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The long-wave–short-wave (LWSW) model of Newell type is an integrable model describing the interaction
between the gravity wave (long wave) and the capillary wave (short wave) for the surface wave of deep water
under certain resonance conditions. In the present paper, we are concerned with rogue-wave solutions to the
LWSW model of Newell type. By combining the Hirota’s bilinear method and the KP hierarchy reduction, we
construct its general rational solution expressed by the determinant. It is found that the fundamental rogue wave
for the short wave can be classified into three different patterns: bright, intermediate, and dark states, whereas
the one for the long wave is always a bright state. The higher-order rogue wave corresponds to the superposition
of fundamental ones. The modulation instability analysis shows that the condition of the baseband modulation
instability where an unstable continuous-wave background corresponds to perturbations with infinitesimally
small frequencies, coincides with the condition for the existence of rogue-wave solutions.

DOI: 10.1103/PhysRevE.100.052216

I. INTRODUCTION

Rogue waves (RWs) or freak waves are a rare phenomenon
where large amplitudes appear from the background with
instability and unpredictability. Such extreme waves can be
observed in various different contexts such as oceanogra-
phy [1], hydrodynamic [2,3], Bose-Einstein condensate [4],
plasma [5], and nonlinear optics [2,6,7]. Mathematically,
a Peregrine soliton (namely, the first-order rational soliton
characterized by a second-order polynomial of temporal and
spatial variables) of nonlinear Schrödinger (NLS) equation
serves as a prototype of RW, in which its structure is localized
in temporal-spatial distribution plane and its maximum am-
plitude attains three times the background [8–10]. Since the
higher-order RW was excited experimentally in wave tanks
[11,12], a hierarchy of higher-order analytic RW solutions
which indicate the superposition of elementary RW have
been found in integrable NLS equation by using different
techniques [13–18]. In contrast to the scalar system, recent
studies have shown that multicomponent coupled systems
may allow several novel patterns of RW such as dark and
four-petaled types [19–33]. Indeed, in order to consider dif-
ferent spectral peaks, modes, and polarization states, various
physical phenomena usually need to be described by the
nonlinear models with two or more components. These mul-
ticomponent systems are of physical importance in different
branches of science, e.g., hydrodynamics, nonlinear optics,
and plasma physics. Regarding the RWs in multicomponent
systems, theoretical investigations have been developed in
many integrable systems such as the vector NLS equations

*junchaochen@aliyun.com

[19–25], the three-wave resonant interaction system [26,27],
the self-induced transparency models [28], the long-wave–
short-wave (LWSW) resonance [29–31], and the AB system
[32,33]. Apart from the integrable situations, it has recently
been shown that vector RWs can be excited in nonintegrable
multicomponent systems arising from a quadratic medium
[34]. More recently, the existence of multicomponent first-
and second-order RWs (dark-dark type) have been experimen-
tally demonstrated in a randomly birefringent telecom fiber
[35,36].

Modulation instability (MI) is referred to as a basic process
that the growth of perturbations emerges on an unstable
continuous wave background [37]. In the explanation of the
generation mechanism for RW, MI has been found to be
closely linked with the RW excitation in nonlinear dispersive
systems [35,38–41]. It has been shown that the RW modeled
by the rational solution only exists in the subset of parameters
where MI is present if and only if the unstable sideband
spectrum also contains continuous-wave or zero-frequency
perturbations as a limiting case [38,39]. In particular, it is
known that RWs can only exist in focusing NLS equations;
however, recent studies have shown that RWs can occur in
coupled NLS equations of defocusing-defocusig type [38].
Besides, the evidence of passband and baseband polarization
MIs in the defocusing Manakov system has been provided
experimentally in optical fiber [35,42]. Therefore, we should
study the vector RWs and their generation mechanism in
various multicomponent systems both physically and math-
ematically.

In the 1970s, Benney first investigated in detail the inter-
action between the gravity wave (LW) and the capillary wave
(SW) for the surface wave of deep water under certain reso-
nance conditions [43] and then developed a general theory for
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interactions between long and short waves [44]. Particularly,
under the resonance condition, namely, the phase velocity
of the LW is equal to the group velocity of the SW, energy
exchange can be anticipated and the resonance interaction
occurs [44]. Such resonance processes may occur in a variety
of physical settings such as capillary-gravity waves, internal-
surface waves, and short and long gravity waves on fluids
of finite depth and the breakdown of laminar flow [44–47].
Benney proposed several coupled partial differential equa-
tions corresponding to various limiting situations connected
with the relative magnitudes of dimensionless parameters
which are ratios of wave amplitudes and length scales. Among
which, there are two integrable cases: One is the Yajima-
Oikawa system [45], and the other one is the Newell model
[46,47]. Indeed, in the LWSW situation, the Yajima-Oikawa
system is analogous to the NLS equation, whereas the Newell
model is analogous to the derivative nonlinear Schrödinger
(DNLS) equation [48].

So far, most of the studies for RW solutions are restricted
to the NLS-type equations. In view of the mechanism for the
formulation of RW and the actual situation for the occurrence
of RW, i.e., the coexistence of gravity and capillary waves,
it is imperative to study RWs in LWSW models in order to
elucidate the formulation and interaction of rogue waves in
more physical situations. Even though the RW solution for
the LWSW model of Yajima-Oikawa type have been studied
in the literature [29–31], as far as we are concerned, no RW
solution is reported for the LWSW model of Newell type.
Thus, it is worthwhile to investigate its RW solution from both
the physical and mathematical points of view, which amounts
to the motivation of the present work.

