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ABSTRACT 
 

Nanofiber-based membranes were prepared by two different methods for use as separators 
for Lithium-ion batteries (LIBs). In the first method, Electrospinning was used for the fabrication 
of Polyvinylidene fluoride PVDF nanofiber coatings on polyolefin microporous membrane 
separators to improve their electrolyte uptake and electrochemical performance. The nanofiber-
coated membrane separators show better electrolyte uptake and ionic conductivity than that for 
the uncoated membranes. In the second method, Forcespinning® (FS) was used to fabricate 
fibrous cellulose membranes as separators for LIBs. The cellulose fibrous membranes were made 
by the Forcespinning® of a cellulose acetate solution precursor followed by a subsequent 
alkaline hydrolysis treatment. The results show that the fibrous cellulose membrane-based 
separator exhibits high electrolyte uptake and good electrolyte/electrode wettability and therefore 
can be a good candidate for high performance and high safety LIB separators.  

 

INTRODUCTION 

Polymer nanofibers (NFs) and nanofiber composites have been used in many applications 
such as biomedical, tissue engineering, electronics and energy storage. In energy storage devices 
such as lithium-ion batteries (LIBs), the separator plays a key role in separating the positive and 
negative electrodes to prevent electrical short circuit. Polyolefin microporous membranes such as 
polyethylene (PE) and polypropylene (PP) are commercially available and have been widely 
used as separators for LIBs because of their good thermal shut-down ability, electrochemical 
stability and high mechanical strength. However, these polyolefin-based separators show low 
porosity, poor electrolyte wettability and high thermal shrinkage at relatively elevated 
temperatures above 90 °C. Several approaches have been used to overcome these drawbacks 
including the use of nanoparticle composite additives, coating the membrane separator with a 
polymer NFs (e.g. PVDF) and/or the use of nonwoven and nanofiber-based separators. The latter 
approach is very promising and has been widely used due to the fact that NF-based separators 
exhibit good electrolyte uptake, low interfacial resistance but they show poor mechanical 
strength which render them difficult to handle during battery-assembly operation.  

NFs can be produced by various techniques such as electrospinning, hydrothermal synthesis, 
template synthesis, phase separation, self-assembly, and other spinning methods (wet, dry and 
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membranes [11, 12]. The results in Figure 3c confirm that electrospun nanofiber-coated 
membranes exhibit higher electrolyte capacity than uncoated membranes. The electrolyte uptake 
capacity is a measurement indicating the amount of liquid electrolyte solution absorbed by the 
unit area of a membrane separator. In fact, the electrolyte uptake capacity of a membrane 
depends on the basic membrane properties such as thickness, porosity, and pore size. For 
example, a thin sample with high porosity and pore size (less weight) shows higher electrolyte 
capacity than thicker samples with low porosity and pore size (higher weight) [12, 13]. More 
experiments will be performed to investigate the effect of porosity, pore size and thickness on the 
electrolyte capacity of NF-coated membranes with aim to improve the separator performance.  
 

 
Figure 3: Electrolyte uptake capacities of (a) uncoated and (b) nanofiber-coated membranes. C. 
is a comparison between the electrolyte capacities of uncoated and nanofiber-coated membranes.  
 
Figure 4 shows the Nyquist plots for uncoated and nanofiber-coated membranes (Monolayers 1, 
2 and 3) in the range of 0.01 Hz to 65 kHz. The diameter of the semicircle represents the 
interfacial resistance (Ri) between the liquid electrolyte-soaked membrane and the lithium 
electrode.  

 
Figure 4: Electrochemical impedance spectra 
of liquid electrolyte-soaked membranes. 
Nanofibers were made by Electrospinning. 
 

 
Figure 5: Electrochemical impedance spectra 
of fibrous cellulose membrane and 
microporous PP membrane Nanofibers were 
Made by Forcespinning. 

 
Fig. 4 shows that the electrode-electrolyte interfacial resistances of nanofiber-coated membranes 
are smaller than those of uncoated membranes. The PVDF-co-CTFE nanofiber coating on the 
surface of the membrane substrate can easily absorb liquid electrolyte and swell in electrolyte 
solution due to the good affinity of PVDF-co-CTFE to polar electrolyte solution. Figure 5 shows 
the EIS spectra of fibrous cellulose membrane made by Forcespinning compared to that of a 
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commercial Polypropylene membrane separator. It is seen in Figure 5 that the interfacial 
resistance of liquid electrolyte-soaked cellulose fibrous membrane is about 200 Ω, while that of 
PP separator is 400 Ω, which is consistent with our previous results reported on the same 
membrane separator [11, 12, 13]. Obviously, FS cellulose nonwoven fibrous membranes exhibit 
a lower interfacial resistance, indicating better interfacial characteristics when used as separators 
for LIBs. Moreover, we carried out electrolyte uptake experiments on FS nonwoven cellulose 
membranes and found that their uptake capacity (capacity/mass) was about 370%, which is 
significantly higher than that for the microporous PP separator (110%), indicating the high 
electrolyte retention ability of the fibrous cellulose membrane [14]. 
 
CONCLUSIONS 

Membrane separators were prepared by coating PVDF-co-CTFE nanofibers on the surface of 
different microporous membrane substrates using electrospinning technique. The nanofiber-
coated membranes showed higher electrolyte uptake capacities than the uncoated membranes 
and also lower interfacial resistance than that for uncoated membranes. Forcespinning® 
technology was also used to prepare fibrous cellulose membrane for LIB separators. The results 
are promising while the results reported on electrolyte uptake capacity and interfacial resistance 
of FS fibrous cellulose nonwoven membranes are better than those reported on PP separator.  
More work is in progress in our laboratory aimed at investigating the structure and morphology 
of nonwoven separators made by Forcespinning® for high electrochemical performance LIBs. 
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