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 When Is Hyponormality for 2-Variable Weighted
 Shifts Invariant under Powers?

 Raul E. Curto & Jasang Yoon

 ABSTRACT. For 2-variable weighted shifts W(a,ß) = (T\, T{)
 we study the invariance of (joint) k-hyponormality under the

 action (h,£) >- Wrf£'ßj := (if1,!*/) (h, £ > 1). We show
 that for every fc > 1 there exists W(a$) such that is k
 hyponormal (all h > 2, £ > 1) but W(atß) is not k-hyponormal.
 On the positive side, for a class of 2-variable weighted shifts
 with tensor core we find a computable necessary condition for
 invariance. Next, we exhibit a large nontrivial class for which
 hyponormality is indeed invariant under all powers; moreover,
 for this class 2-hyponormality automatically implies subnormal
 ity. Our results partially depend on new formulas for the deter
 minant of generalized Hilbert matrices and on criteria for their
 positive semi-definiteness.

 1. Introduction

 Given a pair T = (T\, T2) of commuting subnormal Hilbert space operators, the
 Lifting Problem for Commuting Subnormals (LPCS) calls for necessary and suf
 ficient conditions for the existence of a commuting pair N = (Ni, /V2) of normal
 extensions of T\ and T2. In previous work ([CLY1], [CLY2], [CLY3], [CLY4],
 [CuYol], [CuYo2], [CuYo3]) we have studied the relevance of (joint) fc-hyponor
 mality to LPCS. In particular, one asks to what extent the existence of liftings for

 the powers T"1'^ = {T^T^) (h,£ > 1) can guarantee a lifting for T. For the
 class of 2-variable weighted shifts W(a:ß), it is often the case that the powers are
 less complex than the initial pair; thus it becomes especially significant to unravel

 the invariance of fc-hyponormality under the action (h, £) — W^'j] (h, £ > 1).
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 998  Raul E. Curto & Jasang Yoon

 Our aim in this paper is to shed new light on some of the intricacies associ
 ated with LPCS and fc-hyponormality for powers of commuting subnormals. To
 describe our results we need some notation; we further expand on our terminol
 ogy and basic results in Section 2. We use f>o (respectively, §«>) to denote the
 set of commuting pairs of subnormal operators (respectively, subnormal pairs) on
 Hilbert space. For k > 1, we let §£ denote the class of k-hyponormal pairs in §o
 Clearly, §00 £ • • ■ £ %>k £ • ■ • £ §>2 £ §1 £ §0- The main results in [CuYol]
 and [CLY1] show that these inclusions are all proper. In our previous research
 we have shown that detecting these proper inclusions can be done within classes
 of 2-variable weighted shifts with relatively simple weight structure, as we now
 describe.

 For a sequence a = {«fe}^=0 £ £co(Z+) of positive numbers, we let Wa =
 shift(«0, £Xi,...) denote the unilateral weighted shift on £2 (Z+ ) given by Waek :=
 «fcßfc+i (fc ^ 0). We also let U+ := shift(l, 1,...) (the (unweighted) unilateral
 shift), and for 0 < a < 1 we let Sa := shift(a, 1,1,...). Multivariable weighted
 shifts are defined in an analogous manner. For instance, on £2{1+) we let W(Uiß) =
 (Ti, T2) denote the 2-variable weighted shift associated with weight sequences ex.
 and ß, defined by Txek := «k^k+ï! and T2ek := ßkek+e2 (k € ~l2+).

 For an arbitrary 2-variable weighted shift W(Ulß), we let Mi (respectively, Nj)

 be the subspace of £2(I2) which is spanned by the canonical orthonormal basis
 associated to indices k = (fci, £2) with k\ > 0 and kj ^ i (respectively, k\ > j
 and &2 ^ 0). We will often write M\ simply as M and N\ as N. The core
 c(W(a,ß)) of W{0(tß) is the restriction of W(a,ß) to the invariant subspace M n JV.
 A 2-variable weighted shift W(a,ß) is said to be of tensor form if it is of the form
 (I ® Wa, Wß ® I). The class of all 2-variable weighted shifts W(a,ß) G §0 whose
 core is of tensor form will be denoted by TC; in symbols, TC := {W(«,ß) G §0 :
 c{W(Uiß)) is of tensor form}.

 We now consider the class S := {W(a,ß) G §0 : a(k,,o) = «(fci+1,0) and
 ß(o,k2) = ß(o,k2+i) f°r some ki > 1 and k2 > 1} and we let Si := S n §1.
 From propagation phenomena for 1- and 2-variable weighted shifts (see [CuYo2],
 [CLY4]), we observe that, without loss of generality, we can always assume that
 the restriction of each W(«,0) G Si to the invariant subspace M (respectively, f)
 is of the form (I ® Sa,U+ ® I) (respectively, (I ® U+,Sb ® /)); cf. Figure 6.1.
 In particular, the core c(W(a,ß)) of a 2-variable weighted shift in Si is always the
 doubly commuting pair (I ® U+,U+ ® I); as a result, W(«,0) E TC. Observe also
 that if W(a,ß) G Si, then W^(«,/5) is completely determined by the three parameters
 X := «(0,0), y := ß(o,o) and a := <X(o,i)- Thus we shall often denote a 2-variable
 weighted shift W(a,ß) G Si by (x,y,a).

 Between Si and TC there is a class that provides significant information about
 LPCS, and we now define it. Let !A := {W((x,ß) G TC : c{W(a,ß)) is 1-atomic}.
 Clearly Si £ JA £ TC. In [CLY3] we solved LPCS within the class TC, and in
 particular we gave a simple test for subnormality within JA.
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 When Is Hyponormality Invariant under Powers? 999

 To prove that the fc-hyponormality of all powers need not guarantee the fc
 hyponormality of the initial pair, we build an example that uses weights related
 to those of the Bergman shift. The reader will recall that the moment matrix
 associated with the Bergman shift is the classical Hilbert matrix. Thus to deal with
 our situation we need to describe positivity and the calculation of determinants for
 generalized Hilbert matrices; we do this in Theorem 3.1. Although Section 3 has
 intrinsic and independent value since it deals with matrices that arise in various
 contexts, the main reason for including it here is that it contributes a basic tool for
 producing some of the examples in subsequent sections.

 It is well known that for a general operator T on Hilbert space, the hyponor
 mality of T does not imply the hyponormality of T2 [Hal]. However, for a uni
 lateral weighted shift Wa, the hyponormality of Wa (detected by the condition
 CXj < (Xj+i for all j > 0) does imply the hyponormality of every power W„
 (ft > 2). It is also well known that the subnormality of T implies the subnor
 mality of Tn (all ft > 2), but the converse implication is not true, even if T is a
 unilateral weighted shift [Sta]. Since fc-hyponormality lies between hyponormality
 and subnormality, it is then natural to consider the following problem.

 Problem 1.1. Let T be an operator and let k > 2.

 (i) Does the k-hyponormality of T imply the k-hyponormality of T2 ?

 (ii) Does the k-hyponormality of T2 imply the k-hyponormality of T?

 At the beginning of Section 4 we consider this problem, and we subsequently
 study its multivariable analogue. It is worth noting that, in the multivariable case,
 the standard assumption on a pair T = (Tj, T2) is that each component I* be
 subnormal (i = 1,2). With this in mind, comparing the fc-hyponormality of a

 2-variable weighted shift W^ß) 6 §o to the fc-hyponormality of its powers W^'ßj
 is highly nontrivial. We now formulate the relevant problems in the multivariable
 case.

 Problem 1.2. Given fc > 1 and W(a,ß) € 9)k> does it follow that e §k
 for all h,£ > 1?

 In Section 5 we establish that subclasses of the class (fc > 1) are often
 invariant under powers. Concretely, we prove that there exists a rich collection

 of 2-variable weighted shifts W(a,ß) S §2 such that ^ e §2 (Theorem 5.4).
 Conversely, we can ask the following question.

 Problem 1.3. Given fc > 1, assume that for all h >2 and £ > 1,
 Does it follow that W<a^) G

 In Theorem 4.8 we answer Problem 1.3 in the negative; that is, for each fc > 1

 we build a 2-variable weighted shift W(ai ß) e $0 \ Sfc such that e (all
 h> 2 and £ > 1).

 Next, for fc = 1,2, we find a computable necessary condition for the fc-hypo
 normality ofW^ß) to remain invariant under all powers (Theorem 5.1). We then
 show that this necessary condition is not sufficient (Remark 5.3 (ii)).
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 1000  Raul E. Curto & Jasang Yoon

 Section 6 is devoted to the study of the class Si. We show that for {x,y,a) E

 Si, all powers (x,y,a)ih,('' are hyponormal (Theorem 6.6). Moreover, a shift
 (x,y, a) e Si is 2-hyponormal if and only if it is subnormal.

 As we mentioned before, for single operators it is an open problem whether
 the 2-hyponormality of T implies the 2-hyponormality of T2. Although this prob
 lem is intimately related to Theorem 5.4, we observe that the latter does not pro
 vide an answer to Problem 1.1 when k = 2, since our pairs consist of commuting
 subnormal operators.

 Problem 1.2 is a special case of a much more general problem, that of de
 termining necessary and sufficient conditions for the weak fc-hyponormality of a
 commuting pair. We say that a pair T G §0 is weakly k-hyponormal if

 p(T):= (pi(TuT2),p2(TiT2))

 is hyponormal for all polynomials p\,p2 S C[z,w] with degpi,degp2 ^ k,
 where p = (pi, p2)- To verify that T is weakly fc-hyponormal is highly nontrivial.
 Thus Problems 1.2 and 1.3 can be regarded as suitably multivariable analogues of
 [Shi, Question 33] : If T is a hyponormal unilateral shift and if p is a polynomial,
 must p{T) be hyponormal? If T is subnormal, the answer is clearly yes, but
 we note that polynomial hyponormality is strictly weaker than subnormality, as
 proved in [CuPu].