In the present paper, we first aim to construct the general
RWs of the LWSW model of Newell type. Based on the
general RWs in determinant form, we attempt to investigate
the dynamics of first- and higher-order RWs and further to
discuss the mechanism for the RW excitation through the
MI analysis. The rest of this paper is organized as follows.
In Sec. II, general higher-order rational solutions in terms
of determinants with algebraic elements are derived via the
Hirota’s bilinear method and the KP hierarchy reduction. In
Sec. III, local structures of RWs are analyzed and the results
show that the SW possesses bright, intermediate, and dark
patterns, whereas the LW always exhibits a bright state in
the fundamental case. The higher-order RWs indicate the
superposition of fundamental ones and they do not support
interaction behaviors among different types of RW. In Sec. IV,
MI analysis is carried out to find that the condition of the
baseband MI coincides with the one for the existence of RW
solutions. The present paper is concluded in Sec. V.

II. HIGH-ORDER RATIONAL SOLUTION
IN DETERMINANT FORM

Based on Benney’s theory [44] for the interaction between
SW and LW, the integrable LWSW model of Newell type can
be given by its gauge equivalent form [46–48]

iSt + Sxx − 2iSxL = 0, (1)

Lt = −2σ (|S|2)x, (2)

where σ = ±1, S = S(x, t ) represents the envelope of SW and
L = L(x, t ) denotes the amplitude of LW. The general initial
value problem for the model [(1) and (2)] was studied by
Newell via the inverse scattering transform [47]. In fact, the
spectral problem of such an integrable system corresponds to a
deep reduction of three-wave resonance interaction [49]. The
complete integrability of the LWSW model [(1) and (2)] was
tested by Painlevé analysis [50]. Its Darboux transformation
and the closed multisoliton solution formula have been con-
structed in Refs. [49,51]. The algebrogeometric and cusp so-
lutions for this coupled system were provided in Refs. [52,53].
The different gauge equivalent versions of the LWSW model
(1) and (2) were clarified in analogy with the DNLS equation,
and their bright, dark soliton, and breather solutions with
the uniform determinant form were derived via the Hirota’s
bilinear method [48].

By the dependent variable transformation

S = ρeiα(x−αt ) g

f ∗ , L = i
∂

∂x
ln

f ∗

f
, (3)

where ρ and α are real parameters, the LWSW model (1) and
(2) can be cast into the bilinear form(

iDt + 2iαDx + D2
x

)
g · f = 0, (4)

iDt f · f ∗ = D2
x f · f ∗, (5)

iDt f · f ∗ = −2σρ2(| f |2 − |g|2), (6)

where f and g are complex variables, ∗ denotes the complex
conjugation, and D is Hirota’s bilinear differential operator.
Then we present the general N th-order rational solutions
in terms of the determinants of the LWSW model (1) and
(2) in Theorem 1. This theorem and its proof are given in
Appendix A.

III. DYNAMICS OF ROGUE-WAVE SOLUTIONS

A. Fundamental rogue wave

According to Theorem 1, in order to obtain the first-order
RW, we need to take N = 1 in Eqs. (A1)–(A5). For simplicity,
we set a(0)

0 = 1 and a(0)
1 = 0, and then the functions f and g

are given by

f = μ0[(x̂ − ζ0)(x̂∗ + ζ0) + |ζ0|2], (7)

g = μ0ϑ0[(x̂ − ζ0 + ζ̂0)(x̂∗ + ζ0 − ζ̂ ∗
0 ) + |ζ0|2], (8)

with x̂ = ζ (x + 2iζ t ), ζ0 = ζ

ζ+ζ ∗ , ζ̂0 = ζ

ζ−iα , ϑ0 = − ζ−iα
ζ ∗+iα ,

and μ0 = |ζ−iα|2
iζ (ζ+ζ ∗ ) e

(ζ+ζ ∗ )[x−i(ζ−ζ ∗ )t].
Then the fundamental RW solution for the LWSW model

(1) and (2) reads

S = ρϑ0eiα(x−αt )

[
1 − ζ̂ ∗

0 (x̂ − ζ0) − ζ0(x̂∗ + ζ̂0) + |ζ̂0|2
(x̂ − ζ0)(x̂∗ + ζ0) + |ζ0|2

]
,

(9)

L = i(ζ ∗x̂2 − ζ x̂∗2) − i(ζ0 − ζ ∗
0 )(ζ ∗x̂ + ζ x̂∗)

|(x̂ − ζ0)(x̂∗ + ζ0) + |ζ0|2|2 . (10)

052216-2
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FIG. 1. First-order RW for SW in the LWSW model (1) and
(2) with the parameters ρ = −σ = 1 and (a) bright state α = 1.5;
(b) intermediate state α = 2.1 and (c) dark state α = 2.3.

Furthermore, the modular square of the SW component
|S|2 possesses extrema points: (x1, t1), (x±

2 , t±
2 ), and (x±

3 , t±
3 )

which are given by (B2)–(B4) in Appendix B. Note that
(x±

2 , t±
2 ) are two characteristic points, or zero-amplitude

points, at which the amplitudes are zeros [29]. Through the
local analysis, the fundamental RW for SW can be classified
into three patterns: bright, intermediate and dark states. With-
out loss of generality, we take ρ = 1, and then there are two
different cases (σ = 1 and σ = −1):

(I) In the case of σ = 1:
(a) Dark state (0 < |α| � α+

1 ): two local maxima at
(x±

3 , t±
3 ) and one local minimum at (x1, t1). Especially,

when |α| = α+
1 , the local minimum at the characteristic

point (x1, t1) = (x±
2 , t±

2 ).
(b) Intermediate state (α+

1 < |α| < α+
2 ): two local

maxima at (x±
3 , t±

3 ) and two local minima at the charac-
teristic point (x±

2 , t±
2 ).

