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Abstract: Liquid range of nanofluids is a crucial parameter as it intensively determines their 

application temperature scope. Meanwhile, improved thermal conductivity and stability are of great 

significances and comprise the main fundamental research topics of nanofluids. In this work, 2-

butoxy-3,4-dihydropyran (DP), produced from a convenient one-pot three-component reaction in 

water, was employed as dual lipophilic brusher and metal nanoparticle anchor. It was found that DP 

was able to enhance the dispersing ability and thermal conductivity of SiO2 nanoparticle filled deep 

eutectic solvent (DES) based nanofluids simultaneously. The key to the success of this protocol 

mainly relies on the electrophilic property and acetylacetonate moiety of DP, which ensures the 

formation of DP surficial modified and copper nanoparticle coated silica. Molecular dynamics 

simulation revealed that the hydrogen bonding effect between base solvent and alkane chain of 

nanoparticle was responsible for the enhanced affinity, which thus resulted in an improved stability. 

Viscosities of the nanofluids dropped within a certain range owing to the ruin of hydrogen bonding 

association among solvent molecules resulted by the hydrogen bonding effect between nanoparticle 

and solvent. Thermal conductivity of the copper modified silica filled DES nanofluids exhibits a 

maximum 13.6% enhancement, which demonstrated the advantages of this chemical covalent 

protocol. Additionally, study upon viscosity and convective heat transfer coefficient of the 

nanofluids with varies types of silica nanoparticle and DES base solvents indicated that a 24.9% 

heat transfer coefficient enhancement was gained that further revealed the superiority of this 

protocol. 

Key words: Nanofluids; chemical modified silica; deep eutectic solvents; energy transportation. 
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Introduction

Nanoscale materials and devices hold great potential for improved energy conservation, conversion, 

or harvesting. Heat transfer fluids, also known as working fluids, have a crucial role in thermal 

transport applications.1-3 However, traditionally used working fluids, such as water, mineral oil or 

organic alcohol were heavily limited by their relatively poor thermal conductive performance.4 In 

particular, with the rapid advances of electrical setup and continuous shrinkage of mechanic 

facilities, highly efficient heat removal has been becoming an urgent demand.5-7 Nanofluid, which 

was first termed by Choi, mainly constituted by a nanofiller and a base solvent, was a good solution 

to the poor thermal conductivity of single phase working fluid.8-10 Base solvent has a vital role in 

nanofluids since it determines the main thermophysical properties, eg. thermal conductivity, 

dragging coefficient, boiling point and melting point, etc.  Moreover, it is the place for reserving 

nanoparticle, it highly impacts the dispersing ability and stability of the nanofluid system. 

Traditionally used base solvent can be generally classified into water, mineral oil and organic 

alcohol.11, 12 As evidenced on their common inherent physical properties, they are quite limited by 

their relatively short liquid range, which will become invalid under complex temperature conditions 

or specific device requirements. Ionic liquid, emerging as a new base solvent alternative, has been 

gaining continuous interest due to less volatile, high boiling point and chemical stability. While, 

ionic liquid usually suffers from high cost, tedious preparation process and environmental issues.13-

15 Meanwhile, high temperature molten salt is another widely adopted base solvent system mainly 

works for the field of high temperature solar collector.16 However, the high melting point of the salt 

is the main obstacle as it will inevitably cause the clogging of the flow system at a low temperature. 

Therefore, exploring a new base solvent system that could fulfil both wide liquid range and 

environmental benign requirement is an urgent topic that needs to be deeply studied. 

Deep eutectic solvent (DES), which is mainly constituted by two or three simple chemicals 

through intermolecular hydrogen bonding effect, has attracted ample attention owing to its similar 

properties with traditionally used ionic liquids.17-20 DES has been proven to possess high boiling 

point and less volatile. In addition, it contains vast, nonsymmetric ions that have low lattice energy 

and thus low melting points. Notably, compared with ionic liquid, it is much less costly and 

environmental friendly. So far, it has been widely adopted in catalysis, electrochemistry, material 
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chemistry and so on.20, 21 The research for its application as a working fluid and a base solvent of 

nanofluids for heat transportation has also been initiated.22-26  Despite its superior thermophysical 

