
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Computer Science Faculty Publications and
Presentations College of Engineering and Computer Science

12-23-2019

Blockchain based Access Control for Enterprise Blockchain Blockchain based Access Control for Enterprise Blockchain

Applications Applications

Lei Xu
The University of Texas Rio Grande Valley, lei.xu@utrgv.edu

Isaac Markus
Conduent Technology Innovation

Subhod I
Conduent Technology Innovation

Nikhil Nayab
Conduent Technology Innovation

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Xu, L, Markus, I, I, S, Nayab, N. Blockchain‐based access control for enterprise blockchain applications. Int
J Network Mgmt. 2020; 30:e2089. https://doi.org/10.1002/nem.2089

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact
justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Blockchain based Access Control for Enterprise Blockchain
Applications

Lei Xu1 | Isaac Markus2 | Subhod I3 | Nikhil Nayab4

1University of Texas Rio Grande Valley,
Texas, United States

2Conduent Technology Innovation, North
Carolina, United States

3Conduent Technology Innovation,
Bangalore, India

4Conduent Technology Innovation, New
Jersey, United States

Correspondence
*Lei Xu, 1 W University Blvd, Brownsville,
Texas, 78520, USA. Email:
xuleimath@gmail.com

Present Address
1 W University Blvd, Brownsville, Texas,
78520, USA

Abstract

Access control is one of the fundamental security mechanisms of IT systems. Most
existing access control schemes rely on a centralized party to manage and enforce
access control policies. As blockchain technologies, especially permissioned net-
works, find more applicability beyond cryptocurrencies in enterprise solutions is
expected that the security requirements will increase. Therefore, it is necessary to
develop an access control system that works in a decentralized environment with-
out compromising the unique features of a blockchain. A straightforward method to
support access control is to deploy a firewall in front of the enterprise blockchain
application. However, this approach does not take advantage of the desirable features
of blockchain. In order to address these concerns, we propose a novel blockchain
based access control scheme, which keeps the decentralization feature for access
control related operations. The newly proposed system also provides the capability
to protect user’s privacy by leveraging ring signature. We implement a prototype of
the scheme using Hyperledger Fabric, and assess its performance to show that it is
practical for real world applications.

KEYWORDS:
blockchain; access control; privacy

1 INTRODUCTION

Access control is one of the basic security mechanisms deployed in almost every IT system. A general access control includes
authentication and authorization. Specifically, the system should be able to recognize a user, make decisions based on pre-defined
rules, and enforce the decision. Many works have been done on access control to improve its efficiency and flexibility1,2,3.
Although there are different ways to implement an access control, most existing systems share one common feature: they rely
on a trusted centralized party to manage and enforce the access control policies.
The current form of access control is not compatible with the emerging blockchain technology. A blockchain is maintained

by a set of participants, and each of them keeps a local copy of the whole ledger. When a new record needs to be added to the
ledger, all participants run a consensus protocol and utilize their local copies of the ledger to determine whether it should be
accepted or not. This construction model brings a variety of useful features, including immutability, public/unified accessibility,
and resilience4. Since there is no centralized party to rely on, the standard paradigm is not compatible requiring novel access
control protocols for users of a blockchain.
This is not a problem for cryptocurrency systems like Bitcoin5, Primecoin6, and Zerocoin/Zerocash7,8, where the blockchain

is leveraged for double-spending prevention and currency issuing, where all information is intentionally disclosed to everyone.

2 Lei Xu ET AL

However, for permissioned blockchains used to implement enterprise applications such as supply chain management9, enter-
prise identity management10, and business process management11,12, a lack of access control becomes a big concern. For these
types of applications, there are multiple organizations involved that require an ability to transact with each other while maintain-
ing selected information confidential from certain parties. Although each participant can still have its own access control system
such as active directory service, it does not help much as it only works for the organization itself and it is hard to coordinate
across the boundaries of different organizations.
To handle this problem, several existing platforms scarify the desirable features of blockchains to support certain level of

separation for access control. For example, Corda13 allows a subset of organizations to maintain a “sub-ledger” to store infor-
mation they do not want to disclose to others. Hyperledger Fabric has both a channel and collections features for peer to peer
communications separate from other participants14. Although this approach partially achieves access control, it is far away from
perfect. For example, it causes information fragmentation and pushes all access control burdens to the users. Furthermore, when
organizations join and leave the system, the number of “sub-ledgers” increases creating latency and resilience issues.
To overcome these challenges, we propose a decentralized ledger/blockchain based access control scheme (DAcc) for enter-

prise applications. DAcc is built on permissioned blockchain and focuses on data protection, which utilizes several cryptography
tools to enforce access control in a privacy friendlymanner. DAcc is fully compatible with blockchain and can be easily integrated
with different blockchain applications.
In summary, our contributions in this paper include:

• We propose the architecture of DAcc and detailed design of key protocols to protect both the data and users;

• We analyze and prove the security features of DAcc;

• We implement the prototype of DAcc using Fabric and describes details of the implementation; and

• We evaluate the performance of the prototype to demonstrate its practicability.