(c) Bright state (α+
2 � |α|): one local maximum at

(x1, t1) and two local minima at (x±
2 , t±

2 ). When the sign
takes “=”, the local maximum at (x1, t1) = (x±

3 , t±
3 ).

(II) In the case of σ = −1 (0 < |α| < 3
2

√
3 and

|α| �=
√

2
2 ):

(a) Dark state (α−
1 � |α| < 3

2

√
3): two local maxima

at (x±
3 , t±

3 ) and one local minimum at (x1, t1), especially,
when |α| = α−

1 , the local minimum at the characteristic
point (x1, t1) = (x±

2 , t±
2 ).

(b) Intermediate state (α−
2 < |α| < α−

1 ): two local
maxima at (x±

3 , t±
3 ) and two local minima at the charac-

teristic point (x±
2 , t±

2 ).

(c) Bright state (0 < |α| � α−
2 ): (i)

√
2

2 < |α| � α−
2 :

one local maximum at (x1, t1) and two local minima at
(x±

2 , t±
2 ); (ii) 0 < |α| <

√
2

2 : one local maximum at (x1, t1)
and two local minima at (x±

3 , t±
3 ). When the sign takes

“=”, the local maximum at (x1, t1) = (x±
3 , t±

3 ). Here the

parameters are α±
1 =

√
∓378+66

√
33

12 and α±
2 =

√
∓18+6

√
33

4 .
For the LW component L, it has extrema points (x1, t1) and

(x±
4 , t±

4 ), which are given by (B2) and (B5) in Appendix B.
The further local analysis shows that in both cases σ = ±1,
the RW of LW only exhibits the bright state with one local
maximum at (x1, t1) and two local minima at (x±

4 , t±
4 ).

As illustrated in Fig. 1, three types of RW depict different
local structures of SW when the parameter α takes the value in
its corresponding regimes. This implies that the RW’s pattern
for SW depends on α, which decides the number, the position,
the height, and the type of extrema. Figure 2 displays the
RW states of LW, and three cases correspond to the same

FIG. 2. First-order RW for LW in the LWSW model (1) and (2)
with the parameters ρ = −σ = 1 and (a) α = 1.5, (b) α = 2.1, and
(c) α = 2.3, respectively.

parameters’ choices as shown in Fig. 1. It can be clearly seen
that as the value of α increases, the local structure of LW
always features the bright RW and only the central amplitude
decreases.

For the LWSW model (1) and (2), it can be viewed as a
coupling extension of the DNLS equation, which is the Chen-
Lee-Liu (CLL) equation. We recall that the DNLS equation
only supports the RW of bright type with two zero-amplitude
points. Here, due to the coupling component L which leads to
complex interplay between the dispersion and the nonlinear-
ity, dark and intermediate RWs appear for the SW component.
From the local analysis, one can know that two kinds of bright
RWs emerge under different parameters’ conditions. Specif-
ically, the normal bright RW with two characteristic points
can be realized in the regions |α| � α+

1 (σ = 1) and
√

2
2 <

|α| � α−
1 (σ = −1). The other case (|α| <

√
2

2 for σ = −1)
corresponds to a special bright RW which also possesses one
maximum and two minima amplitudes but two local minima
are not characteristic points. More precisely, differing from
the standard Peregrine soliton with the maximum amplitude as
high as three times the background, the maximum amplitude
of SW is α dependent and it can be calculated precisely as

A(S)
b = | ζ 2

1 (ζ2−4α)+ζ2(ζ2−α)2

ζ2[ζ 2
1 +(ζ2−α)2]

|, which is plotted in Fig. 3 on the
positive interval of α. One can see that for σ = 1, only as
α → +∞, the maximum amplitude approaches to three times
the background. But for σ = −1, the maximum amplitude
can reach infinity in the neighborhood of the singular point
α =

√
2

2 . For the intermediate RW, it is always characterized
by two local maxima and two local minima at zero-amplitude
points. For the dark RW, its amplitude possesses two local
maxima and one local minimum which usually cannot reach

0 2 4 6 8 10
0

1

2

3

4
(a)

+
2

A(S)b

0 0.5 1 1.5 2
0

50

100

150
(b)

-
2

A(S)b

FIG. 3. The maximum amplitude of the bright RW for SW in the
LWSW model (1) and (2) with the parameters ρ = 1 and (a) σ = 1
and (b) σ = −1.
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FIG. 4. Second-order RW for SW in the LWSW model (1)
and (2) with the parameters ρ = −σ = 1, a(0)

0 = 1, a(0)
1 = a(0)

2 =
0, a(0)

3 = 350 and (a) bright state α = 1.5, (b) intermediate state
α = 2.1, and (c) dark state α = 2.3.

zero. However, at the critical case between the dark RW and
the intermediate one in which α takes |α| = α±

1 , the local
minimum occurs at zero-amplitude points. In this situation,
the dark RW reduces to a special one which is referred to as a
black RW.