properties in terms of wide liquid range and accessibility, the stability issue of its based nanofluid 

is another problem that restricts its development. Adding a dispersant is a wide recognized protocol 

to address dispersing problem as it can inhibit the aggregation of nanoparticle. Whereas, it seems to 

be ineffective towards the DES base solvent system since the existence of dispersant, which usually 

composed by a cation and anion, will undoubtedly cause the interference of hydrogen bonding 

between the hydrogen donor and acceptor components and lead to the complexity of the whole 

solvent system.27, 28 On the other hand, aging of dispersant would lead an irreversible damage of 

working efficiency of nanofluids during a long-term using.29, 30 Decomposition of dispersant in 

some extreme condition, such as high temperature, would accelerate the failure process of the 

nanofluid. Further, the existence of dispersant in nanofluids also brings some negative influence to 

the performance of nanofluids, for instance, viscosity increase and thermal conductivity reduction.31 

Therefore, so far, a DES based nanofluid should face the problem of the absence of a dispersant. To 

alleviate this problem, a nanoparticle that has a good affinity with DES, such as coordination or 

hydrogen bonding effect, was recommended. However, this effect also brings some negative aspects 

to the behaviour of nanofluids, for example, our previous work revealed that the addition of Al2O3 

nanoparticle resulted in a decreasing of thermal conductivity of glycerol/chlorine DES nanofluids 

owing to the motion activity declining of glycerol molecule caused by the hydrogen bonding 

association with Al2O3.32  

Covalently installing an organic chain on the surface of nanoparticle is an efficient way to 

improve the stability of nanofluids in particular for organic solvent based nanofluids owing to the 

affinity enhancement between nanoparticle and base solvent. Some relevant research can be found 

in literatures, for example, Lukehart et al. demonstrated the deaggregation of an oxidized 

ultradispersed diamond in dimethylsulfoxide (DMSO) followed by reacting with glycidol monomer 

to produce a covalent surface modified nanodiamond filled ethylene glycol (EG) based nanofluid.33 

The research results indicated that the covalent nanodiamond modification gave a 2-fold greater 

thermal conductivity than that of hydrogen-bonding interaction modification strategy at the similar 

concentration. Zhang et al. synthesized a graphene which possessed a similar molecular chain with 
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ionic liquid [HMIM]BF4, it was verified that the dispersion stability was greatly enhanced owing to 

the covalent modification.34 The photo conversion performance of nanofluids was also enhanced as 

a consequence of the promising stability. Previously, we developed Lewis acid catalysis induced 

ring-opening reactions of 2-butoxy-3,4-dihydropyran (DP) with various of nucleophiles, among 

them, mercaptans quite stood out that it was able to react with DP with high regio-selectivity and 

yields.35-40 Inspired by this reaction, we envision that DP deemed to be able to link onto the surface 

of SH containing silica with the aid of a Lewis acid. Moreover, owing to the coordination effect of 

acetylacetonate moiety in DP molecule, copper can be anchored on the surface of this modified 

silica with the purpose of thermal conductivity enhancement.

In this paper, in order to find a high thermal conductivity and stable DES based nanofluid system 

to address the short liquid range of traditional base solvent system based nanofluids (Fig. 1), a 

covalent modification and metal hybrid protocol on silica nanoparticle was investigated. SH 

containing silica nanoparticle was synthesized from TEOS and MPTMS through a sol-gel reaction 

with the aid of catalytic amount of n-hexadecylamine. The synthesized silica was subjected to react 

with DP under the catalysis of Lewis acid ZnCl2. The copper nanoparticle was evenly coated on the 

surface of silica thanks to the anchoring effect derived from the acetylacetonate group on the surface 

of silica moiety. The stability improvement mechanism behind was revealed by using molecular 

dynamic simulation approach. Nanofluids prepared from DP modified silica and DES were studied 

comprehensively regarding their stability and thermo-physical properties.