 2. Notation and Preliminaries

 Let J-f be a complex Hilbert space and let ß(3~C) denote the algebra of bounded
 linear operators on 9(. For S,T e let [S, T] := ST - TS. We say that an
 n-tuple T = (Ti Tn) of operators on J~C is (jointly) hyponormal if the operator
 matrix

 /[Tf.rj] [rf.rj]
 [rf,r2] [r2*,r2] ... [T*,t2]

 [T*,T]

 [T*,Tn] [T2*,Tn] ■■■ [T*,Tn]J

 is positive on the direct sum of n copies of 3-f (cf. [Ath], [CMX]). The n-tuple T
 is said to be normal if T is commuting and each Ti is normal, and T is subnormal
 if T is the restriction of a normal n-tuple to a common invariant subspace. For
 k > 1, a commuting pair T = (Ti,T2) is said to be k-hyponormal ([CLY1]) if

 T(fc) := (Ti,T2) Tf, T2T\Jl 7f, T2T\~x T2fe)

 is hyponormal, or equivalently

 [T(fc)*,T(fc)] = ([(T2^rf )*,T2mr1w])i<n+m<k > 0.
 1 <p+q<k
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 When Is Hyponormality Invariant under Powers? 1001

 Clearly, normal => subnormal => fc-hyponormal. The Bram-Halmos criterion es
 tablishes that an operator T e B{3{ ) is subnormal if and only if the fc-tuple
 (T, T2,..., Tk) is hyponormal for all k > 1.

 For (X = {(Xn}n=o a bounded sequence of positive real numbers (which are
 called weights), let Wa : £2{Z+) — £2(Z+) be the associated unilateral weighted
 shift, defined by Waen := anen+\ (all n > 0), where {en}n=o's the canonical
 orthonormal basis in £2(Z+). The moments of a are given as

 It is easy to see that Wa is never normal, and that it is hyponormal if and only if
 (Xo ^ «i < ■ ■ •. Similarly, consider double-indexed positive bounded sequences
 &k, ßk G-#°°(Z+),k = (k\,k2) G I2 := 1+ XZ+ andlet^?2(Z+) be the Hilbert
 space of square-summable complex sequences indexed by Z2. (Recall that £2{Z2+)
 is canonically isometrically isomorphic to £2(Z+) ® £2{Z+).) We define the 2
 variable weighted shift W(«,ß) = (T\, T2) by

 In an entirely similar way one can define multivariable weighted shifts. Trivially,
 a pair of unilateral weighted shifts Wa and Wß gives rise to a 2-variable weighted
 shift Wiaiß) = (Ti,T2), if we let a(kuk2) ■= «k, and ß(kuk2) ■= ßk2 (all kuk2 e
 Z+). In this case, W(a,ß) is subnormal (respectively, hyponormal) if and only if
 T\ and T2 are subnormal (respectively, hyponormal); in fact, under the canonical
 identification of £2(Z2) with £2(Z+) ® £2(Z+), we have T\ = I ® Wa and T2 =
 Wß ® I, and W(cx,ß) is also doubly commuting. For this reason, we do not focus
 attention on shifts of this type, and use them only when the above mentioned
 triviality is desirable or needed.

 Given k € Z+, the moment of (a, ß) of order k is

 if k = 0,

 if k > 0.

 Tißk := «kßk+fL T^k := ßk£k+£2>

 where £1 := (1,0) and £2 := (0,1). Clearly,

 (2.1) TxT2 = T2Ti « 0k+£,ak = ak+C2ßk (allk 6 Z2+).

 Yk = Yk(<x,ß)

 ifk = 0,

 if k\ > 1 and k2 = 0,

 if k\ =0 and k2 > 1,

 la?0,0) " ■ ' afki-ifi)ß2(ku0) ■ ■ ' ß\kuk2-1) ä 1 and k2 > 1.

 We remark that, due to the commutativity condition (2.1), yk can be computed
 using any nondecreasing path from (0,0) to (k\, k2).
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 1002  Raul E. Curto & Jasang Yoon

 We now recall a well-known characterization of subnormality for multivari
 able weighted shifts [JeLu], which in the single variable case is due to C. Berger
 (cf. [Con, III.8.16]) and was independently established by R. Gellar and L.J.
 Wallen [GeWa]: W(a,ß) admits a commuting normal extension if and only if there
 is a probability measure (which we call the Berger measure of W(a,ß)) defined
 on the 2-dimensional rectangle R = [0,ai] x [0,a2] (where at := ||Til|2) such
 that yt = Jr tk d/J(t) := cfyi(t), for all k S ~l\. Observe that U+ and
 Sa are subnormal, with Berger measures ôj and (1 - a2)5o + a25\, respectively,
 where 8P denotes the point-mass probability measure with support the singleton
 set {p}. Also, a 2-variable weighted shift W(a,ß) G Si has a core with Berger
 measure 5 \ X 51.

 3. The Determinant of a Generalized Hilbert Matrix

 Given positive real numbers x and h, and an integer k > 1, we define the gener
 alized Hilbert matrix Ak(x, h) as follows:

 (.Ak(x,h))ij :=  otherwise ^ ~ J ^ k + ]).
 (i + j — 2)h + 1

 (Observe that Afe (1,1) is the classical Hilbert matrix.) In this section we calculate

 the determinant of, and establish positivity properties for, the generalized Hilbert
 matrix Ak(x, h).

 To describe our results, we need some notation. We let 0! := 1, k! := k(k-1 )!,

 and k! := E[i=i i- We also let

 fo ■= x,

 rf(k-£)h+l\2 2(k - £)h + 1 „
 (k-m ) ~ ((k-t)hf

 k k-1 / , \j+1
 (3.1)

 g(h,k): ((k + 1)h + 1) Il [(jh+ i)(2kh-jh  + 1)

 and

 (3.2) f(x,h,k)

 2 / (i, 1 \u , 1\2 / i i \ 2 ^(/x-+-l)2 (kh + 1\2 /(k- l)h + 1\2 (3h+\\2 (2h + 1\2 /(
 :~X{ kh J [ (k- l)h ) '"{ 3 h ) { 2 h J \ h

 12 (kh) + 1 W(k- l)h+ IV (3h + l\ (2h + l\ (h + I) -{ (kh)2 ) \ (k- l)h ) " ' \ 3h J [ 2h J h
 (2((k-l)h) + l\((k-2)h + 1\2 (3h+ 1\2 (2h + \\2 (J
 V ((k - l)h)2 A (k - 2)h ) "' { 3h J V 2 h J

 (2(2h) +

 V (2 h)2

 h

 (2(2h) + 1\ (h + l)2 /2h+l\
 J h { h )'
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 When Is Hyponormality Invariant under Powers? 1003

 Theorem 3.1. For X, h > 0 and k > I, we have

 (3.3) det Ak(x, h) = hk{k+1)(k!)2g{h, k)fk,

 where fk = + 1 )/h)2 - (2h + 1 )/h2. Moreover,

 fk = f(x,h,k).

 Proof. Consider the (fc + 1) X (fc + 1) matrix

 /

 Ak{x,h) =

 l

 h+1
 1

 2h+l

 (k-l)h+l
 1

 I

 h+1
 1

 2h+l
 1

 3h+l

 kfi+1
 1

 2h+l
 1

 3Ji+l
 1

 4h+l

 (k+l)fi+l
 1

 kh+1 (fc+l)h+l (k+2)h+\

 (2fc-2)Ji+l (2k-l)Ji+l
 I —I— ,

 (2fc-l)h+l 2kJi+l /

 Let us first subtract the (fc 4- l)-st row from each row above it. The entry in the
 j-th column of the l-th row becomes

 x -
 1

 kh + 1

 1  1

 (i + j - 2)h + 1 {k + j — l)fa + 1
 (k - i + l)h

 [(i + j — 2)h + l][(k + j - \)h + 1]

 The new (fc + 1) X (k + 1) matrix is

 if (i.j) = (1-1).

 if(i,j) * (1,1).

 Bk{x,h)

 I
 x -

 kh
 kh+1

 (k-m
 [fi+i][(k+i)h+i]

 (k-l)h
 [Ji+l][fch+l] [2h+l][(k+l)fi+l]

 [(fc-l)h+l][kfi+l] [fch+i][(fc+i)h+l]
 1 1

 kh+1  (k+l)h.+ l

 kh  kh

 [(k-l)fe+l][(2k-l)h+l]
 (k-l)h

 [kh+l][2kh+l]
 (k-l)h

 [Wi+l][(2fc-l)h+l] t(k+l)h+l][2kh+l]

 [(2k-2)h+l]f(2k-l)h+l] [(2k-l)h+l][2kfi+l]
 1 1

 (2k-l)h+l  2kh+l

 Note that det Ak(x, h) = detßk(x, h). To compute detßfe(x, h), one can factor
 out (fc - (i - 1 ))h from the i-th row (1 < i < k) and l/((fc + j — l)h + 1) from
 the j-th column (1 < j < fc + 1) in the matrix Bk(x, h). Hence we obtain

 det Ak(x,h) = klhk ■
 1  1  1

 kh + 1 (fc+l)h+l 2kh + 1
 det Ck(x,h),
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 1004  Raul E. Curto & Jasang Yoon

 where

 Ck{x,h) :=

 {x kh+l) kh+1,
 1

 h +1

 1

 kh+1
 kh

 (k-l)h+l

 1

 1

 h+1
 1

 2h+l

 1

 kh+1

 1

 kh+1
 1

 (k+l)h+l

 1

 (2k-l)h+l

 1  J

 Next, let us subtract the last column from each of the preceding columns in the
 (k + 1) x (k + 1) matrix Ck(x, h). We obtain

 Dk(x,h)

 /,

 (X kh+1 )
 kh+1

 kh+1 ) kh
 kh

 (h+l)[(fc+l)h+l]

 kh+1
 (fc-l)h

 (h+l)[fch+l]
 (k-m

 (2h+l)[(fc+l)h+l]