B. High-order rogue wave

The second-order RW solution is obtained from Eqs. (A1)–
(A3) with N = 2. In this case, setting a(0)

0 = 1, a(0)
1 = a(0)

2 =
0, we obtain the functions f and g as follows:

f =
∣∣∣∣∣m

(1,1,−1,0)
11 m(1,0,−1,0)

13

m(0,1,−1,0)
31 m(0,0,−1,0)

33

∣∣∣∣∣, g =
∣∣∣∣∣m

(1,1,−1,1)
11 m(1,0,−1,1)

13

m(0,1,−1,1)
31 m(0,0,−1,1)

33

∣∣∣∣∣ ,
(11)

where the elements are determined by

m(1,1,n,k)
11 = A(1)

1 B(1)
1 m(n,k)

∣∣
p=ζ ,q=ζ ∗ ,

m(1,0,n,k)
13 = A(1)

1 B(0)
3 m(n,k)

∣∣
p=ζ ,q=ζ ∗ ,

m(0,1,n,k)
31 = A(0)

3 B(1)
1 m(n,k)

∣∣
p=ζ ,q=ζ ∗ ,

m(0,0,n,k)
33 = A(0)

3 B(0)
3 m(n,k)

∣∣
p=ζ ,q=ζ ∗ ,

and the differential operators A(1)
1 = a(1)

0 (p − iα)∂p + a(1)
1 ,

B(1)
1 = a(1)∗

0 (q + iα)∂q + a(1)∗
1 , A(0)

3 = 1
6 [(p − iα)∂p]3 + a(0)

3 ,
B(0)

3 = 1
6 [(q + iα)∂q]3 + a(0)∗

3 with a(1)
0 = 2(p − iα)2 +

iσαρ2

p−iα + iα(p − iα) and a(1)
1 = 1

3 [4(p − iα)2 − iσαρ2

p−iα +
iα(p − iα)].

Since the LW always features a bright RW, we only present
the configuration of SW to illustrate the higher RWs. Three
second-order RWs for SW are displayed in Fig. 4, each one
takes the same value of the parameter α as one shown in
Fig. 1. One can see that second-order RWs manifest the super-
position of three fundamental ones and they obey the triangle
arrays. Due to the same parameters α as the first-order cases,
respectively, three second-order RWs display purely dark,
intermediate, and bright RW’s combinations individually.

For third- and higher-order RWs, which describe the super-
position of more fundamental RWs, one needs to take larger
N in (A1)–(A5). The expressions are too complicated to be
listed here. Figure 5 shows the third-order RW for N = 3
graphically, in which three plots still take the same parameter
α as in Figs. 1 and 4. It can be seen that third-order RWs
describe the superposition of six fundamental ones and they
constitute a shape of pentagon. Besides, each combination

FIG. 5. Third-order RW for SW in the LWSW model (1) and
(2) with the parameters ρ = −σ = 1, a(0)

0 = 1, a(0)
1 = a(0)

2 = a(0)
3 =

a(0)
4 = 0, a(0)

5 = 2000 and (a) bright state α = 1.5, (b) intermediate
state α = 2.1, and (c) dark state α = 2.3.

only contains one type of elementary RW purely in three
cases, which agrees with ones of first- and second-order cases.
This fact suggests that only three types of RW for SW happen
in both fundamental and higher-order cases and the RW’s
pattern completely depends on the parameter α. For instance,
when σ = 1, three types of RW (the fundamental one and the
higher-order superposition) strictly occur at three intervals of
the structural parameter α, i.e., |α| � α+

1 for the dark state,
α+

1 < |α| < α+
2 for the intermediate state, and |α| � α+

2 for
the bright state. That is, the construction of higher-order RW
solutions here do not allow the mixed superposition among
different types of fundamental RWs.

As seen in Figs. 1, 4 and 5 for first-, second- and third-
order RWs of SW, an N th-order RW can evolve into at
most N (N + 1)/2 fundamental RWs. Indeed, apart from the
structural parameter α, an N th-order RW in the LWSW model
(1) and (2) contains N free complex parameters a(0)

2i−1(i =
1, . . . , N ) as reported in Ref. [17]. These parameters deter-
mine the arrangement of N (N + 1)/2 fundamental RWs for
the given N th-order RW, which means that rich spatiotempo-
ral patterns can be obtained under different choices of free
parameters. In particular, it is known that N th-order RW can
reach a climax of 2N + 1 times the background height by a
specific choice of parameters in scalar NLS equation [13].
However, the coupled system (1) and (2) has different cases
for σ = 1 and σ = −1, respectively. For σ = 1, as shown
in Fig. 3(a) for the first-order bright RW of SW, only as
α → ∞, the maximum amplitude approaches to three times
the background. Correspondingly, each peaks in N th-order
RW can come together and form a single main lump with the
maximum amplitude by a special choice of free parameters.
But this maximum amplitude might not be 2N + 1 times
the background except for α → ∞. This kind of special
RW is depicted in Fig. 6 for bright RWs of SW with the

FIG. 6. Bright RWs with single main hump for SW in the LWSW
model (1) and (2) given by the parameters ρ = σ = a(0)

0 = 1, a(0)
2 =

a(0)
4 = 0, α = 3: (a) first-order case, (b) second-order case, and

(c) third-order case.
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parameters: (a) first-order case a(0)
1 = 0.4380 + 0.2057i;

(b) second-order case a(0)
1 = 0.3653 + 0.3210i and a(0)

3 =
−0.0253 + 0.0343i; and (c) third-order case a(0)

1 = 0.2926 +
0.4363i, a(0)

3 = −0.0076 + 0.0277i, and a(0)
5 = 0.0010 +

0.0027i. For σ = −1, as displayed in Fig. 3(b), the maximum
amplitude only for the first-order bright RW can reach infinity
near the singular point. Thus the higher-order RW in this case
cannot support a super RW through the specific choice of
parameters.