Results and discussion

Our study commenced from the synthesis of DP derivative. 1-(Vinyloxy)butane, aqueous 

formaldehyde and acetylacetone were mixed and allowed to stir at 80 oC for 6 hours to complete 

the reaction in almost quantitative yields which were in good accordance with the results reported 

by Gu et al.41 SH containing silica, SiO2-SH, synthesized from TEOS and MPTMS, some reaction 

parameters, including catalyst, solvent and reaction temperature etc., were applied to explore a 

uniform size distributed nanoparticle. After a careful study upon the synthetic parameters, the 

optimized reaction condition was determined to be 17.6 mol% of n-hexadecylamine as catalyst, 

H2O/EtOH 18/35 (V/V) as solvent, reacted at 50 oC for 20 h. DP decorated silica, which was named 

as SiO2-SH-DP, was then prepared by treating SiO2-SH with excess amount of DP under the 
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catalysis of 20 mol% of ZnCl2. The final copper coated silica nanoparticle, SiO2-SH-DP-Cu, was 

obtained by treating SiO2-SH-DP with Cu(acac)2 and NaBH4 sequentially (Fig. 2). To facilitate 

reading and understanding, the name of different silica nanoparticle was listed and explained in 

table 1. After synthesis of the chemical modified silica nanoparticle, some analyses with respect to 

the above mentioned three different kinds of materials were conducted. As shown in Fig. 3a-c, SEM 

images show that the morphology of the as-prepared chemical modified silica displays a uniform 

size distribution with a sphere like shape. TEM images (Fig. 3d-e) further proved that the 

morphology of the obtained materials is a uniform sphere structure with an average diameter of 

around 300 nm. It should be mentioned that the surface of the prepared SiO2-SH material is quite 

smooth without observation of nanoporous structure. The morphology of DP modified SiO2-SH 

shows no significant change after fixing with organic linker that neither nanoparticle aggregation 

nor broken of the nanoparticle is observed from the TEM image (Fig. 3h). What’more, the surface 

of the silica nanoparticle is seemly smoother than that of SiO2-SH owing to the existence of the 

organic chain derived from DP. Interestingly, the surface of the silica becomes rough after coating 

with Cu nanoparticle as evidenced in Fig. 3i, which clearly demonstrates the existence of Cu on the 

surface of DP modified silica. Meanwhile, diameter of the SiO2-SH-DP-Cu increases a little bit due 

to the contribution of Cu layer. Moreover, there is no observation of nanoparticle destruction or 

aggregation after a blending with copper acetate and reduction treatment. Moreover, EDS mapping 

further evidences that Cu and other elements were uniformly distributed on the surface of SiO2-SH-

DP-Cu (Fig. 3j).

XRD spectra of the above mentioned three different types of silica samples were tested. As shown 

in Fig. 4a, all of the silica samples display a typical SiO2 peak appeared at 2θ=22.5o, which illustrates 

the main component of the sample is still SiO2. While, we did not find the response of copper from 

the spectra of SiO2-SH-DP-Cu, probably due to the relatively low concentration of Cu in the sample. 

FT-IR spectra of the prepared samples in Fig. 4b proves the successful covalently bonding of DP 

on the surface of SiO2-SH since the observation of peak in 1750 cm-1, which is attributed to the 

carbonyl group of ring-opening structure of DP. The adsorption peak in the range of 1700-1750 

cm-1 becomes boarder when loaded Cu on the surface of SiO2-SH-DP, which reveals the 

coordination effect of Cu on carbonyl group, and this phenomenon is quite in agreement with the 
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literature result.42 13C MAS NMR was also conducted to prove the covalent bond formation between 

SiO2 and DP. As shown in Fig. 4c, the appearance of peak at 203.1 ppm is assigned to the carbonyl 

group of SiO2-SH-DP, accompanied by the appearance of a characteristic band of a carbonyl group 

at 1700 cm−1 in FT-IR spectra, constitute a strong evidence of the nondestructive tethering of an 

acetylacetonate fragment on the surface of SiO2-SH. Furthermore, TGA curves also provide an 

indirect evidence to support the covalently formation of the SiO2-SH-DP that a sharp weight loss 

happened at a temperature higher than 350 oC, which can be explained by the decomposition of 

organic fragment on SiO2-SH-DP. Interestingly, the total weight loss of SiO2-SH-DP-Cu is 

decreased by 9% compared to SiO2-SH-DP, we ascribed the reason to the shielding effect of the 

copper shell on the surface of SiO2-SH-DP and the weight incremental influence which given by 

copper nanoparticle. XPS analysis with respect to the silica nanoparticle was also conducted. In the 