 [(fc-l)h+l][fch+l] kh+l
 h 1

 [fch+l][(fc+l)h+l] (fc+l)h+l

 kh  (k-l)h
 [(k-l)h+l][(2k-l)h+l] [kh+l][(2k-l)h+l]

 0  0

 1

 t(2fc-2)h+l][(2fc-l)h+l] (2fc-l)h+l

 0 1  /

 Note that detQ(x, h) = detDk(x, h). As we have done before, let us factor out
 (k - (j - 1 ))h from the j-th column (1 < j < k) and l/((fc + i - l)h + 1) from
 the i-th row (1 < i < k) in the matrix Dk{x, h). Let

 fx =/i(x,h,k):=x(k^1) -
 kh+l\2 2kh+l

 (kh)2 '

 Then we have

 detAk(x,h) = (k<Sh* )2 ((t+1')h + ,)'

 h),

 where

 I fi

 Ak-i(f\,h) :=

 l

 h+1
 1 1

 h+1 2h+l

 I \
 (k-m+i

 i

 [kh+1]

 v I ! 1 , M(fc-l)h+l] [kh+1] (2k-2)h+l '
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 When Is Hyponormality Invariant under Powers? 1005

 is now a k X k matrix. Continuing in this way we have

 det Ak(x,h)

 = (k\(k- m2h2(k+ik 1)1 ((fc_ i)fc + i) iw+t) ((k+ l)h+ l)

 ' " ((2k-3)h + l) i(2k-2)h + l) ((2k- l)ft + l) ilkh + l)
 x det Ak-2{f2, h),

 where

 r _ r I It b\ — f f(k-\)h+\\2 (2(k-l)h+l\
 fi fi(x,h,k). fx [ {k_l)h ) ( (k-l)^h2 )'

 In general, we see that the determinant of Ak(x, h) can be expressed in terms of
 det(fy+i,h), where

 ,/(k-t)h+1\2 2(.k-t)h+i „
 (3.4) {k_m ) - (Oslst-1).
 Thus, by direct calculation we have

 detAk(x,h) = (l<)2hk(k+l)g{h,k)fk,

 where g (h, k) is given by (3.1) and

 (3.5) fk = detAo(/fe, fe) = /k-i

 On the other hand, careful inspection of the recursive definition of fk (cf. (3.4),
 (3.5)) and of the formula for fix, h, fc) (see (3.2)) shows that fk = fix, h, k) (all
 X, h > 0 and k > 1). The proof is now complete. O

 Corollary 3.2. For k > 1 and h > 1,

 detAk(x,h) < detAfc_i(x, h).

 Proof. We consider two cases.
 Case 1: k = 1. Note that

 detA0{x,h)=x and detAi(x,h) = 1 ~ (fo^Tf) ■
 Thus we have

 detAi(x, h) < 1
 det A0{x,h) 2h + 1
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 1006 Raul E. Curto & Jasang Yoon

 Case 2: k > 2. Consider the quotient

 detAk(x,h) = hfc(fc+1) (k1)2g(h,k)fk = h2kkl2g(h,k)fk
 detAk-i(x,h) frfc(fc-i) (k - V)2g{h,k- l)fk-\ 0(h,k-l)fk-i

 and observe, using (3.1), that

 k k-i / 2 \ j+l ( 1 ) n
 g(h,k) \kh+l) j=o V(jh + 1 )(2kh - jh+ 1 )
 g(h,k-1) ( 1 \k-i k-i( j y+i

 {k-l)h+\! ^\{jh+\){2(k-\)h-jh+\)j

 (ab)n
 k-1 / ^ \ 2

 (k + j)h + 1 j=0

 Hence

 detAk(x,h) _ u2ki,a ( 1 \n7 1 \ /fc = h2kk,2 ( I \ j-r -i(x,h) Ufch+l/U detAfe-i(x,h) ' \2kh+1/jj0\(k + j) + 1J fk-i

 , m2 /_L\ n / 1 V (fk~i((h + i)/h)2-(2h + i)/h2\
 ■ V2kh)j}0{(k + j)J { fk-i )

 <kK2s)n(ffT7i)2(^Ti)24(^)('ri)2<1
 j=0

 whenever h > 1. Therefore, we have det Ak{x, h) < det Ak-i (x, h) (all h,k> 1),
 as desired. C

 Remark 3.3. As we have mentioned before, the matrix Ak ( 1,1 ) is the classical

 Hilbert matrix. Specializing the above results to the case x - h = 1 in Theorem
 3.1, we obtain

 /(l,l,k) = (fc+ l)2 - {(2k- 1) + (2k-3) + ■ ■ ■ + (2-2 + 1) + (2 - 1 + 1)}

 = (k + l)2-k6 + (fe2~ 1)2 = 1
 and

 „ 0! 1! 2! 3! (fc-1)! k\ g(l,k) =
 (2k +1)! (2k)! (2k-1)! (2k-2)! (k + 2)! (k+1)!

 0! 1! 2! 3! (k — 1)! k! k!
 (2k + 1)! ' (2k)! ' (2k - 1)! ' (2k - 2)! ' " (k + 2)! ' (k + 1)! ' k!

 (k!)2
 (2k + 1)!'
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 When Is Hyponormality Invariant under Powers?

 We now use (3.3) and we recover the classical identity

 (fc!)4

 1007

 detAfcd, 1) =
 (2k + 1)!

 cf. [PoSz, Part VII, Problem 4; Choi, Solution to Problem 1],

 Theorem 3.4. Assume x > 0 and h,k > 1. The following statements are
 equivalent:

 (i) Ak(x,h) > 0;
 (ii) detAfc(x, h) > 0;
 (iii) fk = f(x,k,h) > 0;
 (iv) x > b(k,h), where

 (3.6)
 b(\,h) :=

 b{j, h)

 2h + 1

 (h + l)2'

 b(j -\,h) +
 2 jh + 1
 (jh)2

 jh
 jh + 1

 (1 <j<fe).

 Proof.
 (i) => (ii) This is trivial.

 (ii) => (i) Since 0 < det Ak(x,h) < det Afc-i (x, h) < • • • < detAo(x,h) (by
 Corollary 3.2), it follows from Choleskis Algorithm [Atk] that Ak(x, h) > 0.

 (ii) <=> (iii) This follows easily from the identity

 det Afc(x, h) = hk{k+1) (lc)2g(k,h)fk

 in Theorem 3.1, since g(h, k) is clearly positive.

 (iii) <=> (iv) For k = 1, note that/i > 0 <=> det A\(x, h) > 0 <=> X = /o > b(l,h).
 For k > 2, recall that

 fn l = h
 (k-£)h+l\ 2(k - H)h + 1

 (k-£)h  ((k-£)h)2
 (0 <£ <k-l).

 Thus

 f(x,k,h) = fk > 0

 (h + l)2

 <=> fk-2 ^  b(l,h) +
 2(2 h) + 1

 (2h)2  (a&r)-™
 » /o >  £>(fc - 1, h) +

 2kh + 1

 (fch)2  (kh+\)2
 b(k,h)

 x = f0> b(k,h).
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 1008  Raul E. Curto & Jasang Yoon

 (Observe in passing that b{k, h) > 0 (all h,k > 1) and that lim^-«, b{k, h) = 0
 (all k > 1).) D

 4. The Class %>k (k > l) Is Not Invariant under Powers

 For a general operator T on Hilbert space, it is well known that the subnormality
 of T implies the subnormality of Tm (m > 2). The converse implication, however,
 is false; in fact, the subnormality of all powers Tm {m > 2) does not necessarily
 imply the subnormality of T, even if T is a unilateral weighted shift [Sta, p. 378].
 Consider for instance Wa s shift(a, b, 1,1,...) where 0 < a < b < 1. Clearly
 Wa is not 2-hyponormal (and therefore not subnormal), but W™ is subnormal for
 all m > 2. Thus it is indeed possible for a weighted shift Wa to have all powers
 W™ (m > 2) fc-hyponormal without Wa being fc-hyponormal. The example
 above illustrates the case k > 2. When k = 1, it suffices to consider Wa =
 shift( 1,1 -x, y,y,...) where 0 < x < 1 < y. Then W™ (m > 2) is hyponormal,
 but Wa is not hyponormal.

 In the multivariable case, the standard assumption on a pair T s (Ti, T2) is
 that each component Ti is subnormal (i = 1,2). With this in mind, comparing
 the fc-hyponormality of a 2-variable weighted shift W(a,ß) £ So to the k-hyponor

 mality of its powers is highly nontrivial. In [CLY2] we first considered this
 problem, for the case of 1 -hyponormality. Specifically, if we let W(a,ß) denote the
 2-variable weighted shift whose weight diagram is given in Figure 4.2, we proved
 in [CLY2, Theorem 2.7] that (see Figure 4.1)

 (i) is hyponormal and is not hyponormal if and only if a-mt <
 a < V3/5 and /t2i (a) < y < h 1 (a); and

 (ii) W(atß) is not hyponormal and W^ß) is hyponormal if and only if 0 <
 a < amt and h\ (a) < y < ft.21 («) •

 K (2 1)
 W(a,p) € §1 and W(a'S) hyponormal
 for (a, k) in

 O.fl
 o  0.2  0.4

 W(a,0) hyponormal and W^p) € Si

 for {a, k) in this region^^^^^^

 fl2\

 0.6  0.8  a

 ^int

 FIGURE 4.1. Graphs of h\ and h2\ on the interval [0, V3/5]
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 When Is Hyponormality Invariant under Powers? 1009

 In this section we extend the above-mentioned result to k-hyponormality (for
 arbitrary k > 2) and we also give a negative answer to Problem 1.3. Our main
 result, Theorem 4.8, gives necessary and sufficient conditions for W(a<ß) as above

 to have the property W(a,ß) ? Sfc and e §&, for each k > 2.
 To study k-hyponormality of multivariable weighted shifts, we first recall that,

 in one variable, the n-th power of a weighted shift is unitarily equivalent to the
 direct sum of n weighted shifts. Something similar happens in two variables, as
 we will see in the proof of Theorem 4.8 below. First, we need some terminology.