IV. MODULATION INSTABILITY

Next we investigate the linear stability analysis of the
plane-wave background solutions of the LWSW model
by considering small perturbations of the form S = [a +
S1]ei[ωx−(ω2−2bω)t] and L = b + L1, where S1 and L1 are small
complex perturbations. The substitution yields a group of
linearized partial differential equations. Recalling that L is
real, we can assume the perturbations are space periodic with
the fixed frequency 	, i.e., S1 = s1(t )ei	x + s2(t )e−i	x and
L1 = l (t )ei	x + l∗(t )e−i	x, which leads the above linearized
partial differential equations into a group of linear ordinary
differential equations s′ = iMs with s = [s1, s∗

2, l]T and

M =
⎡
⎣−	2 + 2b	 − 2ω	 0 2aω

0 	2 + 2b	 − 2ω	 −2aω

−2aσ	 −2aσ	 0

⎤
⎦.

(12)

This set of differential equations with the real frequency 	

suggests that the functions s1(t ), s2(t ), and l (t ) are the linear
combinations of exponentials exp(iλ jt ), where λ j , j = 1, 2, 3
represent three eigenvalues of the matrix M. Such eigenvalues
are given by the roots of the characteristic polynomial P(λ) of
the matrix M,

P(λ) = λ3 + P2λ
2 + P1λ + P0, (13)

with P2 = 4(ω − b)	, P1 = [4(b − ω)2 − 	2]	2, and P0 =
−8σωa2	3.

It is known that when an eigenvalue of M has a negative
imaginary part, MI will occur with the exponential growing
perturbation. From the matrix M, one can see that each entry
is real, so the corresponding eigenvalues are either real root
or a pair of complex-conjugate roots. More specifically, we
calculate the discriminant of the characteristic polynomial
P(λ) as

� = 4	6{3	6 − 24(b − ω)2	4 − 48(b − ω)[9σωa2

− (b − ω)3]	2 − 48σωa2[27σωa2 − 4(b − ω)3]}.
(14)

Then � > 0 results in real roots for the polynomial P(λ),
which implies that no MI appears, whereas � < 0 yields
two complex conjugate roots, which implies that MI exists.
The marginal stability curve corresponds to the discrimi-
nant � = 0. Thus the plane-wave background solutions S =
ei[ωx−(ω2−2bω)t] and L = b are modulationally unstable with
� < 0, which suggests that the RW solutions given by the
transformation (3) with the background amplitudes a = ρ

FIG. 7. MI for the LWSW model (1) and (2) on the (	,ω) plane
calculated with the parameters a = 1, b = 0, and (a) σ = 1 and
(b) σ = −1. Dark dashed curves indicate the analytical marginal
stability condition � = 0.

and b = 0 are unstable in the LWSW model (1) and (2).
Without loss of generality, by taking a = 1 and b = 0, MI gain
spectrums are displayed for two kinds of nonlinearity σ = 1
and σ = −1 in Fig. 7, respectively.

As analyzed in Refs. [38,39], baseband MI defined as
the condition where an unstable continuous-wave background
corresponds to perturbations infinitesimally small frequencies
is responsible for the RW excitation, whereas passband MI,
which means the perturbation undergoes gain in a spectral
region not including zero frequency as a limiting case, does
not support RW. Thus baseband MI is usually a certain subset
of the parameters ω and 	 where MI is present. Figure 7(a)
shows the MI gain for σ = 1; this MI is of baseband type
except for ω �= 0. But in Fig. 7(b) for σ = −1, there exist
regions of either baseband or passband MI. The limit situation
where 	 → 0 determines the occurrence of baseband MI. In
this case, the discriminant of the polynomial P(λ) degenerates
to � = −48σω(4ω3 + 27σω), which gives rise to two cases:
(1) σ = 1, � < 0 means that the baseband MI is always
present except for ω �= 0 [see Fig. 7(a)] and (2) σ = −1, � <

0 leads to the baseband MI condition: 0 < |ω| < 3
2

√
3 [see

Fig. 7(b)]. The coincidence is that the baseband MI condition
is exactly the one for the existence of RW solutions.

V. CONCLUSION

The general higher-order rational solutions of the LWSW
model are derived via the Hirota’s bilinear method and the
KP hierarchy reduction. These explicit solutions in terms of
determinants with algebraic elements depict the fundamental
and higher-order RWs. It is found that the fundamental RW
of SW contains three different patterns: bright, intermediate,
and dark states, whereas the RW of LW is always a bright
state. The higher-order RWs indicate the superposition of fun-
damental ones and they do not support interaction behaviors
among different types of RW. The MI analysis shows that the
condition of the baseband MI where an unstable plane-wave
background corresponds to perturbations with infinitesimally
small frequencies coincides with the condition for the exis-
tence of RW solutions.
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APPENDIX A

In this Appendix, we list the theorem on the general N th-order rational solutions of the LWSW model (1) and (2) and prove
this theorem via the KP hierarchy reduction method.