XPS pattern of the C 1s region, contributions of C-O (287.6 eV), C-C (285.1 eV), and C=C (284.2 

eV) bonds can all be found in the sample of SiO2-SH, which corresponds to the alkane chain in the 

chemical modified silica (Fig. 4e). After covalently reacted with DP, a new peak in 287.6 eV, which 

can be ascribed to the C=O, is observed in the XPS pattern (Fig. 4g). On the other hand, there is no 

observation of Cu peaks in the XPS spectra of SiO2-SH, while, peaks at 732.5, 952.3 eV is found in 

SiO2-SH-DP-Cu, proves the existence of Cu (Fig. 4f and 4h). Along with the Cu 2p response, the 

XPS data constituted a solid evidence that DP is linked on the skeleton of silica and Cu is also a key 

component in SiO2-SH-DP-Cu.

With the chemical modified silica nanoparticle in hand, we initiated the study on its performance 

in nanofluids in terms of stability and some thermo-physical properties. In this work, we chose two 

representative DESs, glycerol (GL)/chlorine chloride (ChCl) and EG/ ChCl. As is well known, GL 

is a kind of green solvent which was mainly produced as a by-product of biodiesel. As the rapid 

expansion of biodiesel demand caused by shortage of fossil resource, a significant glut of global GL 

market is under continuous growing.43 Thus, utilization GL, in particular for high value-added using 

has been becoming a bottleneck of the advance of biodiesel industry.44, 45 Meanwhile, as a matter of 

fact, EG is a good alcohol type working fluid that has been widely adopted in both academia and 

industry owing to its low cost, accessibility and chemical stability.46 Especially, the mixture of 40-

50 vol% EG in water has been well recognized to be used as a coolant due to its low freezing point.47, 
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48 In addition, ChCl is also a bio-degradable chemical that was usually used as an animal food 

additive. Despite GL/ChCl and EG/ChCl DESs have been studied towards as base solvents of 

nanofluids, they usually restricted by poor stability and thermal conductivity.32, 49 Therefore, 

nanoparticle that can be dispersed in DES with superior stability and thermal conductivity would be 

highly desirable. To verify the feasibility of the prepared silica nanoparticle, GL/ChCl DES based 

nanofluids were fabricated. Thermal conductivity of the nanofluids was firstly considered. To ease 

the influence of the testing uncertainties, thermal conductivity in a certain condition was tested for 

ten times, data described in following text was the average of the testing results. As shown in Fig. 

5a and 5b, thermal conductivity of GL/ChCl DES was observed to possess a maximum 

enhancement of 2.0% after dispersing 1.0 wt% of SiO2-SH-DP-Cu nanoparticle, while SiO2-SH and 

SiO2-SH-DP dispersed nanofluids display only comparable thermal conductivity enhancement, 

clearly indicates the thermal conductive enhancement effect of copper decorated silica nanoparticle. 

Similar results can be observed in the case of EG/ChCl DES based nanofluids that silica containing 

copper exhibited an enhancement approximate 5.0%, while, the rest of other two silica nanoparticles 

show only 1.0-2.0% enhancement (Fig. 5c and 5d). Further, thermal conductivity of GL/ChCl based 

nanofluids with different amount of SiO2-SH-DP-Cu nanoparticle filler was studied. As it is seen in 

Fig. 5e and 5f, thermal conductivity is increased significantly with the rising amount of nanofiller, 

12.5% of thermal conductivity enhancement is observed when 5.0 wt% of nanoparticle was filled 

in the base solvent. On the other hand, SiO2-SH-DP-Cu nanoparticle filled EG/ChCl also displays 

a remarkable 13.6% of thermal conductivity enhancement after blending 5.0 wt% of nanoparticle in 

the based DES. Comparing with the reported results summarized in table 2, nanofluids prepared by 

using this kind of hybrid silica composite displays an obvious superiority in terms of thermal 

conductivity. Moreover, to the best of our knowledge, this is the first example which adopts a silica 

into fabrication a DES based nanofluid. It is worth noting that these nanofluids exhibit promising 

stability that it can kept at ambient temperature for 15 days without observation of obvious 

precipitation thanks to the alkane chain on the surface of silica. Zeta potential value, the gravity 

settlement observation results as well as TEM images at different standing time were shown in the 

supporting information (SI) (Fig. S1).