The rest of the paper is organized as follows: Section 2 gives a brief overview of blockchain and its applications. Section 3
describes the high-level architecture of DAcc and detailed description of key protocols are given in Section 4. We analyze the
security features of DAcc in Section 5. Section 6 discusses the implementation details of DAcc. Section 7 provides performance
evaluation of DAcc referencing previously studied Hyperledger Fabric capabilities. We discuss related works in Section 8 and
conclude the paper in Section 9.

2 BACKGROUND

In this section, we briefly review the background of blockchain technology. Blockchains can be roughly divided into two cate-
gories, public ledgers and permissioned ledgers. The most critical difference between these two types of decentralized systems
is whether a user can directly join a network or if it needs permission and credentials to join and transact in the system. For a
public blockchain, a user can join and leave the system freely. But for a permissioned blockchain, one needs to obtain an iden-
tity that can be recognized by other peers before he/she can participate in the system. This identity is critical for signing and
verifying transactions. Permissioned blockchains are more suitable for enterprise applications since participants are usually pre-
defined and exposure of internal application to the public increases liability. In this work we focus on permissioned blockchains
since the underlying assumptions of a private network are needed for our solution.
Most blockchain consensus mechanisms can be used to build a permissioned blockchain, such as proof-of-work with longest

chain principle, proof-of-stake15, Byzantine fault tolerate protocol and its variants16,17. The underlying consensus protocol does
not affect the operations of DAcc built on top of the blockchain. Considering the typical characters of an enterprise application,
we choose to use Hyperledger Fabric for the prototype. Hyperledger Fabric utilizes an endorsing-and-ordering mechanism for
consensus, where a digital signature is used for proof of endorsement and Kafka18 is used for ordering service.

3 OVERVIEW

In this section, we give an overview of privacy preserving access control scheme for enterprise blockchain applications, and
discuss the security assumptions and objectives.

Lei Xu ET AL 3

Getting
instructions

Decentralize ledger based
access control component

Storage component

Access
control policy

Access
request

Access
grant

Users/applications

Encrypted data

FIGURE 1 Overview of the blockchain based access control system. The blockchain is the only interface between the user and
the data storage component. The system is designed to be compatible with a Hadoop distributed file system or other storage
solutions that provide data resiliency through replication.

3.1 Scheme Participants
For an enterprise application, there are different types of resources that can be protected using access control. In this paper, we
focus on data access control, i.e., to control who can read and modify data managed by the system. The scheme consists of two
major components:

• The blockchain based access control component, which takes care of most access control related operations and meta
data management. This module is maintained by a group of nodes which work on behalf of participating enterprise
organizations using the pre-defined endorsement policy.

• The data storage component, which is responsible for storing all the data managed by the system, and follows instructions
issued by the blockchain based access control component to operate.

There is another type of participants of the system, who are users/applications that interact with the system to access data stored
in the storage component. FIGURE 1 summarizes the high-level architecture of the proposed scheme.

3.2 Security Assumptions and Objectives
We summarize the security assumptions of the three types of participants of DAcc as follows:

• The blockchain access control component is trusted as a whole, i.e., based on the selection of the underlying consensus
mechanism, this component can tolerate a certain ratio of malicious nodes.

• The data storage component is semi-trusted, i.e., it follows pre-defined protocol, but will try its best to learn stored data.

• Users who own the data are fully trusted, but users who want to access others’ data are not trusted.

DAcc aims at providing a blockchain based access control mechanism for data. More specifically, it achieves three objectives:

• Customizable and flexible access control rules for stored files. Data owner should be able to define the access control rules
in a flexible manner, e.g., applying the rule to a group of data files, delegating the right to update the rule, and adding
expiration information.

• Detecting faulty/malicious node(s) in the blockchain. In the decentralized environment, it is possible that a node fails, or
responds incorrectly for access control related operations. In this case the system should detect such events and fix the
node or remove it from the system.

• Privacy of access activities. When a user submits a request to access a data file, this information will be stored on the
blockchain and can be accessed by all participants. The system should provide a privacy protection mechanism to hide a
user’s activities without affecting the access control operations.