Theorem 1. The LWSW equations (1) and (2) have the rational solutions (3) with the tau functions f and g given by N × N
determinants

f = τ−1,0, g = τ−1,1, (A1)

where τn,k = det1�i, j�N (m(N−i,N− j,n,k)
2i−1,2 j−1 ) and the matrix elements are defined by

m(ν,μ,n,k)
i, j =

i∑
l=0

j∑
s=0

a(ν)
l

(i − l )!

a(μ)∗
s

( j − s)!
[(p − iα)∂p]i−l [(q + iα)∂q] j−sm(n,k)

∣∣∣∣∣
p=ζ ,q=ζ ∗

, (A2)

with

m(n,k) = ip

p + q

(
− p

q

)n(
− p − iα

q + iα

)k

e(p+q)x−(p2−q2 )it , (A3)

a(ν+1)
l =

l∑
j=0

1

( j + 2)!

[
2 j+2(p − iα)2 + (−1) j 2iσαρ2

p − iα
+ 2iα(p − iα)

]
a(ν)

l− j, ν = 0, 1, 2, . . . , (A4)

and ζ need to satisfy the relation

2ζ − 2σ iαρ2

(ζ − iα)2
= 0. (A5)

Proof. First, we present the following lemma.
Lemma 1. The bilinear equations in the extended KP hierarchy(

Dx2 − 2aDx1 − D2
x1

)
τn,k+1 · τn,k = 0, (A6)(

Dx2 + D2
x1

)
τn,k · τn+1,k = 0, (A7)(

aDta + 1
)
τn,k · τn+1,k = τn,k+1τn+1,k−1, (A8)

where a is a complex constant and n and k are integers and have the following solution:

τn,k = m̃(n,k) = ip

p + q

(
− p

q

)n(
− p − a

q + a

)k

eξ̃+η̃, (A9)

with

ξ̃ = 1

p − a
ta + px1 + p2x2, η̃ = 1

q + a
ta + qx1 − q2x2,

where p, q, and a are complex parameters.
In order to derive the rational solution, we introduce the differential operators A(ν)

k and B(μ)
l with respect to p and q,

respectively,

A(ν)
n =

n∑
k=0

a(ν)
k

[(p − a)∂p]n−k

(n − k)!
, n � 0, (A10)

B(ν)
n =

n∑
k=0

b(ν)
k

[(q + a)∂q]n−k

(n − k)!
, n � 0, (A11)
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where a(ν)
k and b(ν)

k are constants satisfying the iterated relations

a(ν+1)
k =

k∑
j=0

2 j+2(p − a)2 + (−1) j λa
p−a + 2a(p − a)

( j + 2)!
a(ν)

k− j, ν = 0, 1, 2, . . . , (A12)

b(ν+1)
k =

k∑
j=0

2 j+2(q + a)2 − (−1) j λa
q+a − 2a(q + a)

( j + 2)!
b(ν)

k− j, ν = 0, 1, 2, . . . . (A13)

Based on the Leibniz rule, one has

[(p − a)∂p]m

(
p2 + λa

p − a

)
=

m∑
l=0

(
m
l

)[
2l (p − a)2 + (−1)l λa

p − a
+ 2a(p − a)

]
[(p − a)∂p]m−l + a2[(p − a)∂p]m (A14)

and

[(q + a)∂q]m

(
q2 − λa

q + a

)
=

m∑
l=0

(
m
l

)[
2l (q + a)2 − (−1)l λa

q + a
− 2a(q + a)

]
[(q + a)∂q]m−l + a2[(q + a)∂q]m. (A15)

Furthermore, we can derive[
A(ν)

n , p2 + λa

p − a

]
=

n−1∑
k=0

a(ν)
k

(n − k)!

[
((p − a)∂p)n−k, p2 + λa

p − a

]

=
n−1∑
k=0

a(ν)
k

(n − k)!

n−k∑
l=1

(
n − k

l

)(
2l (p − a)2 + (−1)l λa

p − a
+ 2a(p − a)

)
((p − a)∂p)n−k−l ,

where [ , ] is the commutator defined by [X,Y ] = XY − Y X .
Let ζ̃ be the solution of the algebraic equation

2p − λa

(p − a)2
= 0.

Hence we have [
A(ν)

n , p2 + λa

p − a

]∣∣∣∣
p=ζ̃

= 0,

for n = 0, 1 and[
A(ν)

n , p2 + λa

p − a

]∣∣∣∣
p=ζ̃

=
n−2∑
k=0

a(ν)
k

(n − k)!

n−k∑
l=2

(
n − k

l

){
2l (p − a)2 + (−1)l λa

p − a
+ 2a(p − a)

}
[(p − a)∂p]n−k−l

∣∣∣∣∣
p=ζ̃

=
n−2∑
k=0

n−k−2∑
j=0

a(ν)
k

( j + 2)!(n − k − j − 2)!

{
2 j+2(p − a)2 + (−1) j λa

p − a
+ 2a(p − a)

}
[(p − a)∂p]n−k− j−2

∣∣∣∣∣∣
p=ζ̃

=
n−2∑
k̂=0

⎡
⎣ k̂∑

ĵ=0

2 ĵ+2(p − a)2 + (−1) ĵ λa
p−a + 2a(p − a)

( ĵ + 2)!
a(ν)

k̂− ĵ

⎤
⎦ [(p − a)∂p]n−2−k̂

(n − 2 − k̂)!

∣∣∣∣∣∣
p=ζ̃

=
n−2∑
k̂=0

a(ν+1)
k̂

[(p − a)∂p]n−2−k̂

(n − 2 − k̂)!