Moreover, viscosity of the nanofluids was tested since pump power input in real application has 
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a great dependence on it, which thus deeply associates with the energy consumption. As it is 

displayed in Fig. 6a, the addition of 1.0 wt% chemical decorated SiO2 nanofillers results in a slight 

viscosity decrease in GL/ChCl DES base solvent, the same phenomenon can be observed in 

EG/ChCl based solvent system. These uncommon experimental results demonstrated that the 

addition of nanoparticle could offer a positive effect on the decrease of viscosity. It is well 

recognized that viscosity of liquid is mainly determined by the interaction between the molecules.50, 

51 The decreasing of viscosity was mainly beneficial from interaction between nanoparticles and 

base solvent, which was mainly constituted by hydrogen bonding effect, thus the hydrogen bonding 

effect among base solvent molecule, a hydrogen donor component, would be partially ruined. 

Therefore we assumed that this interrupting effect that caused by the participation of nanoparticle 

was responsible for the decreasing of relative viscosity.

Viscosities of nanofluids with different mass fraction of nanofiller were then subjected to test. As 

shown in Fig. 6c, viscosities of nanofluids lies below GL/ChCl base solvent when 1.0 wt%, 2.0 wt% 

and 3.0 wt% of SiO2-SH-DP-Cu were used as nanofiller, and the lowest viscosity value is found in 

the case of 3.0 wt% nanofluids. While the viscosities increase to some degree when the mass fraction 

of nanoparticle is more than 3.0 %. This result indicated that the shearing effect between nanofiller, 

which would lead to viscosity increase, has overwhelmed the intermolecular hydrogen bonding 

effect between nanofiller and base solvent. Therefore, viscosity of the whole nanofluids system was 

raised. The similar phenomenon was found in EG/ChCl DES based nanofluids, viscosity of 

nanofluids exhibited an decreasing trend in the initial stage, but rising up after dispersing a mass 

fraction of nanoparticle more than 2.0% (Fig. 6d). Notably, the hydrogen bonding interrupting effect 

in EG/ChCl DES system which caused by nanoparticle was weaker than that of GL/ChCl owing to 

its relatively low hydrogen bonding concentration. Therefore, viscosity enhancement phenomenon 

derived from nanoparticle becomes a dominating factor to impact the performance of the base 

solvent for EG/ChCl DES system. It should be noted that this uncommon phenomenon has actually 

been unveiled in literatures, in particular for those solvent system involving fertile intermolecular 

hydrogen bonding.51

After knowing the static characteristics of the as-prepared copper silica hybrid nanoparticle, the 

convective heat transfer coefficient h was submitted to study with the aim at understanding the flow 
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convective performance of the nanofluids. Fig. 7a is a schematic diagram of the experimental setup 

for testing the heat transfer performance of nanofluids, it is constituted by a nanofluids reservoir 

equipped with a magnetic stirrer, two pumps, a heat transfer test section, a water bath which severed 

as low temperature regulation unit, a flow meter, a tubular heat exchanger and a data acquisition 

system. Before the h testing experiment, some factors that related thermophysical properties were 

calculated. At the first, the density of nanofluids can be calculated as eqn (1) 52,

                                                 (1)ρ𝑛𝑓 = (1 ― 𝜑)ρ𝑏𝑓 +𝜑ρ𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 

where nf , bf  and p refer to the density of nanofluid, base fluid and nanoparticle, respectively.  

is volumetric fraction of nanoparticles. Assuming that the nanoparticle and the base solvent are in 

thermal equilibrium, the specific heat capacity of this type mixture can be obtained by eqn (2) 52,

                                         (2)𝑐𝑝, 𝑛𝑓 =  
𝜌𝑝

𝜌𝑛𝑓
𝑐𝑝, 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 +(1 ― 𝜑)