4 Lei Xu ET AL

4 DETAILED DESIGN OF PRIVACY PRESERVING BLOCKCHAIN BASED ACCESS
CONTROL

In this section, we describe the detailed design of the blockchain based access control scheme and analyze its security features.
The blockchain based access control scheme enforces access control through encryption, i.e., all shared data are stored in the

form of cipher-texts, and only authorized users can get the corresponding decryption key. Therefore, data confidentiality is not
a problem for the storage component. Without loss of generality, we assume each participant in the system has a public/private
key pair (pk, sk) where the public key is embedded into a certificate that everyone recognizes. The blockchain based access
control scheme consists of three protocols:

• Data and access policy uploading. This protocol is used by a data owner to submit his/her data file and corresponding
access control policy to the system.

• Data access request submission. A user uses this protocol to prepare and submit an access request of a data file to DAcc.

• Access grant. DAcc uses this protocol to process a data access request, and the decision is made based on consensus of
the system.

• Data access. This protocol is used by a user to read/write a data file if the access request is approved by DAcc.

We also discuss supporting functions like access revoking, data file deletion, and fault tolerant supporting in this section.

4.1 Data and Access Policy Initialization
To upload a data file to the system, the user owner follows Protocol 1 to prepare all the information. In Protocol 1, policy there
is a list of public keys belonging to users who can read the data, EncAsym is an asymmetric encryption scheme such as RSA
encryption, and Hash is a cryptography hash function such as SHA256. meta is the data structure storing information about the
data file, including the unique identifier of the data file, the owner identity, creation time, and hash value of the data file.
Note that interactions between the blockchain and the storage component are not reflected in Protocol 1. After owner submits

meta data, access policy and split keys to the blockchain, a smart contract is activated to check whether the transaction is valid,
and the consensus mechanism is used to determine whether the transaction will be added to the ledger. When the owner submits
c to the storage system, the storage system checks the ledger, and only accepts the request if the corresponding transaction is
included in the ledger.

Protocol 1 Protocol for the data owner to submit data and access policy to the system.
Require: The data file data, the access policy policy, integer t and n
1: dek

$
← {0, 1}l

2: c ← EncAES(data, dek)
3: metadata ← Meta(data)
4: K ← Split(dek, t, n), where K is the set of split keys and the size of K is |K| = n
5: owner selects a group of nodesN = {N1,… , Nn} from the ledger
6: for doNi ∈ N, i = 1,… , n
7: kci ← EncAsym(ki, pkNi

), ki ∈ K
8: ℎkci ← Hash(kci)
9: end for
10: Submitting metadata, policy, and {(kc1, ℎkc1),… , (kcn, ℎkcn)} to the blockchain
11: Submitting c to the storage component

Lei Xu ET AL 5

4.2 Reading Access Request Submission
When a user needs to access a data file managed by the system, he/she has to go through the blockchain based access control
system to obtain the data. If privacy is not a concern, the user can use his/her private key to generate a signature on the request,
and every blockchain node can verify the signature and check the corresponding policy to determine whether the request should
be accepted or not.
Protocol 2 describes the process that the requester prepares the request of accessing a data file in a privacy preserving way.

Specifically, the function Extract returns a set of public keys stored in the access control policy policy, which must include the
requester’s public key. The requester also generates a new one-time public/private key pair (pkt, skt) just for this request, and
using the ring signature scheme to sign the public key pkt as part of the request. requester then submits req to the blockchain
system.
The purpose of the one-time public/private key pair is to break the potential connection between multiple access requests.

If a user always uses the same key pair, it is easy for a passive adversary to learn his/her access pattern. Depending on the
asymmetric encryption scheme DecAsym∕EncAsym used in Protocol 3 and Protocol 4, the one-time key pair is generated using
different methods. For instance, if ECIES19 is used, the requester random selects a positive integer (within a range) as the private
key, and calculates the public key by calculating a scalar multiplication with the generated private key and the base point on an
elliptic curve, which is a public parameter.