∣∣∣∣∣∣
p=ζ̃

= A(ν+1)
n−2

∣∣
p=ζ̃

,

for n � 2. Thus the differential operator A(ν)
n satisfies the following relation:[

A(ν)
n , p2 + 2i

p − a

]∣∣∣∣
p=ζ̃

= A(ν+1)
n−2

∣∣
p=ζ̃

, (A16)

where we define A(ν)
n = 0 for n < 0.
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Similarly, it is shown that the differential operator B(ν)
n satisfies[

B(ν)
n , q2 − λa

q + a

]∣∣∣∣
q= ¯̃ζ

= B(ν+1)
n−2

∣∣
q= ¯̃ζ , (A17)

where we define B(ν)
n = 0 for n < 0 and ¯̃ζ needs to satisfy

2q + λa

(q + a)2
= 0. (A18)

Consequently, by referring to the above two relations (A16) and (A17), we have(
∂x2 + λa∂ta

)
m̃(ν,μ,n,k)

ls

∣∣
p=ζ̃ ,q= ¯̃ζ = [

A(ν)
l B(μ)

s

(
∂x2 + λa∂ta

)
m̃(n,k)]∣∣

p=ζ̃ ,q= ¯̃ζ

=
{

A(ν)
l B(μ)

s

[
p2 − q2 + λa

(
1

p − a
+ 1

q + a

)]
m̃(n)

}∣∣∣∣
p=ζ̃ ,q= ¯̃ζ

=
[

A(ν)
l

(
p2 + λa

p − a

)
B(μ)

s m̃(n)

]∣∣∣∣
p=ζ̃ ,q= ¯̃ζ

−
[

A(ν)
l B(μ)

s

(
q2 − λa

q + a

)
m̃(n)

]∣∣∣∣
p=ζ̃ ,q= ¯̃ζ

=
{[(

p2 + λa

p − a

)
Al (ν) + A(ν+1)

l−2

]
B(μ)

s m̃(n,k)

}∣∣∣∣
p=ζ̃ ,q= ¯̃ζ

−
{

A(ν)
l

[(
q2 − λa

q + a

)
B(μ)

s + B(μ+1)
s−2

]
m̃(n,k)

}∣∣∣∣
p=ζ̃ ,q= ¯̃ζ

=
(

ζ̃ 2 + λa

ζ̃ − a

)
m̃(ν,μ,n,k)

ls

∣∣
p=ζ̃ ,q= ¯̃ζ + m̃(ν+1,μ,n,k)

l−2,s

∣∣
p=ζ̃ ,q= ¯̃ζ

−
(

¯̃ζ 2 − λa
¯̃ζ + a

)
m̃(ν,μ,n,k)

ls

∣∣
p=ζ̃ ,q= ¯̃ζ − m̃(ν,μ+1,n,k)

l,s−2

∣∣
p=ζ̃ ,q= ¯̃ζ .

Then the differential of the following determinant:

τ̃n,k = det
1�i, j�N

(
m̃(N−i,N− j,n,k)

2i−1,2 j−1

∣∣
p=ζ̃ ,q= ¯̃ζ

)
can be calculated as

(
∂x2 + λa∂ta

)
τ̃n =

N∑
i=1

N∑
j=1

�i j
(
∂x2 + λa∂ta

)[
m̃(N−i,N− j,n,k)

2i−1,2 j−1

∣∣
p=ζ̃ ,q= ¯̃ζ

]

=
N∑

i=1

N∑
j=1

�i j

[(
ζ̃ 2 + λa

ζ̃ − a

)
m̃(N−i,N− j,n,k)

2i−1,2 j−1

∣∣
p=ζ̃ ,q= ¯̃ζ + m̃(N−i+1,N− j,n,k)

2i−3,2 j−1

∣∣
p=ζ̃ ,q= ¯̃ζ

−
(

¯̃ζ 2 − λa
¯̃ζ + a

)
m̃(N−i,N− j,n,k)

2i−1,2 j−1

∣∣
p=ζ̃ ,q= ¯̃ζ − m̃(N−i,N− j+1,n,k)

2i−1,2 j−3

∣∣
p=ζ̃ ,q= ¯̃ζ

]

=
(

ζ̃ 2 + λa

ζ̃ − a

)
N τ̃n +

N∑
i=1

N∑
j=1

�i j m̃
(N−i+1,N− j,n,k)
2i−3,2 j−1

∣∣
p=ζ̃ ,q= ¯̃ζ

−
(

¯̃ζ 2 − λa
¯̃ζ + a

)
N τ̃n −

N∑
i=1

N∑
j=1

�i j m̃
(N−i,N− j+1,n,k)
2i−1,2 j−3

∣∣
p=ζ̃ ,q= ¯̃ζ ,

where �i j is the (i, j) cofactor of the matrix [m̃(N−i,N− j,n)
2i−1,2 j−1 |

p=ζ̃ ,q= ¯̃ζ
]
1�i, j�N

. For the term
∑N

i=1

∑N
j=1 �i j m̃

(N−i+1,N− j,n)
2i−3,2 j−1 |

p=ζ̃ ,q= ¯̃ζ
,

it vanishes since for i = 1 this summation is a determinant with the elements in first row being zero and for i = 2, 3, . . .

this summation is a determinant with two identical rows. Similarly, the term
∑N

i=1

∑N
j=1 �i j m̃

(N−i,N− j+1,n)
2i−1,2 j−3 |

p=ζ̃ ,q= ¯̃ζ
vanishes.