 Let 3~C = £2(Z+) = Vj=0{e/}- Given integers i and m (m > 1,0 < i <
 m - 1), define 'Mi := \IJ=0{emj+i}> clearly, M = ©^q1 Mi. Following the
 notation in [CuPa], for a weight sequence ex. = {«n}~=0 we let

 ,m-1 \ oo

 (4.1) Wa(m:i) '= shift ( J"[ (Xmj+i+n J ;
 Vn=0 '

 that is, denotes the sequence of products of weights in adjacent packets
 of size m, beginning with OQ ■ ■ ■ a;+m_i. For example, given a weight sequence
 « = {ttn}n=o> we have

 ^«(2:0) = shift(o(oal,a2a3■••■)>

 WC((2:l) = shift(a1a2,«3a4----)
 and

 3:2) = shift(a2«3£X4,a5a6«7,...).

 Lemma 4.1 ([CuPa, Corollary 2.8]).

 (i) Let k > 1; W™ is k-hyponormal if and only if^a(m-.i) is k-hyponormal
 forO < i < m - 1.

 (ii) W™ is subnormal if and only if Wa(m-.i) is subnormal for 0 < i < m - 1.

 We now introduce a key family of examples. Given 0 < K < 1, we let X =
 {xn}n=0 be given by

 (4.2) Xn :=
 ifn = 0,

 V(n+ l)(n + 3) .r _ ,
 ; — ir n > 1.
 (n + 2)

 It is easy to see that W* = shift(xo> Xj, X2,... ) is subnormal, with Berger measure
 supported in [0,1] and given by

 2 2

 dÇx(s) := (1 - K2)d<5o(5) + ~2^s + ^rd<5i(s) ([CLY1, Proposition 4.2]).
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 1010 Raul E. Curto & Jasang Yoon

 (0,3)

 i(0,2)

 T2

 (0,1)

 22
 xo

 ay_
 *0*1

 X0  Xl  X2

 (0,0) (1,0) (2,0) (3,0)

 (0,3)

 T2

 (0,2)

 (0,1)

 xo

 ax
 xo

 Xl

 _0£_
 XoXl

 *2

 (0,0) (1,0) (2,0) (3,0)

 Ti

 FIGURE 4.2. Weight diagram of the 2-variable weighted shifts
 in Theorem 4.2, 5.1, 5.4.

 2 '#0,0

 ay

 •JYh
 ay_

 •JYÄ

 (0,1) (1,1) (2,1)

 r."k.

 ' 2 ' #o,o

 ay

 s/Yh
 ay_

 ■J?2h

 m
 ' Ylh

 (0,1) (1,1) (2,1)

 [1 \tfn„

 FIGURE 4.3. Weight diagram of the 2-variable weighted shift

This content downloaded from 129.113.53.71 on Thu, 19 Dec 2019 19:21:16 UTC
All use subject to https://about.jstor.org/terms



 When Is Hyponormality Invariant under Powers? 1011

 Consider now the 2-variable weighted shift given in Figure 4.2, where Wx =
 shift(Xo,Xi,x2,...) and y := K.

 Theorem 4.2 ([CLY1]). For 0 < a < 1/ V2, 0 < K < 1, xn as in (4.2) and
 y := K, let W^ß) = (T\, T2) be the 2-variable weighted shift given by Figure 4.2.
 For k > 2, let

 (4.3) F(a, k) :=

 \

 - a2
 2k{k + 2)

 , 5 2 (k + 1)2 2fe2 + 4fc + 3 '

 £1 — —d + — T~ +
 2k(k + 2) 4(k + l)2

 Then

 (i) T\ and T2 are subnormal;

 00 WW) e Si <=> 0 < k < hi (a) := a/(32 - 48a4)/(59 - 72a2);
 (iii) E $>k 0 < K < hkia) := F(a, k) (k > 2);
 (iv) W^(«,ß) e $oo « 0 < k < hoo{a) := Vl / (2 - a2).

 /« particular, W(a,ß) is hyponormal and not subnormal if and only if

 1 32-48a4
 < K <

 2-a2 "V 59 -72a2'

 We now recall that, by (3.6),

 uti u\ lun 1 u\ 2kh+\~\ ( kh \2 , 2h+l
 = [ ( ' > ~Jkhy~\ (jthTT/ and ' " (hTÏF

 Using mathematical induction we can see that

 (4.4)

 Remark 4.3. If X = 2 ( 1 - k2 ) / K2 in Theorem 3.4, then for h > 1 and k > 1,

 det Ak{x, h) >0 x >b(k,h) ^ k < , .
 V 2 + b{k,h)

 Lemma 4.4. For h > 1 k> I, we haveb{k, h) < b(k, 1).

 Proof. We fix h > 1 and use induction on k. First, observe that, on the
 interval [1, +00), b(\,h) = (2h + l)/(/i + l)2 is a decreasing function of h, so
 we clearly have b(\,h) < b(l, 1). For the induction step, assume now that fc > 2
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 1012 Raul E. Curto & Jasang Yoon

 and that b(k - 1, h) < b(k - 1,1). Then

 b(k,h)  b(k - 1, h) +

 b{k -1,1) +

 2kh + 1

 (kh)2

 2 kh + 1

 (kh)2 .

 (k-l)(k+l) +2kh + \
 k2  (kh)2

 ( k V
 \kh + l)

 (rn^î
 '{kBlî «*<«»

 (kh + l)2 - h2 k(k + 2)
 (kh + l)2  (fc+1)2'

 since the next-to-the-last expression is a decreasing function of h on the interval
 [1, +oo). We therefore have b(k, h) < k(k + 2)/(k + l)2 = b(k, 1). O

 Corollary 4.5. For h > 1 and k > \,

 (4.5)  i-k *  2 + b(k,\) ~ \2 + b(k,h)

 Proof. From Lemma 4.4 we know that b(k, h) < b(k, 1). Thus it suffices to
 establish in (4.5). A direct calculation using (4.3) shows that

 <1 _ 2(k + l)2
 1W2' 3k2 + 6k+ 2'

 and from (4.4) we know that b(k, 1) = k(k + 2)/(k + l)2. It follows that

 V 2 2(k + l)2
 2 + b(k,l)

 as desired.

 2 + k(k + 2)/(k+ l)2 3k2 + 6k+ 2

 2(k + l)2 2(k + l)2
 2(k + l)2 + k(k + 2) 3k2 + 6k+ 2

 = 0,

 C

 Remark 4.6. From Lemma 4.4 and Corollary 4.5 we see at once that for
 h > 1 and k > 1, the following statements are equivalent:

 (i) b(k,h) < b(k, 1);
 (ii) F( VT72,k) < V2/(2 + b(k,h)).
 Lemma 4.7. Let G(h) := (2h3 + 7h2 + 8h + 3)/(2h3 + 7h2 + 10h + 4).

 Then G is an increasing function of h on [1, °o), G(l) = W lim^^a, G(h) = 1.
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 When Is Hyponormality Invariant under Powers?  1013

 Proof. That G(h) = 1 is clear. To establish that G is increasing, ob
 serve that

 2 (4h3 + I0h2 + 7h+ \) n r, ,
 G (h) = —tt—-=7-,—7-r: 7TT > 0 on [1, oo).

 (2 b? + 7 h2 + 10 h + 4)2
 O

 We are now ready to prove our main result of this section.

 Theorem 4.8. Let W(a,ß) = (T\, T2) be the 2-variable weighted shift whose
 weight diagram is given in Figure 4.2 (where a = Vl/2 and Wx is as in (4.2)). Then
 given k,£ > 1 and h >2,

 Kji e S*.
 but

 W(oi,ß) $ <=>

 20
 ' — < K <
 23

 2(k + l)2
 3fe2 + 6k + 2

 < K <
 2 + b(k,h)

 if k = 1,

 if fe > 2.

 Proof. From Lemma A.2, we recall that a 2-variable weighted shift W(a,ß) is
 k-hyponormal if and only if

 (4.6)  -Mk(k) — (yk+(m,n)+(p,q))o<n+m£k — 0,
 0<p+q<k

 for all k G Z2.

 We first let M(m,n) := V?j=0{e(hi+m,tj+n) : hj > 1}, foi 0 < m < h - \

 and 0 < n < £ - 1. Then we have £2(Z2) = (Bm=o ©n=o ^(m,n) • Observe that

 J-f(m,n) reduces Tf1 and Tf. Thus if a 2-variable weighted shift W(a,ß) is given as
 in Figure 4.2, then for h, £ > 1, we can write

 W,
 (W)
 (a,ß)

 h '~r£ \
 = (T?,T:

 h-1

 = (W«(h:0) © H ®Sfï]2Î<T2\Xo) ® © (W«{h:i) © U ® U+),T2 |#.),
 t=l

 where

 Wa(h:i) = shift
 Ytt+m yq+2)h

 Yih ' y yq+m'  and := 0 Mq,n)
 n=0

 (0 < i < k - 1).

 Clearly, ||M^a(h:i) II = 1> and the Berger measure of Wa(h:i) has an atom at 1, so by
 Lemma A.4 we see that (Wa(h-.i) © (/ ® [/+), T2\$ft) (1 < i < h - 1) is subnormal.
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 1014 Raul E. Curto & Jasang Yoon

 Thus, for k > 1, the k-hyponormality of is equivalent to the k-hyponor

 mality of {W^h-.O) © (I ® $ JÏJt)' T2\u;0). Observe that

 t-\

 (Wa{h:o) © (7 ® $ JTn) J2\x,) = ® (Wa{h:o) © (I ® S Ix{on))
 n=0

 and
 t-1

 ©(Wa(fc:0) © (/®5yi72),r/|^-(0_n))
 n=° <-1

 = (W«(Ji:0) © (7 ® |^(0i0)) ©©(7 ®S^Yj2,U+ ® /).
 n=0

 Observe that the second summand is clearly subnormal; thus, foi h,£ > 1, the

 k-hyponormality of (T^.T/) is equivalent to the k-hyponormality of the first

 summand, (W«(h:0) © (/ ® rfl5f(0,0))- Observe also that

 (W<x(h:0) © (/® Sjïiï), r|| ^(00)) = (VK«(H:0) © (/®Syiy2),r2|^(0i0)).