Protocol 2 Protocol for the requester to request data access.
Require: Identity of the data file idd
1: Fetching the policy of the data file idd from its meta data, which is stored on the blockchain
2: PK ← Extract(policy)
3: Randomly selects a temporary public/private key pair (pkt, skt)
4: � ← RingSign(pkt,PK, skrequester)
5: req ← (idd , pkt,PK, �)
6: return req

4.3 Reading Access Granting
Access granting is handled by a smart contract deployed on the blockchain. The procedure is given in Protocol 3. Since the
request is sent to all participating nodes of the blockchain, each node can verify whether the access request should be proved or
rejected. If a malicious node proves an illegal request and tries to publish the response on the blockchain, other nodes can detect
that and refuse to include the corresponding transaction. Therefore, as long as there are enough honest nodes in the system, such
a transaction will not be included in the blockchain. If the unauthorized user colludes with a malicious node, the node can share
its piece of secret using off-chain communication channel. However, the unauthorized user needs to collude with multiple nodes
where the number is larger than the threshold to recover the data encryption key.

4.4 Data Accessing
After the DAcc blockchain grants access to read a data file, the requester follows the Protocol 4. In this process, the requester
checks the integrity of the received split keys with their hash values stored in the blockchain to detect and avoid malicious
node(s).
Depending on the implementation of the storage system, the data fetching request is processed in different ways. When a

typical distributed storage system working in the master-slave manner (e.g., Hadoop) is used, the fetch request is sent to the
master node to process. Instead of responding to the request directly, the master node first queries the blockchain to check
whether the received request has been approved or not. If the master node receives positive respond, it instructs slave nodes to
send data to the requester. We also discuss the use of a fully decentralized storage system in Section 6.2.

6 Lei Xu ET AL

Protocol 3 Protocol for DAcc to grant data access.
Require: Accessing request req
1: for Each nodeNi on the ledger do
2: Parsing req to (idd , pkt,PK, �)
3: if PK does not belong to the policy attached to the data file idd then
4: return Reject

5: end if
6: if The digital signature � is NOT valid using RingVerify and PK then
7: return Reject

8: end if
9: if The request passes these verification then

10: ki ← DecAsym(kci, skNi
)

11: kc′i ← EncAsym(ki, pkt)
12: Submitting kc′i to the blockchain
13: end if
14: end for

Protocol 4 Protocol for the requester to access the data file.
1: ← ∅
2: for i = 1 to n and || < t do
3: k′i ← DecAsym(kc′i , skt)
4: if Hash(k′i) == ℎkci then
5: Adding k′i to
6: end if
7: end for
8: if || == t then
9: dek ← Reconstruct(, t, n)
10: Fetching c, the cipher-text of the target data file
11: data ← DecAES(c, dek)
12: end if

4.5 Data Updating Request and Processing
To supporting data updating, the owner of the data can add a privilege field to the access control policy to determine whether
the user can update a data file or just read it. The updating process is similar to the data submitting protocol given in Protocol 1.
Except that the user needs to provide information of the old version of the data file, and nodes on the blockchain will check
whether this request is valid or not according to the access control policy of the old version data file. The meta data of the new
version also includes a pointer pointing to its previous version.
DAcc works in the appending-only manner, and it does not delete the old version of the data file after a new version is

submitted to the system. With this feature, DAcc allows users to track the history of a data file easily.

4.6 Other Supporting Functions
Besides the major functions described above, there are several other functions that are necessary for DAcc.

4.6.1 Access Revoking
The owner of a data file can submit a new access control policy for a data file to DAcc to revoke a user. If the revoked user
submits access request after the new policy is accepted by DAcc, nodes on the ledger will reject the request. However, if the
revoked user requested the same data file before the revoke, DAcc cannot prevent him/her from keeping a local copy of the data

Lei Xu ET AL 7

encryption key to access the data file. Therefore, DAcc requires the user to use different data encryption keys for different data
files and different versions of the same data file.

4.6.2 Data File Deletion
DAcc consists of two parts, the blockchain part is completely append-only and does not support deletion operations. But the user
can request to erase his/her data file from the storage component. Specifically, DAcc does the following steps: (i) The owner of
the data file sends a request to delete the file to the blockchain; (ii) Nodes on the blockchain checks the request and accepts it
as a new transaction if it is valid; (iii) The storage component checks the blockchain, and it deletes the data file if the deletion
transaction has been confirmed on the ledger. After the deletion operation is done, even if one gets the data encryption key,
he/she cannot access the data file anymore.

4.6.3 Blockchain Node Replacement
It is possible that one or more nodes of the blockchain fail or are compromised. In this case, some data files may become not
accessible especially when the data owner sets up a policy with high security level, i.e., it requires every or almost every node
of the blockchain to participate the access granting process. In this case, DAcc needs to support blockchain node replacement
to maintain the availability of the service. DAcc adopts a general way to handle this situation. Specifically,

• Encryption key storage. When the data owner submits a new data file and initializes related information, he/she also
encrypts the secret key using his/her private key and stores the cipher-text in a transaction of the blockchain.