Therefore, τ̃n satisfies the reduction condition

(
∂x2 + λa∂ta

)
τ̃n =

(
ζ̃ 2 − ¯̃ζ 2 + λa

ζ̃ − a
+ λa

¯̃ζ + a

)
N τ̃n, (A19)

052216-8



HIGH-ORDER ROGUE WAVES OF A … PHYSICAL REVIEW E 100, 052216 (2019)

such that these algebraic solutions τ̃n,k satisfy the (1 + 1)-dimensional bilinear equations:(
Dx2 − 2aDx1 − D2

x1

)
τ̃n,k+1 · τ̃n,k = 0, (A20)(

Dx2 + D2
x1

)
τ̃n,k · τ̃n+1,k = 0, (A21)

Dx2 τ̃n,k · τ̃n+1,k = λ(τ̃n,k τ̃n+1,k − τ̃n,k+1τ̃n+1,k−1). (A22)

By taking a = iα, λ = 2σρ2, ¯̃ζ = ζ̃ ∗, and x1 = x, x2 = it , one can define

f = τ−1,0, g = τ−1,1, f ∗ = τ0,0, g∗ = τ0,−1. (A23)

which reduce (A20)–(A22) to the bilinear equations (4)–(6). From the reduction condition (A19), ta becomes a dummy variable
which can be taken as zero. Therefore we arrive at Theorem 1.

APPENDIX B

Let ζ = ζ1 + iζ2 in Eq. (A5), where ζ1 and ζ2 are real and imaginary parts, respectively, and they can be expressed
explicitly by

ζ1 =
√

3(�2 − 4α2)

12δ1�
, ζ2 = 2

3
α + 1

12
� + α2

3�
, (B1)

with � = [4α(2α2 + 27σρ2) + 12δ2αρ
√

3(4σα2 + 27ρ2)]
1/3

and δ1, δ2 = ±1. Thus the RW solutions exist under the con-
straints: 4σα2 + 27ρ2 > 0 and α �= 0, namely α �= 0 for σ = 1 and 0 < |α| < 3

2

√
3|ρ| for σ = −1, respectively. Further the

modular square of the first-order RW for the SW component (9) possesses extrema points (turning points where the first
derivatives vanish):

(x1, t1) ≡
[

ζ 2
2

ζ1
(
ζ 2

1 + ζ 2
2

) ,
1

4

ζ2

ζ1
(
ζ 2

1 + ζ 2
2

)
]
, (B2)

(x±
2 , t±

2 ) ≡
[

ζ2
(
α2 − ζ 2

1 − ζ 2
2

)
2ζ1�3

− 2�5μ1

�1�3ζ
2
1

,
μ1

�1ζ
2
1

]
, (B3)

(x±
3 , t±

3 ) ≡
[
−ζ2

(
α2 − ζ 2

1 − ζ 2
2

)
2ζ1�6

+ 2�7μ2

�1�6ζ1
,

μ2

�1ζ
2
1

]
, (B4)

and the first-order RW for the LW component (10) has extrema points: (x1, t1) and

(x±
4 , t±

4 ) ≡
[

2
(
ζ 2

1 + 3ζ 2
2

)
ζ1

μ3 − 1

2ζ1
,
ζ2

ζ1
μ3

]
, (B5)

with μ1 = ζ1ζ2�1

4(ζ 2
1 +ζ 2

2 )
±

√
−ζ2�2�

2
3�4

4(ζ 2
1 +ζ 2

2 )�2
, μ2 = ζ2�1

4(ζ 2
1 +ζ 2

2 )
±

√
ζ2�

2
6�8�9

4(ζ 2
1 +ζ 2

2 )�9
, μ3 = 1

4(ζ 2
1 +ζ 2

2 )
±

√
3

4

√
ζ 2

2 (ζ 2
1 +4ζ 2

2 )

(ζ 2
1 +ζ 2

2 )(ζ 2
1 +4ζ 2

2 )
, �1 = ζ 2

1 + (ζ2 − α)2, �2 =
ζ 2

1 + (ζ2 + α)2, �3 = α(2ζ 2
1 + αζ2) − ζ2(ζ 2

1 + ζ 2
2 ), �4 = ζ2(ζ 2

1 + ζ 2
2 ) − 2(2ζ 2

1 + ζ 2
2 )α + ζ2α

2, �5 = (ζ 2
2 − ζ 2

1 )(ζ 2
1 + ζ 2

2 −
α2) − 4αζ2ζ

2
1 , �6 = 3ζ2(ζ 2

1 + ζ 2
2 ) − 2α(ζ 2

1 + 2ζ 2
2 ) + ζ2α

2, �7 = −(ζ 2
1 + ζ 2

2 )(ζ 2
1 − 5ζ 2

2 ) − 4ζ2(ζ 2
1 + 2ζ 2

2 )α + (ζ 2
1 + 3ζ 2

2 )α2,
�8 = 3ζ2(ζ 2

1 + ζ 2
2 ) − 2(2ζ 2

1 + 3ζ 2
2 )α + 3ζ2α

2 and �9 = (ζ 2
1 + ζ 2

2 )(ζ 2
1 + 4ζ 2

2 ) − 2ζ2(3ζ 2
1 + 4ζ 2

2 )α + (ζ 2
1 + 4ζ 2

2 )α2.
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