 Thus

 W(«i) € « (Wa(h:0) © (/ ® S yjTj), T2 I xim ) E §k.

 We consider two cases.

 Cot 1: k = 1. To check hyponormality, by Lemma A. 1 and Lemma A.4 it suffices
 to apply the Six-point Test at k = (0,0). A direct calculation shows that

 H(WWo)fflU®Syï72).r2l:tf(0i0))(0,0) > 0 « K < G(h) =

 (cf. Lemma 4.7). Therefore, for all h,£ > 1, we have

 wl«i) eSi « k < G(h).

 2W> + 7h2 + 8h + 3

 2 h3 + 7h2 + 10h + 4

 Since G(h) is an increasing function, we see that if V20/23 = G(l) < K <
 Ah,f)
 '(OL,ß) G(2) = V63/68, we simultaneously get W((Mj 6 §i and VK(«,0) £ §i (all h > 2,

 V> 1).
 Got 2: k > 2. Note that

 W(aj] e §k « (Wa(fc:0) © (/ ® -S" /T72)' T2 t^-(0.0)) e

 To check the k-hyponormality of (VKa(ji:0) © (J® ST2\yfim),we observe that

 it suffices to apply Lemma A.2 (ii) at k = (0,0). Now, the moments associated
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 When Is Hyponormality Invariant under Powers? 1015

 with (Wa{h:o) © (I ® S  UT2\tfm)) are

 (4.7)  yk(<jj) =

 1

 ykih(W(<x,ß))
 K2

 K2

 i y

 if fei =0 and fc2 = 0,

 if fei > 1 and k.2 = 0,

 if fci =0 and k.2 ^ 1,

 if fei > 1 and k.2 > 1.

 By direct computation (i.e., interchanging rows and columns, discarding some
 redundant rows and columns, and multiplying by 2 /k2 in the moment matrix of

 (Wa(h:0) © (I ® Sjïjï)' T2\xm)), we see that for 0 < K < 1 and h,£ > 1,

 W,
 (W)
 («,/?) e ° KS) 15f(„,0) e Sfc 0 (Wa(fco) © U ® 5yiyj), T21 j|-(00) ) e

 « Jfc(K, ft) > 0 <=> Ife(K, ft) > 0,

 where

 Jk(K,h)

 (  1

 K2(h+2)
 2(h+l)

 K2

 k2( 2h+2)
 2(2*1+1)

 id
 2

 K2(3h+2)
 2(3*1+1)

 K2(h+2)
 2(h+l)

 K2(2h+2)
 2(2ft+l)

 ^2
 K_

 2

 k2(3*i+2)
 2(3*1+1)

 id
 2

 K2 (4*1+2)
 2(4*1+1)

 k-2(2H+2)
 2(2*1+1)

 k2(3*i+2)
 2(3*1+1)

 id
 2

 k2(4*i+2)
 2(4*1+1)

 id
 2

 K2 (5*1+2)
 2(5*1+1)

 y2 (3*1+2)
 2(3*1+1)
 k2(4*1+2)
 2(4*1+1)

 id
 2

 k2(5?i+2)
 2(5*1+1)

 K2(6h+2)
 2(6*1+1)

 y2(kh+2) y2((k+l)*t+2) k£ y2((k+2)*i+2) K2((k+3)h+2)
 \ 2(fc*i+l) 2((fc+l)h+l) 2 2((fc+2)*i+l) 2 2((fe+3)fi+l)

 K2(kh+2) \
 2(kh+l)

 K2((k+l)*i+2)
 2((k+l)*i+l)

 id
 2

 K2 (jk+2)h+2)
 2((k+2)*l+l)

 id
 2

 K2((k+3)h+2)
 2((fc+3)fe+l)

 K2(2kh+2)
 2(2kh+l) /  (k+3)x(fc+3)

 and

 (k+l)h+l

 \

 WT\ + 1 ^
 1 + i 1 j. i kh+l T 1 (k+l)Ji+l ^ 1

 1

 (2k-2)*i+l
 1

 (2fc-i)h+i

 +1

 +1

 1

 (2k-l)*i+l
 + 1

 1

 2k*s+l  + 1
 (k+3)x(k+3)
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 1016  Raul E. Curto & Jasang Yoon

 Note that det (} \ ) > 0, and let

 Mk(x,h)

 fi+T + 1

 ÏÏTT + 1

 W+î + 1

 1 L. 1 _J Li \
 (k-l)h+l 1 kh+1 T 1 1
 _J_ + 1 ! kh+1 ^ 1 (k+ l)h+l  + 1

 ! + 1 1 + i (k-l)h+l T 1 kh+1 T 1  + 1 /ol, ,\u , i + 1
 1

 \ kh+1  + 1
 1

 (k+l)h+l
 + 1

 (2k-2)h+l T x (2k-l)h+l

 (2k-l)h+1 + * 2kh+l + * / (k+l)x(k+l)

 Then we have

 Mk(K,h) - ^2 1 • ■ • 11
 =:Ak(x,h),

 (k+l)x(fc+l)

 1 1

 1 2

 -l
 1 1 • • • 11

 2 1 ■ • • 11
 (fc+l)x(fc+l)

 where X := 2( 1 - K2)/K2 and Ak (x, h) is as in Theorem 3.1. Thus, after we apply
 the Smul'jan Lemma (Lemma A.6) to Lk{K, h), we show that for 0 < K < 1 and
 h,£ > 1, Lk(K, h) > 0 <=> Ak(x, h) > 0. Therefore,

 (4.8) e&« W^j) I^(o,o, eèk^Lk(K,h)>0**Ak(x,h)>0.
 From Remark 4.6 (ii), for k,h > 2, we recall that

 (4.9) b(k, h) < b(k, 1) « F l-,kj = J3fc22(k++6k1}+22 < yj2 + ^k>2y

 By Theorem 4.2 (iii),

 (4.10) W(a,ß) e Sfc <=* 0 < K < F (k - 2).

 Now, Remark 4.3 and Theorem 3.4 imply that for h > 1 and k > 2,

 (4.11) detAfe(x, h) > 0 <=> Ak(x, h) > 0

 «=> x > b(k,h) <=> k <
 2 + b{k, h)

 Thus, by (4.8) and (4.11), we have that for h, £ > 1,

 (4.12)  <S * U « 0 < k < J2TWÜÖ (ki2h
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 When Is Hyponormality Invariant under Powers? 1017

 Therefore, by (4.8), (4.9), (4.10), (4.11), and (4.12), for £ > 1 and h, k > 2, we
 have

 e & but ww V2TTkiTy
 as desired. O

 Remark 4.9.
 (i) We know that for fc, h > 1,

 i/i 7 \ is k(k + 2)
 b(k,h)<b(k, 1) = (fc + 1)2,

 so that limsupk b(k, h) < 1. As an application of (4.12) we can establish that
 limfc b(k, h) exists. Recall that W(«,ß) G §k+] => W(a,ß) G §£, so that from (4.12)
 we see that for each fixed h > 1, b{k, h) must be a nondecreasing function of k,
 and therefore b(h) := limkb(k,h) =limsupkb(k,h) < 1.
 (ii) We believe it is nontrivial to show that for h > 1, limfc_oo b(k,h) = 1. We
 now provide an operator-theoretic proof of this fact. By (4.10) and (4.12), for

 k > 2, we have e ^ » 0 < k < V2/(2 + b(k,h)). Since b{k,h) is a
 nondecreasing function of k, and limt-co b(k, h) = b(h) < 1, we easily see that

 (4.13) <jj E fc. « 0 < * S

 We now let M\(0,0) denote the subspace of 3{(o,o) spanned by canonical or
 thonormal basis vectors with indices k = (k\, /C2) with k\ > 0 and /C2 > 1. We

 have W((ajjljw^o.o) = (I ® 5(1,1/+ ® J) G §00 with Berger measure /iJW,(o,o) :=
 [(1 — a2)So + a?8\\ x <5i. Thus, by Lemma A.3 and a direct calculation, we see
 that

 TArihi^) rz >-±v I fZ C\ ^(<x,ß) G £<» <=> I #(0,0) e Soo

 * Ix « 0 < k <
 i (/JjHi (0,0) ) V ^

 that is, for h,£ > 1,

 (4.14) W^jj G ôeo « 0 < k <

 From (4.13) and (4.14) we see at once that fc(h) = 1, as desired.