• When the current setup fails (e.g., some nodes failed),

– The owner submits a new transaction to the blockchain to revoke previous configuration.
– Based on the availability of blockchain nodes, the owner re-do the initialization and splits/distributes key pieces to
available blockchain nodes that are selected.

• Existing nodes of the blockchain use the updated information to process received request.

5 SECURITY ANALYSIS

The blockchain based access control scheme satisfies four security features: access control, integrity, confidentiality, and privacy,
which map to the requirements described in Section 3. In the following we give detailed analysis of these features.

5.1 Access Control and Data Confidentiality
Access control and data confidentiality mean only authorized users can access the data file managed by DAcc. DAcc achieves
access control and protects data confidentiality through the combination of encryption and the consensus mechanism employed
by blockchain. Data files are always in the form of cipher-text in the storage component, and data confidentiality is reduced to
the safety of data encryption key and the size of the network. According to the design of DAcc, a data encryption key is split
into multiple pieces that are kept by different nodes of the blockchain. Therefore, a larger system with more nodes will be more
secure as an adversary may need to collude with a higher number of nodes to recover the data encryption key. The probability
that an adversary can succeed also depends on the parameters of the secret sharing scheme (i.e., integers t and n) that the user
selected. For the same n, a larger t means it is harder for the adversary to break the system.

5.1.1 Integrity and Usefulness
A legitimate user can only access a data file if he/she collects enough split key pieces from nodes of the blockchain. If one
of these key pieces is wrong, the user cannot successfully decrypt the data file he/she gets from the storage component. DAcc
stores hash values of original key pieces on the ledger and the immutability feature prevents an adversary from modifying them.
Therefore, the user can always verify the received key pieces with these hash values (as described in Protocol 4) to guarantee
the integrity of received information.

8 Lei Xu ET AL

5.2 Privacy
DAcc leverages ring signature and one-time public/private key to protect users’ privacy in the process of access data files.

• Because the public/private key pair used to receive split keys is only used once and generated in a randomway, an adversary
cannot connect two key pairs submitted for the access of the same or different data files. Therefore, a key pair does not
compromise the user’s privacy.

• The randomly generated public key needs to be certified so a blockchain node can check it against the corresponding policy.
Ring signature plays a key role here to protect the user’s privacy. According to the security features of a ring signature
scheme, one cannot link a ring signature with a specific singing public key included in the “ring”. It is easy to see that
the size of the ring determines the level of privacy, i.e., the larger the ring is, the higher privacy level one can obtain. For
DAcc, the size of the ring is also limited by the size of the access control list. If there is only one user is allowed to access
a data file, DAcc cannot provide adequate privacy protection. To mitigate this risk, a data owner should avoid using such
policies and always provides a set of dummy users to help hide real users.

5.3 Combination of Multiple Privacy and Security Components
A common misunderstanding of cryptography primitives is that using several secure components together automatically gives
all the security/privacy features of each component. Unfortunately, this is not the case and using two secure components together
without careful design can compromise all the security features20.
DAcc addresses this concern using the universal composable (UC) security framework20. The UC feature guarantees that if

one cryptography primitive is secure under the UC framework, it can be used together with other primitives that are also secure
under the UC framework. It has been approved that the digital signature scheme is secure under UC framework21, and one can
construct a ring signature scheme that is also secure under the UC framework22, we only need to prove that the one-time key pair
generation is also secure under UC framework. To prove that the one-time key pair generation is secure under UC framework,
we need to demonstrate that one cannot distinguish a simulated execution of one-time key pair generation and a real execution
of the process. The one-time key pair generation relies on a pseudo-random function to randomly select the key pair. In practice,
we can use an HMAC based on cryptographic hash function as the pseudo-random function, which has been proved to be secure
under the UC framework23.

6 IMPLEMENTATION

In this section, we first describe the prototype we implemented and discuss the possibilities of extending the design DAcc to
support other storage systems.

