biol., 227, 1224–1243.

47. Bouchiat,C., Wang,M.D., Allemand,J.F., Strick,T., Block,S.M. and
Croquette,V. (1999) Estimating the persistence length of a worm-like
chain molecule from force-extension measurements. Biophys. J., 76,
409–413.

48. Rybenkov,V.V., Cozzarelli,N.R. and Vologodskii,A.V. (1993)
Probability of DNA knotting and the effective diameter of the DNA
double helix. Proc. Natl. Acad. Sci. U.S.A., 90, 5307–5311.

49. Gouesbet,G. and Meunier-Guttin-Cluzel,S. (2001) Computer
evaluation of Kauffman polynomials by using Gauss codes, with a
skein-template algorithm. Appl. Math. Comput., 122, 229–252.

50. Zia,R.K.P. and Schmittmann,B. (2006) A possible classification of
nonequilibrium steady states. J. Phys. A. Math. Gen., 39, L407.

51. Jiang,D.-Q., Qian,M.-P. and Qian,M.-P. (2004) Mathematical Theory
of Nonequilibrium Steady States: On the Frontier of Probability and
Dynamical Systems. Springer, Berlin.

52. Pettijohn,D.E. and Pfenninger,O. (1980) Supercoils in prokaryotic
DNA restrained in vivo. Proc. Natl. Acad. Sci. U.S.A., 77, 1331–1335.

53. Dorman,C.J. and Dorman,M.J. (2016) DNA supercoiling is a
fundamental regulatory principle in the control of bacterial gene
expression. Biophys. Rev., 8, 209–220.

54. Darcy,I.K., Scharein,R.G. and Stasiak,A. (2008) 3D visualization
software to analyze topological outcomes of topoisomerase reactions.
Nucleic Acids Res., 36, 3515–3521.

55. Trigueros,S., Salceda,J., Bermúdez,I., Fernández,X. and Roca,J.
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