 <=> K
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 1018  Raul E. Curto & Jasang Yoon

 Example 4.10. As specific instances of Theorem 4.8, we have

 (i) e §2 and W(0ltß) £ §i)

 - 0.932505 ~-Jf3 < k S ^ . 0.938023;
 (ii) for h, £ > 1,

 ■Ah,t)
 Y(cx,ß) W(a'ß) e §1 and W{a,ß) £

 2 r—— 2h> + 7h2 + 8h + 3
 \ - < K < yjG(h) = 3.„_v.v,w ^ 2W + 7h2 + I0h + 4'

 (iii) for h, £ > 1,

 W$fßj e §2 and Wla,ß) <t §0

 2 2 8h4 + 24W + 26h2 + 12h + 2
 < K <

 3 ~\2 + b(2,h) V 8h4 + 36Ji3 + 39h2 + 18h+ 3'

 5. Hyponormal Invariance under Powers in the Class

 In this section we study a large class C of nontrivial pairs of commuting subnor

 mals such that W(a,ß) 6 Si H C => ^(aß) e Si (all h,£ > 1). The class C is a
 subclass of the class JA, and it consists of 2-variable weighted shifts whose weight
 diagrams are given in Figure 4.2. Motivated by the necessary condition for LPCS
 found in [CuYo2] (see Lemma A. 5), we observe that the Berger measure of the
 unilateral weighted shift Wx = shift(aoo> ^io> ■ ■ ■ ) admits a unique decomposition
 as

 = p50 + qôi + (1 - p - q)p,

 where 0 < P. 4 < 1, p+q < 1, and p a probability measure with p({0,1}) = 0. As
 a result, a 2-variable weighted shift W(a,ß) € C can be parameterized as W(aß) =
 <p,q,p,y,a), with 0 < a, y < 1. In Theorem 5.1 below we characterize the
 shifts W(a,ß) which remain hyponormal, 2-hyponormal or subnormal under the

 action (h, £) — (h,£ > 1).

 Theorem 5.1. LetW^ß) = (p,q,p,y,a> G C be the 2-variable weighted
 shift whose weight diagram is given in Figure 4.2. The following assertions hold:

 (i) Assume that 6 §i (allh,£ > 1). Then

 0 < y < mi(a,q) :=
 q( 1 - q)

 (a2-q)2 + q{ 1 - q)
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 (ii) Assume that w/Mj g §2 (allh,£ > 1). 77/f»

 A Hyponormality Invariant under Powers? 1019

 ■(W)
 («,£)

 y < m2(a,q) := min

 (iii) WW) G §oc « y < moo (a, p, t?) := min { ^p/(l - a2), yjq/a2}.
 We need an auxiliary lemma, of independent interest.

 Lemma 5.2. Let Wx be a subnormal unilateral weighted shift, with Berger
 measure = pöo + qö\ + [1 - (p + q) ]p, and recall that yn is the n-th moment
 of %x; that is, yn = f sn d%x(s) (n > 0). Then limn-oo Yn = q

 Proof. For n > 0, let fn{s) := sn (0 < 5 < 1). Consider the sequence of
 nonnegative functions {fn}n>o- Clearly fn \ Xji} pointwise, and \fn\ < 1 (all
 n > 0). By the Lebesgue Dominated Convergence Theorem, we have

 lim \fn(s)dp(s)= f X{1} dp(s) = p({l}) = 0 n— o° j j

 (recall that p({0} U {1}) = 0). Thus

 lim yn = lim [5ndÇx(s) = lim f/n(s)dÇx(s) n—oo n—oo J n^oo J

 = q +[l - (p + q)] ■ lim fn(s)dp(s) = q,
 n-oo J

 as desired. O

 Proof of Theorem 5-1. For fixed h, £ > 1, 0 < m < h - I and 0 < n <
 £ - 1, we recall that Jf(m>W) = MZj=o{e(hi+m,tj+n) : h J > 1} and £2(I2+) =

 ©m=0 ©n=0 3f(m,n) ■ For Wfa'ßj |^f(00), we refer to the weight diagram in Figure
 4.3. In the decomposition = pö o + q<5i + [1 - (p + q)]p, we may assume,
 without loss of generality, that q < 1 ; for, the condition q = 1 and hyponormality
 immediately imply the subnormality of W(aiß).

 Given h,£ > 1, we consider the moments associated with W^'^j of order k;
 that is,

 (5-1) ».<<:»> H

 1 if fei = 0 and k.2 = 0,

 yk,h(WW)) if fei 2: 1 and fe2 = 0,

 .y2 if k\ =0 and > 1,
 a2y2 if ki > 1 and k.2> 1.

 (i) From Lemma A.4, we observe that for h,£ > 1, W^'^j ^ = (/® Sa, U+ ® J) E

 §00 and e $00. Thus, by Lemma A.2, to verify the hyponormality of
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 1020 Raul E. Curto & Jasang Yoon

 wfa'ß), it suffices to apply the Six-point Test (Lemma A. 1) to W^'ßj at k = (0,0).
 We then have

 M(o,o) (D(<$) =
 < 1 Yh(W{a,ß)) y2 \
 yh(W(a,ß)) Y2h(W(atß)) a2y2

 V y2  a2y2 y2 J

 ( 1
 => H :

 y2 \
 q q a2y2

 \y2 a2y2 y2 ]

 >0

 > 0 (ail h > 1)

 (by Lemma 5.2)

 <» 0 < y < mi(a,q) :=
 q( 1 - q)

 (a2 - q)2 + q(l - q)'

 as desired. Observe that the function mi satisfies the following properties:

 (ii) 0 < mi{a,q) < 1 on the square (0,1] X (0,1);
 02) lim(j-.o+ wU (#, q) = 0 = limait m\(a, q) = 0 (for all a);
 03) Yima~o+ mi(a,q) = Jl - q (for all q);
 04) m\(l,q) = Jq (for all q); and
 05) m\(a,q) = 1 « q = a2.

 Thus near the edges of the square the hyponormality of for all h and £
 forces y to be small, while along the parabola q = a2 the values of y can reach 1.

 (ii) From Lemmas A.4 and A.2, and the fact that \Ml, e to
 verify the 2-hyponormality of (h,£ > 1) it suffices to apply the 15-point

 Test to w'a'ß] at k = (0,0). By direct computation (i.e., interchanging rows and
 columns, and discarding some redundant rows and columns), it is straightforward

 to observe that the positivity of the 10x10 matrix M(o,o) (2) (Wf^) is determined
 by that of the following 5x5 matrix:

 <( 1 y>t(wW))
 1 yh(.W(a,ß)) Y2h(W(a,ß)),

 P(h):=

 y2 y2h(W{0l,ß)) a2y 2V2\\

 a2y2 ysh(W{a,ß)) a2y 2^,2

 yz  a2y2  \ (y2
 y2h(W(a,ß)) y3h(^(<x,ß))

 w  a2y2  a2y2  )

 a2y2

 a2y2 y4h(W(a,ß)) a2y

 a2y2\
 2 * f2

 \a2y2  a2y2  a2y2j
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 When Is Hyponormality Invariant under Powers?  1021

 Thus the assumption W^'fj G §2 (all h,£ > 1) readily implies that

 P = P(c

 1 A a\
 a)

 ( y2 a2y2\
 q q

 \\a2y2 a2y2J

 ( y2 q a2y2^ ^
 ya2y2 q a2y2j

 ( y2 a2y2 a2y2\
 a2y2 q a2y2
 \a2y2 a2y2 a2y2)

 >0,

 using Lemma 5.2. Since ( ^ ^ ) is positive and invertible, we can apply the Smul'jan
 Lemma (Lemma A. 6) to P:

 Iy2{q( 1 - (1 - 2a2)y2) - q2 - a4y2) Q 2 _ a4y4\

 P > 0 <»

 V

 (1 - q)q
 0

 2 2 a4y4 azy1 —
 a

 0  0
 a

 4-.,4
 2 .,,2 a y 0 a2y2 -

 > 0

 1 )

 (1 - a2)y2 < 1 - q
 -, -, <=> y < mm -j
 a2y2 <q 1

 1 -q
 1 - a21 V a2 '

 Therefore, e §2 (all h,£) => y < min|^(l -q)/( 1 -a2), yjq/a2}, as

 desired. (The reader will notice that min - q)/(l - a2), yj.q/a2] < 1; for,
 if q > a2 then 1 - q < 1 - a2)

 (iii) From Figure 4.2, we observe that >\m is subnormal with Berger measure

 Um = ((1 - a2)ô0 + a2ôi) x <5i.

 Note that || = 1 and = (1 - a2)ö0 + a2ö\. We now apply
 Lemma A.3 to the 2-variable weighted shift W(a,ß) and to the subspace M. It
 follows that the necessary and sufficient condition for W(a<ß) to be subnormal is

 y
 LHvm)

 (^)fxt <%x = pöo + qöi + [\-{p + q)]p,

 or equivalently,

 (1 - a2)y2 < p,
 a2y2 < q.

 Thus we have the desired result. The proof of the theorem is now complete. O
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 1022  Raul E. Curto & Jasang Yoon

 Remark 5.3.

 (i) By a direct calculation, we note that

 2 1 ~ 1
 az < q <=> - <

 q(l - q)
 1 -a2 (a2 - q)2 + q(\ - q)

 and

 2 1
 a > q <=> —r <

 a1

 q{l - q)
 (a2 -q)2 + q(l - q)'

 Thus it is always true that

 mm
 1 - a2

 4(1 -q)
 (a2 - q)2 + q( 1 - q)'

 (ii) For h > 2 and k,£ > 1, the necessary conditions in (i) and (ii) in Theorem
 5.1 are not sufficient for power invariance. To show this, we let W(a,ß) denote
 the 2-variable weighted shift whose weight diagram is given in Figure 4.2, with
 a = Vl/2 and Wx as in (4.2). Furthermore, for given small s > 0 and h > 1, we
 let

 (5.2)  K : =

 2 + b(k,h)

 if k = 1,

 + e(h) ifk>2,

 provided that ^2/(2 + b{k, h)) + £(h) < 1 (since, for k,h > 1, b(k,h) > 0,
 limfc^oo b{k, h) = 1 and lim^-oo b(k, h) = 0, it is possible to choose K given in

 (5.2)). By Theorem 4.8, we note that for h > 2, k
 (k = 1,2). Observe that

 1,2 and £ > f

 (5.3)
 0 < K <

 q( 1 - q)
 <=> k < 1  if k = 1,

 a4 + q - 2a2q
 {a2K2 < q < ( 1 - k2) + a2K2} <=> k < 1 if k > 2.

 If we choose K given in (5.2), then (5.3) is always true. Thus the 2-variable
 weighted shift W(Wiß) given in Figure 4.2 satisfies the necessary conditions in The

 orem 5.1, but for h > 2 and £ > 1, $ §i.