6.1 Prototype using HDFS and Hyperledger Fabric
We implement a preliminary prototype of DAcc utilizing Hyperledger Fabric14,24,25 for the underlying blockchain and Hadoop
HDFS26 for the storage.
To demonstrate the major functions, we set up a test network consists of two organizations with two peers in each organization,

and a single orderer for the entire network. As a blockchain platform targeting at enterprise applications, Hyperledger Fabric
divides users into groups (i.e., channels, which are private “subnets” of communication between two or more specific network
members) for coarse-grained and limited access control. In order to implement the secret sharing scheme outlined previously and
associated protocols, the prototype uses a global-and-local ledger architecture as depicted in FIGURE 2, which is implemented
using the channel feature. Under this architecture, each organization is enrolled into the main channel, and separate individual
channels are set up for each organization. This architecture serves two main purposes: First it allows the split keys generated
by the secret sharing scheme to remain separate and safe among organizations by storing them separately but indexing against
a common key. Second, it allows for the general tracking of results generated by non-deterministic functions akin to the secret
sharing scheme by local ledger being able to query global ledger for user defined business rules.
Hyperledger Fabric does not allow the execution of cross channel functions that modify a ledger (i.e. adding a block), protocols

such as decryption of key splits and key reconstruction are implemented as platformwide service for aggregating and distributing

Lei Xu ET AL 9

FIGURE 2 Architecture of prototype. Digital assets can represent different types of information in DAcc, e.g., the data encryp-
tion key and cipher-texts of key splits. Global distributed and local ledgers are accomplished via utilization of channels in
Hyperledger Fabric to keep key splits separated and confidential among network peers.

response from queries to channels. For the posting of a key split to a local ledger, the coordination and execution service
collects the information from the peer connected to data owner and disseminate to each peer the partial key information. For
key reconstruction, the outside service also coordinates the query and response for each peer to aggregate individual responses.
The critical aspect is that the coordination services only read in instructions endorsed and posted in the channels. Therefore, all
the actions are consistent with the endorsement policy, which is part of the consensus protocol.
For the system implementation, two different chaincodes are developed in Go, and installed and instantiated into respective

global and local channels. The Hyperledger Fabric cryptogen and cryptoconfig tools are used for creating and managing
peer key pairs for transacting on network. Note that peer key pairs are different from those are involved in the operation of
the access control mechanism. The application layer is managed utilizing the Fabric Node.js SDK to create a REST server for
managing APIs to develop, deploy, and test chaincodes. For the file storage component, we use a local instantiation of Hadoop
Distributed File System (HDFS). The communication with the HDFS cluster is managed via its own server composed using
Haskell to setup up required REST APIs for managing directories and files in HDFS.

6.2 Generalization of DAcc to Other Blockchain and Storage Systems
In fact, the design of DAcc and its security features do not rely on any specific blockchain or storage system. While it is straight-
forward to port DAcc to another permissioned blockchain platform and centralized storage system (distributed or not), it is not
trivial to utilize a decentralized storage system such as IPFS27,28. IPFS by nature is a type of peer-to-peer storage system27 that
utilizes distributed hash table (DHT), where a data file is decomposed to chunks with fixed size and distributed to different nodes
of the system. Since we only consider enterprise applications, all nodes know each other and a user can connect to any of them
to access everything stored. The reading and writing operations are done in a similar way as HDFS, the only difference is that a
user needs to interact with several nodes of IPFS to finish the operation instead of only interacting with the master node (name
node) of HDFS.
The security assumptions also change with a purely peer-to-peer storage system like IPFS. For HDFS, it is relatively safe to

make the assumption that the HDFS is well protected and follows the protocol. But it is hard to assume every node of IPFS is
semi-trusted. In order to mitigate this risk, DAcc adopts different strategies for different operations:

10 Lei Xu ET AL

• Reading. IPFS keeps multiple copies of the same data file using different nodes. To guarantee the correctness of a received
file, an integrity tag is stored in the blockchain as part of the metadata of the data file. If a user obtains a file and finds out
that the integrity tag is not consistent with the actual file, he/she can request the same file from other nodes and report to
the system of the failed/malicious node(s).

• Writing. Writing/updating operation is more tricky than reading as a user cannot enforce an IPFS node to work honestly,
i.e., an IPFS node can compromise the integrity of chunks of a data file that are assigned to it. To mitigate this risk, DAcc
can adjust the redundancy rate of storage to prevent an adversary from compromising the submitted data file.

7 PERFORMANCE EVALUATION

The cost of DAcc operation can be roughly divided into two categories:

• Cryptography operations, including data encryption, key partition/reconstruction, signature generation/verification. Most
computation intensive operations only need to be done by a single party locally, and will not affect the overall performance.
For example, data encryption and decryption are the most time consuming operations, especially when the size of the data
file is large. But these will only need to be done by involved users locally. The only cryptography operations that adding
an extra burden to the decentralization ledger nodes are key splits encryption and ring signature verification, and the cost
of which are negligible for modern computers29,30.