𝜌𝑏𝑓

𝜌𝑛𝑓
𝑐𝑝, 𝑏𝑓

Where cp,nf  represents the specific heat capacity of nanofluid, cp,Particle is the specific heat capacity 

of nanoparticle, and cp,bf is assigned to specific heat capacity of base fluid. Then the specific heat 

capacity of nanofluids can be calculated as eqn (3),  

                                                (3)𝑐𝑝, 𝑛𝑓 =  
𝜌𝑝𝑐𝑝, 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 +  (1 ― 𝜑)𝜌𝑏𝑓𝑐𝑝, 𝑏𝑓  

(1 ― 𝜑)𝜌𝑏𝑓 + 𝜌𝑝

The average heat transfer rate of working fluids in the Qnf can be calculated as: 

                                                    (4)𝑄𝑛𝑓 = 𝑞𝑣𝜌𝑛𝑓𝑐𝑝, 𝑛𝑓(𝑡𝑜𝑢𝑡 ― 𝑡𝑖𝑛)

where qv is the volumetric flow rate of nanofluids, tout and tin are the output and input temperature of 

nanofluids respectively, and it can be converted to mass flow rate after multiplying the density of 

nanofluids, thus Qnf can be calculated as eqn (5): 

                                                      (5)𝑄𝑛𝑓 = 𝑞𝑛𝑓𝑐𝑝, 𝑛𝑓(𝑡𝑜𝑢𝑡 ― 𝑡𝑖𝑛)

Eqn (9) is used to verify the inner temperature of flow pipeline, where  refers to thermal 

conductivity of copper, tw,o and tw,i are the outside and inner temperature of tube respectively, U and 

I represent the electricity voltage and current displayed in the controller.  

                                                         (6)∅ =  
2𝜋(𝑡𝑤,𝑜 ― 𝑡𝑤,𝑖)

𝑙𝑛
𝑑𝑜
𝑑𝑖

= 𝑈𝐼

tw,i can be obtained according to eqn (6), thus, the average convective heat transfer coefficient h can 

be calculated using the Newton cooling eqn (7), where tf is the average temperature of nanofluids 
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in the testing tube and it is the mean value of output and input temperature of nanofluids (eqn (8)).  

                                                                (7)ℎ =
𝑄𝑛𝑓

𝜋𝑑𝑖(𝑡𝑤,𝑖 ― 𝑡𝑓)

                                                                  (8)𝑡𝑓 =  
𝑡𝑜𝑢𝑡 + 𝑡𝑖𝑛

2

                                                 (9)𝑅𝑒 =
𝑢𝑑𝑖


=

ρ𝑛𝑓𝑑𝑖

𝜇 ·𝑢 =
ρ𝑛𝑓𝑑𝑖

𝜇 ·
𝑞𝑣

𝜋
4𝑑𝑖

2

According to the above equations, thermo-physical properties of different types silica filled 

EG/ChCl DES based nanofluids were shown in table 3. To facilitate the comparison among different 

nanofluids and base solvents, we fixed the base solvent of nanofluids at EG/ChCl = 3:1, the mass 

fraction of nanoparticle at 1.0%. As it is presented in Fig. 7b the convective heat transfer coefficients 

of nanofluids are much higher than that of base solvent regardless of Reynolds number. In the low 

Reynold number range, SiO2-SH displays the optimum convective heat transfer performance mainly 

due to the relatively smaller size of the SiO2-SH compared with the other two chemical modified, 

for which, a more dynamic Brownian motion could be theoretically expected. While, as the increase 

of Reynold number, SiO2-SH-DP-Cu filled nanofluids affords the superior convective heat transfer 

coefficient over the rest of two kinds of nanofluids that a 24.9% heat transfer coefficient 

enhancement was obtained compared with that of base solvent at a Reynolds number of 1400. This 

phenomenon further proves that the chemical modified silica nanoparticles filled nanofluids not 

only displays a better thermo-physical performance regarding static state, but also the convective 

heat transfer in a dynamic condition is beneficial from the existence of Cu on the surface of silica 

owing to the thermal conductivity enhancement effect.

In order to understand the deep mechanism responsible for the stability improvement of SiO2-

SH-DP in glycerol, a molecular dynamic simulation was conducted by using SiO2 nanoparticle as a 

comparison sample. The molecular dynamic simulations method was demonstrated in supporting 

information (SI). As it is shown in Fig. 8a and 8b, interface interactions between SiO2, SiO2-SH-

DP and glycerol molecule were taken into account, the bottom part stands for the surface of 

nanoparticle and the upper dispersing molecule represents the solvent of GL. The number of vicinal 

oxygen atom on the surface of nanoparticles as a function of radial distribution was plotted in Fig. 