 Throughout this section, we have focused on the question of hyponormality
 for shifts in the class J4. We now turn our attention to 2-hyponormality, in the

 hope of detecting to what extent one can expect invariance under powers in this
 class. Along the way we will discover that there is a large subclass, Si, for which
 things work extremely well. We will show this in Section 6.
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 When Is Hyponormality Invariant under Powers? 1023

 As we saw in Section 4, for a general operator T on Hilbert space and for all
 m > 2, we know that the k-hyponormality of Tm (k > 2) need not imply the
 k-hyponormality of T. But it is still unknown whether the k-hyponormality of T
 (k > 2) implies the k-hyponormality of Tm (m > 2), even when T is a weighted
 shift (see Problem 1.1). We now show that there exists a subclass of 2-variable
 weighted shifts W(a,ß) S JA for which the 2-hyponormality of W(a,ß) does imply

 the 2-hyponormality of W^ß).
 The motivation behind the construction in Theorem 5.4 comes from Figure

 4.1. Indeed, inspection of the values of a that illustrate the gap between the
 hyponormality of W(a,ß) and that of its powers suggests that something similar
 may work for k-hyponormality. We saw in Theorem 4.8 that a value smaller than

 0-int (namely, a = vT/2) did the job in separating the k-hyponormality of the
 powers from the k-hyponormality of the pair. For the subclass below, however, we
 do see a propagation effect; that is, the (2,1) power is 2-hyponormal whenever
 the original weighted shift is.

 Theorem 5.4. Let W(a<ß) = (T\, Tj) be the 2-variable weighted shift whose
 weight diagram is given in Figure 4.2 {where 0 < a < V1/2 and Wx is as in (4.2)).
 Then

 (i) WW) G §0;

 (ii) »W> e & « k S Ma) := V i57-360^6+2144^:
 1 (21)/ \ I 225(15 - 28a2)

 0«) "W, e 82 » k < h2 ■ (a) ^6238 - 15015a2 + 6300a4'

 (iv) Ma) < h22'"(a) for a € |'ü,

 Proof, (i) This follows easily once we know that Wx is subnormal.

 (ii) This is part (iii) of Theorem 4.2.

 (iii) Recall that for n = 0,1, = Viloie(2i+n,j) : J = 0,1,2,...} and H2(l\) =
 Mo © J-[\. Note that

 <J> = <Tf, W s w™ I« <;» U,.

 By Lemma A.4, we observe that - (^«(2:1) © U ® U+), T*21^) is sub
 normal, because WK(2-.\) = shift(XiX2>X3X4,... ) has an atom at {1}. Hence

 W(a!ß) e 02 if and only if \x0 := {Tf,T2)\tf0 e §2. Let IM](0) (respec
 tively, JVi (0)) be the subspace of J-Co spanned by canonical orthonormal basis
 vectors associated to indices k = (ki, k2) with ki > 0 and k2 > 1 (respec

 tively, k\ > 1 and k2 > 0). By Lemma A.4, we note that on -^i(O)
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 (respectively, ^Vi (0)) is subnormal, because shift(X2X3, X4X5,... ) (respectively,
 shift(y, 1,1... )) has an atom at {1}. Thus, by Lemma A.2, to verify the 2

 {1 1 \ — ( 1 1 \

 hyponormality of W(o:'ß^ it suffices to apply the 15-point Test to W(a ß)\rtn at
 k = (0,0). Note that the moments associated with (T2, T2) Iy{0 of order k are

 yk(W((«jj) \tf0) -

 k,

 J~][ \X
 i= 1
 .A

 2(i-l)x2i-l

 a2K2

 if fei =0 and &2 = 0,

 if k\ > 1 and k.2 = 0,

 if fci =0 and k,2 > 1,

 if k\ > 1 and k.2 ^ 1.

 Since the third and sixth rows of M(o,o)(2)|jf0 are identical, if we multiply by
 1 /y2 and then apply row and column operations to M(o,o)(2)|^f0, then we have
 Af(o,o) (2) |^f0 > 0 <» M(0,0) ^ 0, where

 M(ofi)

 ^ 4 ,2 - - a
 7
 5

 — — a
 7 9

 V  aA

 (I
 3

 V

 aL

 3

 5

 (2 2
 3 a
 3 2
 5 a
 1  az

 \ t± aA

 aA aL a'  J

 yi

 tr a'

 We now apply the Nested Determinant Test to M(o,o); let dp denote the deter
 minant of the p-by-p principal minor consisting of the first p rows and columns

 of M(o,o)- Thus, d\ = 1/k2 > 0 and d,2 = (27 - 20k2)/{45k2). Since k < 1,
 it follows easily that d-2 > 0. Now, d3 = (27 - 45a4 - 47k2 + 60a2k2)/(45k2),

 and we conclude that d$ > 0 if K < K3 := 3 ^/(3 - 5a4)/(47 - 60a2). Simi
 larly, d4 = (3375 - 6300a4 - 6238k2 + 6510a2K2 + 2205a4k2)/(496125k2),

 and d4 > 0 whenever K < K4 := 15 ^(15 - 28a4)/(6238 - 6510a2 - 2205a4).
 Finally,

 d$
 3375a2 - 9675a4 + 6300a6 - 6238a2k2

 496125k2

 21253a4k2 - 21315a6K2 + 6300a8K2
 496125k2

 and in this case we can guarantee the nonnegativity of if

 k < K5:= 15
 15 - 43a2 + 28a4

 6238 - 21253a2 + 21315a4 - 6300a6 '
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 When Is Hyponormality Invariant under Powers? 1025

 Visual inspection of the graphs of K3, K4, K5, and hj on the common interval

 [0, Vl/2] reveals that I12 < < K4 < K3. We thus conclude that W(2' ß) 1S
 2-hyponormal if and only if K < K$ = h^2'1^, as desired. □

 Corollary 5.5. LetW(a,ß) be as in Theorem 5-4, let a € (0, *JT]2], and assume

 that W^ß) E Then e §2

 Proof. This follows straightforward from Theorem 5.4 (iv). O

 Remark 5.6. Looking at Theorem 5.4, it seems natural to conjecture that a
 similar result should work for k-hyponormality (k > 2). That is, perhaps one has

 W(«,0) e §k => ^(«'^) whenever 0 < a < ^JT]2.

 6. The Class Si Is Invariant under All Powers

 In Section 5 we dealt with 2-variable weighted shifts that have the form W(a£) =
 (P,Q., p,y,a), and we established some results about hyponormality, 2-hyponor
 mality and subnormality. We now restrict our attention to the case p = 0, and
 assume that W(«,0) E Ôi; that is, W(«,0) E Si. Under this assumption, we will
 now sharpen the hyponormality results. Recall that, without loss of generality,
 every 2-variable weighted shift W^ß) E Si is completely determined by the three
 parameters X := ot(o,o)» y '•= ß(0,0) and a := <X(o,i); cf. Figure 6.1. As before, we
 shall denote such a shift by (x,y, a); of course, we always assume 0 < x, y, a < 1,
 and moreover ay < X (since we need to ensure that shift(ß 10, ßn, ß\i, ■ ■ ■ ) =
 shift(a>7x, 1,1,...) is subnormal).

 First, we wish to obtain a canonical representation for the powers (x, y, a){h'^
 as an orthogonal direct sum of 2-variable weighted shifts in Si. In what fol
 lows, we abbreviate the orthogonal direct sums of m copies of a shift (x,y,a) by
 m ■ (x,y,a).

 Proposition 6.1. Let(x,y,a) E Si and let h, £ > 1. Then

 (.x,y,a}{h'f) = (x,y,a) © (h- 1) •

 ® (£-!)■ (a, I,a) e (h- \)(4-\) ■ (1,1,1).

 Proof. We decompose the space £2(12+) as the orthogonal direct sum of h£
 subspaces J-C(m,n), each isometrically isomorphic to £2(Z2+)-, namely 3-C(m,n) ■=

 yfj=o{e(hi+m,£j+n)} (0 < m < h. - 1, 0 < n <■# - 1). This particular de
 composition allows us to write the power (x,y,a}(h^] as the orthogonal direct

 sum ©o<m<h-i,o<n<^-i(*.y.a><M)ljW). We will now identify each of the
 summands {x,y,a)(h'^\j{(m<n) (0 < m < h - 1, 0 < n < -6 - 1).
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 (0,3)

 (0,2)

 T2

 (0,1)

 \ay_  \äX

 (0,0) (1,0) (2,0) (3,0)
 __

 (0,3)

 T2
 (0,2)

 (0,1)

 ax  ax

 (0,0) (1,0) (2,0) (3,0)
 __

 FIGURE 6.1. Weight diagram of a generic 2-variable weighted
 shift in Sj.

 P2

 T2

 P2

 h

 «0

 Pi

 Mo
 «0

 «1

 P2

 h

 Vfi n
 ao«i

 «2

 (0,0) (1,0) (2,0) (3,0)

 P2  P2  PI

 t2

 101  Vi

 Mo
 «0

 b2e o
 ao«i

 «o  «l  «2

 (0,0) (1,0) (2,0) (3,0)

 Ti

 FIGURE 6.2. Weight diagram of the 2-variable weighted shift
 in Lemma A.A.
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 Case 1: m = 0, n = 0. Direct inspection of the weight families a and ß shows
 that

 (x,y,a)(Ki)e(hUij) = {x,y,a)e(huij),
 and therefore

 (x,y,a)iK£) s (x.y.a).

 Case2: m > 0, n = 0. In this case the generic basis vector of 3~Cim,o) is £(hi+m,tj)>

 so that {x,y,a)(h't)e(hi+m^j) = {l,aylx,l)eihi+mjj). It follows that

 (x,y,a)(h>f)\M{mfi} =

 Case 3: m = 0, n > 0. In this case the generic basis vector of 3~f(o,n) is ^<hi,£j+n)y

 and therefore (x,y,a)^h'^e^hijj+n) = (a>l<a)e(hi,fj+n)- It follows that

 {x,y,a)(h't] |^(on) s <a,l,a>.