• Decentralized ledger operations. DAcc does not have any special requirements on the underlying decentralized ledger
system, and the performance is mainly determined by the decentralized ledger system itself, which is Hyperledger Fabric
in this work. In theory, consensus protocol is the most time consuming part of a decentralized ledger system. The version
of Fabric used in the DAcc prototype utilizes the Kafka protocol for consensus purpose, which has very low latency with
high throughput. In practice, many other factors need to take into consideration, such as network latency, and how busy a
node. The performance of Fabric has been extensively studied by Thakkar et al.31, which discussed impacts of transaction
arrival rate, block size, endorsement policy, and number channels on performance. With optimization techniques, the
underlying decentralized ledger platform is able to support more than 2K transaction per second with a typical setup31.

8 RELATEDWORKS

In this section, we briefly review related works.
Several blockchain platforms implement access control by separating users into different groups and each group maintains its

own ledger to share information13. Although this approach is useful for certain scenarios, it has several limitations as an access
control mechanism. For example, if n users want to share different information with each other, there will be n2 groups in the
system. It also shifts the access control management burden to the users, who are responsible to decide when a new subgroup is
required and manage existing subgroups.
There are also works on building access control using blockchain. Zyskind et al. developed a method that only allows the

owner to access data managed by a blockchain but does not consider how to grant access to others, not to mention granting access
in a privacy preserving way32. Ouaddah et al. discussed blockchain based access control for IoT33,34. The scenario considered
by these works are totally different from our case as IoT devices can act according to instructions but data can always be read
in our case. Maesa et al.35 discussed general access control using blockchain but ignored the two features of privacy and error
detection.

9 CONCLUSION

The original idea of blockchain is to expose everything to the public to prevent incorrect actions such as double-spending.
Although this has been proved to be a successful design for a cryptocurrency system without a trusted party, it brings a big
challenge for applying blockchain for enterprise applications, where data confidentiality and privacy are critical, and cannot be
disclosed to everyone. As one of the fundamental security tools, access control is a powerful tool to protect data confidentiality.

Lei Xu ET AL 11

DAcc achieves the major functions of a classical access control mechanism without relying on a centralized party by utilizing
a secret sharing scheme and an integration protection mechanism is used to prevent an adversary participant to release wrong
information to users. To preserve users’ privacy in interacting with DAcc, a ring signature scheme and a one-time key generation
mechanism is used. In summary, DAcc achieves three major objectives besides basic access control function through the novel
design: (i) Supporting customizable and flexible access control rules. (ii) Detecting faulty/malicious node(s) in the blockchain.
(iii) Preserving privacy of access activities. The modular design of DAcc also makes it relatively independent of the underlying
blockchain backbone and the storage system, which provides the end users more flexibility to build their own system. We also
implement a prototype on top of Hyperledger Fabric which uses HDFS as the storage system to demonstrate the efficiency of
the design in practice.

References

1. Sandhu RS, Coyne EJ, Feinstein HL, Youman CE. Role-based access control models. Computer 1996; 29(2): 38–47.

2. Bertino E, Bonatti PA, Ferrari E. TRBAC: A temporal role-based access control model. ACM Transactions on Information
and System Security (TISSEC) 2001; 4(3): 191–233.

3. Frank M, Streich AP, Basin D, Buhmann JM. A probabilistic approach to hybrid role mining. In: ACM. ; 2009: 101–111.

4. Underwood S. Blockchain beyond bitcoin. Communications of the ACM 2016; 59(11): 15–17.

5. Nakamoto S. Bitcoin: A peer-to-peer electronic cash system.; 2008.

6. King S. Primecoin: Cryptocurrency with Prime Number Proof-of-Work.; 2013.

7. Miers I, Garman C, GreenM, Rubin AD. Zerocoin: Anonymous distributed e-cash from bitcoin. In: IEEE. ; 2013: 397–411.

8. Sasson EB, Chiesa A, Garman C, et al. Zerocash: Decentralized anonymous payments from bitcoin. In: IEEE. ; 2014:
459–474.

9. Xu L, Chen L, Gao Z, Lu Y, Shi W. Coc: Secure supply chain management system based on public ledger. In: IEEE. ; 2017:
1–6.

10. Gao Z, Xu L, Turner G, et al. Blockchain-based identity management with mobile device. In: ACM. ; 2018: 66–70.

11. Mendling J, Weber I, Aalst WVD, et al. Blockchains for business process management-challenges and opportunities. ACM
Transactions on Management Information Systems (TMIS) 2018; 9(1): 4.

12. Diallo N, Shi W, Xu L, et al. eGov-DAO: a Better Government using Blockchain based Decentralized Autonomous
Organization. In: IEEE. ; 2018: 166–171.