 Case 4: m > 0, n > 0. Since 3-C(min) £ M n !N, and the core of W(Ulß) is trivial,
 it is clear that all relevant weights are equal to 1, so

 {x,y,(l}^ ' ^&(hi+m,tj+n) ~ (1> 1» l)&(hi+m,£j+n)>
 and therefore

 {x,y,a)(h,t) \y{(mn) = <1,1,1).

 The proof is complete. O

 We now recall the characterization of hyponormality, 2-hyponormality and
 subnormality for 2-variable weighted shifts in Si found in [CLY4, Proofs of The
 orems 3.1 and 3.3]. Recall that Si = S n §i, S2 = S n §2 and SM = S n §«,.

 Theorem 6.2 (cf. [CLY4]). Let {x, y, a) G Si. Then
 (i) (x,y,a) g §2 f2(x,y,a) := (1 -x2) ~y2(\ - a2) > 0;
 (ii) (x,y,a) G S«, <=> fi(x,y,a) > 0.
 Corollary 6.3. Let (x,y,a) G Si. The following statements are equivalent:
 (i) (xj,a)e§2;
 (ii) (x,y,a) g £00;
 (iii) y < V(1 -X2)/{1 - a2).
 Corollary 6.4. Let 0 < a < 1. Then (a, l, a) G §«,.

 Proof. We apply Corollary 6.3 with X := a and y := 1. Since condition (iii)
 is satisfied, it follows that (a, 1, a) G §00. O

 Lemma 6.5. LetO < y < 1. Then (\,y, 1) G §«,.
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 Proof. Here T\ s / ® U+ and T2 s Sy ® I, so {\,y, 1) = W(a,ß) is clearly
 subnormal. O

 Theorem 6.6. Let (x,y,a) E S\. The following statements are equivalent:

 (i) {x,y,a)(h't] G §iforallh,£ > 1;
 (ii) {x, y, G §1 for some ho, £0 > 1.

 Proof It is clearly sufficient to establish (ii) => (i). Assume therefore that

 {x,y, a)^'^ G §1 for some ho,£o à; 1. By Proposition 6.1, we know that

 (.x,y,a)ihoM s (x,y,a) e (h- 1) •

 (£-!)■ (a, l,a> ®(h- l)(£ - 1) ■ (1,1,1).

 An application of Corollary 6.4 and Lemma 6.5 shows that (x, y, a) G §1. Now,
 let h,£ > 1 be arbitrary. A new application of Proposition 6.1 (this time using h
 and £) shows that {x, y, a)(h'^ G §1. The proof is complete. O

 Corollary 6.7. Let (x,y,a) G S], and let k > 2 be given. The following
 statements are equivalent:

 (i) For some ho, £0 ^ 1, (x, y, a)(,loA) g §k.
 (ii) Forallh,£ > \, (x,y,a)ih-f) G §fc.
 (iii) For some ho, £0 ^ 1» {x,y,a)l'ho'^ G §00.
 (iv) Forallh,£ > 1, (x,y,a)(h^ G §«>.

 Proof. The equivalence follows straightforward from Proposition 6.1 and the
 proof of Theorem 6.6. O

 We conclude this section with a problem of independent interest. Recall that
 -3- = {W(«,ß) G TC : the Berger measure of c(W(a<ß)) is 1-atomic}.

 Problem 6.8. Is Si the largest class in JA for which the implication

 w(a°if)0) e §2 for some h0Jo > 1 => W(a,ß) G §0

 holds?

 Appendix A.

 For the readers convenience, in this section we gather several well-known auxiliary
 results which are needed for the proofs of the main results in this article. First,
 to detect hyponormality for 2-variable weighted shifts we use a simple criterion
 involving a base point k in T\ and its five neighboring points in k + Z+ at path
 distance at most 2.
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 Lemma A.1 (Six-point Test [Cur, Theorem 6.1]). Let W(a,ß) = (T\, T2) be
 a 2-variable weighted shift, with weight sequences a. and ß. Then

 iw?a,ß),w{<x,ß)]> 0

 - «»..*><» ■- (Kk±;-1& "kit-Tk) ~0
 (for all k € 2+).

 Next, we present an analogous criterion for the k-hyponormality of 2-variable
 weighted shifts.

 Lemma A.2 ([CLY1, Theorem 2.4]). LetW(a$) = (Ti.Tj) be a 2-variable
 weighted shift with weight sequences a and ß. The following statements are equivalent:

 (0 W(a,ß) is k-hyponormal;
 (ii) Mk(k) := (yk+(n,m)+(p,ci))o<n+m<k — 0 for all k G 7L\.

 0<p+q<k

 In particular, a commuting pair {T\, T2) is 2-hyponormal if and only if the
 5-tuple (T],T2, Tf, T1T2, T%) is hyponormal. For 2-variable weighted shifts, this
 is equivalent to the condition (Fifteen-point Test)

 Mk(2) := (yk+(n,m)+(p,tj))o<n+m<2 ^ 0 (all k G Z+);
 0<p+q<2

 that is,

 Mk( 2)

 ^ "yk\,lc2 yk\-\-l,k2 yki,k2+l yk\+2,k2 yfei+l(fe2^*l ^
 yki + \,k.2 "yki+2,k.2 yfci + l,k2 + l yrk\+3,k.2 Yki+2,k2+l yfci + l,k2+2

 yki,k2+l yfci+l,k2+l yki,k2+2 Yki+2,k2+]- Yk\ + l,k2+2 Yki,k2+3 ^ q
 Yk\+2,k2 "yk\+3,k2 Yk\ +2,^2 + 1 yfci+4,k2 y&i +3,^2 + 1 y&i+2,^2+2

 yfci + l,k2 + l yki+2,^2+1 yki + l»k2+2 yki+3,k2 + l yki+2,k2+2 yki + l,k2+3

 V Yk\,k2+2 yki + l,k2+2 yki,k2+3 yki+2,k2+2 yki + l,k2+3 yki,k2+4 /

 This takes into account a base point k and its 14 neighbors at path distance at
 most 4.

 To check subnormality of 2-variable weighted shifts, we introduce some defi
 nitions:

 (i) Let Iu and v be two positive measures on R+. We say that (J < v on
 X := R+, if ju(£) < v(£) for all Borel subset E £ R+; equivalently, /J < v
 if and only if J /d/J < J/dv for all / S C(X) such that / > Oon l+.

 (ii) Let ^ be a probability measure on X x Y, and assume that 1 /tel1 (ji).
 The extremal measure ^ext (which is also a probability measure) on X x 7
 is given by

 djUext(5,0 := (1 7ÎÎT77ÏÏ d/i(i,t)
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 1030  Raul E. Curto & Jasang Yoon

 (iii) Given a measure ^ on X X Y, the marginal measure nx is given by jJx :=
 IJ o 1, where Tlx : X X Y — X is the canonical projection onto X. Thus
 HX{E) = n{E X Y), for every E S X.

 Then we have the following result:

 Lemma A.3 {Subnormal Backward Extension [CuYol, Proposition 3.10]).
 Let W(citß) be a 2-variable weighted shift, and assume that W(a,ß) \:m{ is subnormal
 with associated measure ijm, and that Wo := shift(aoo. cvio, ■ ■ ■ ) is subnormal with

 associated measure Ço- Then W(ot,ß) is subnormal if and only if

 (i) l/tGL1^,);
 (ii) ßl0 < (lll/tilz.!*^))-1;
 (iii) ßoolll/flll'O^,)^,)^ * So

 Moreover, ifßooU/tWm^) = 1. then (pMi )fxt = 5o- In the case when W{a,ß) is
 subnormal, the Berger measure /J ofW(K,ß) is given by

 d n(s,t) = ßl0  d (Vm,) ext (s,t)

 dÇo(s) - ßoo
 L' (Umi )

 d(^Mi) ext  (5) ] döo(t).

 Lemma A.4 ([Yoon, Theorem 2.8]). Let W(a<ß) s §o be a 2-variable weighted
 shift whose weight diagram is given in Figure 6.2, so that

 WW) I Mi = (/ ® shift (/? i, j?2,...),[/+ ®bl).

 Assume that |||| = b > 0, where Wa = shift(c«o, «i, «2. • • ■ )• Then W^ß) e §i
 if and only if W(a,ß) e £°° if and only if the Berger measure fJa ofWa has an atom
 at b2.

 Given a subnormal 2-variable weighted shift W(a,ß) with Berger measure /J, we
 let Wau) (j > 0) (respectively, Wßw (i > 0)) denote the associated j-th horizontal
 (respectively, i-th vertical) slice of W(a,ß). Clearly, Wa(j) (respectively, Wß<«) is
 subnormal, and we let (respectively, rji) denote its Berger measure. We proved
 in [CuYo2] that

 dÇj(s) := JVd<Mt)}dÇ(s),

 where djU(s,t) = d$s(t) d%(s) is the canonical disintegration of by verti
 cal slices (respectively, dr]i(t) = {( 1 /y/o) / s! dYt(5)} dr]{t), where diu{s,t) =
 dYt(s) dr](t) is the canonical disintegration of /J by horizontal slices).

 Lemma A.5 ([CuYo2, Theorem 3.3]). Let n, Çy and r)i be as above. If
 W'ia.ß) G Sc«, then for every i,j > 0 we have

 (A.1) Çj+i <sc and rii+i « Hi
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 When Is Hyponormality Invariant under Powers? 1031

 Lemma A.6 {cf. [Smu; CuFi, Proposition 2.2]). Let M = [b* c) be a2x2
 operator matrix, where A and C are square matrices and B is a rectangular matrix.
 Then

 A > 0,

 M > 0 there exists VKsuch that j B = AW,
 C > W*AW.
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