13. Brown RG, Carlyle J, Grigg I, Hearn M. Corda: An introduction. R3 CEV, August 2016.

14. Androulaki E, Barger A, BortnikovV, et al. Hyperledger fabric: a distributed operating system for permissioned blockchains.
In: ACM. ; 2018: 30.

15. Gilad Y, Hemo R, Micali S, Vlachos G, Zeldovich N. Algorand: Scaling byzantine agreements for cryptocurrencies. In:
ACM. ; 2017: 51–68.

16. Vukolić M. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In: Springer. ; 2015: 112–125.

17. Ongaro D, Ousterhout JK. In search of an understandable consensus algorithm.. In: USENIX. ; 2014: 305–319.

18. Wang G, Koshy J, Subramanian S, et al. Building a replicated logging system with Apache Kafka. Proceedings of the VLDB
Endowment 2015; 8(12): 1654–1655.

19. Smart NP. The exact security of ECIES in the generic group model. In: Springer. ; 2001: 73–84.

12 Lei Xu ET AL

20. Canetti R. Universally composable security: A new paradigm for cryptographic protocols. In: IEEE. ; 2001: 136–145.

21. Canetti R. Universally composable signature, certification, and authentication. In: IEEE. ; 2004: 219–233.

22. Yoneyama K, Ohta K. Ring signatures: Universally composable definitions and constructions. Information and Media
Technologies 2007; 2(4): 1038–1051.

23. Al-Kuwari S, Davenport JH, Bradford RJ. Cryptographic hash functions: recent design trends and security notions.. IACR
Cryptology ePrint Archive 2011; 2011: 565.

24. Cachin C. Architecture of the hyperledger blockchain fabric. In: . 310. ACM. ; 2016.

25. Sousa J, Bessani A, Vukolic M. A byzantine fault-tolerant ordering service for the hyperledger fabric blockchain platform.
In: IEEE. ; 2018: 51–58.

26. Borthakur D. HDFS Architecture Guide. http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HdfsDesign.html; 2008.

27. Benet J. Ipfs-content addressed, versioned, p2p file system. arXiv preprint arXiv:1407.3561 2014.

28. Chen Y, Li H, Li K, Zhang J. An improved P2P file system scheme based on IPFS and Blockchain. In: IEEE. ; 2017:
2652–2657.

29. Melchor CA, Cayrel PL, Gaborit P, Laguillaumie F. A new efficient threshold ring signature scheme based on coding theory.
IEEE Transactions on Information Theory 2011; 57(7): 4833–4842.

30. Gupta V, Gupta S, Chang S, Stebila D. Performance analysis of elliptic curve cryptography for SSL. In: ACM. ; 2002: 87–94.

31. Thakkar P, Nathan S, Vishwanathan B. Performance Benchmarking and Optimizing Hyperledger Fabric Blockchain
Platform. arXiv preprint arXiv:1805.11390 2018.

32. Zyskind G, Nathan O, others . Decentralizing privacy: Using blockchain to protect personal data. In: IEEE. ; 2015: 180–184.

33. Ouaddah A, Abou Elkalam A, Ait Ouahman A. FairAccess: a new Blockchain-based access control framework for the
Internet of Things. Security and Communication Networks 2016; 9(18): 5943–5964.

34. Ouaddah A, Elkalam AA, Ouahman AA. Towards a novel privacy-preserving access control model based on blockchain
technology in IoT. In: Springer. 2017 (pp. 523–533).

35. Maesa DDF, Mori P, Ricci L. Blockchain based access control. In: Springer. ; 2017: 206–220.

Lei Xu ET AL 13

	Blockchain based Access Control for Enterprise Blockchain Applications
	Recommended Citation

	Blockchain based Access Control for Enterprise Blockchain Applications
	Abstract
	Introduction
	Background
	Overview
	Scheme Participants
	Security Assumptions and Objectives

	Detailed Design of Privacy Preserving Blockchain based Access Control
	Data and Access Policy Initialization
	Reading Access Request Submission
	Reading Access Granting
	Data Accessing
	Data Updating Request and Processing
	Other Supporting Functions
	Access Revoking
	Data File Deletion
	Blockchain Node Replacement

	Security Analysis
	Access Control and Data Confidentiality
	Integrity and Usefulness

	Privacy
	Combination of Multiple Privacy and Security Components

	Implementation
	Prototype using HDFS and Hyperledger Fabric
	Generalization of DAcc to Other Blockchain and Storage Systems

	Performance Evaluation
	Related Works
	Conclusion
	References