8c, the area blow the curve thus means the coordinate effect of GL on the vicinal of SiO2 

nanoparticles, it is obvious that the coordination effect between liquid and solid interface becomes 
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stronger after covalent modification of alkane chain, which clearly proves that affinity between 

nanoparticle and solvent is improved owing to the existence of alkane chain. In addition, the 

diffusion coefficient significantly decreases after decorating with the alkane chain (table 4), which 

also supports the assumption that interaction between SiO2-SH-DP and glycerol was enhanced 

compared with that of SiO2 and glycerol molecule. Hydrogen bond lifetime analysis regarding 

glycerol molecule provides another evidence to the interaction between solid and liquid phase since 

it increases from 539.563 fs to 541.798 fs after alkane modification which means that the alkane 

chain renders the increment of hydrogen bond interaction thanks to the contribution of interaction 

between nanoparticle and solvent molecule. Hence, all of the data obtained from molecular dynamic 

simulation could support our hypothesis that the affinity of SiO2 and glycerol was much improved 

due to grafting of alkane chain on its surface, which in turn resulted in the enhancement of stability 

of the as-prepared nanofluids.

Conclusions

A chemically decorated silica filled DES based nanofluid that could fulfill both thermal conductivity 

enhancement and static stability was fabricated by rendering DP derivative as a covalently linker 

with the aid of catalytic amount of Lewis acid. DP was employed as dual alkane brush and metal 

nanoparticle anchor to ensure the superior performance of SiO2-SH-DP-Cu in DES base solvent 

system. This work represent the concept of sustainability well since the main raw material, DP, is 

made from a convenient three-component reaction in water, and DESs are also produced from 

environmental benign solvents and chemicals. Moreover, the synthesized nanofluids were applied 

into energy transfer. 12.5% and 13.6% thermal conductivity were achieved in GL/ChCl and 

EG/ChCl DES system respectively with a promising stability. The mechanism responsible for 

stability enhancement was evidenced by a molecular dynamic simulation that the intermolecular 

hydrogen bonding effect between base solvent and nanoparticle has an important role. Given the 

wide liquid range, high static thermal conductivity and convective heat transfer efficiency, 

nanofluids developed in this article bearing a great potential for further thermal management and 

energy harvesting application field.   
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Experimental section

Materials

Unless otherwise noted, the reagents were used as received without further purification. Pure 

anhydrous glycerol (99.8%) and (3-mercaptopropyl)trimethoxysilane (99.0%) were purchased from 

Shanghai Aladdin Bio-Chem Technology Co., Ltd. Choline chloride, EG (99.8%), tetraethyl 

orthosilicate (TEOS) were purchased from National Medicines Corporation Ltd. China. SiC and 

Fe3O4 were purchased from Nanjing Xianfeng Nanotechnology Company. n-Hexadecylamine was 

purchased from Tokyo Chemical industry Co., Ltd (TCI), Japan. Cupric acetylacetonate was 

purchased from Sigma-Aldrich Company. 

FT-IR spectra were recorded using a Bruker VERTEX 70 FT-IR as KBr discs. Thermal 

gravimetric analysis (TGA) was carried out on a TA SDT Q600 instrument under a nitrogen 

atmosphere by heating from room temperature to 800 °C at a rate of 10 °C min−1. X-ray diffraction 

(XRD) patterns were recorded on a diffractometer (Smartlab, Rigaku) with Ni-filtered CuK α 

radiation (k = 0.154 nm) at a tube current of 30 mA and a generator voltage of 40 kV. Scanning was 

performed at a speed of 8 °C min−1, from 0 to 80° of 2θ. The viscosities of nanofluids were 

measured by digital rotary viscometer (NDJ-79B, Shanghai changji geological 

instrument Co.LTD, China). The thermal conductivities were measured by a Xiatech TC3000L 

liquid thermal conductivity analyzer, the testing temperature was adjusted and controlled by a water 

bath and an insulated chamber. X-ray photoelectron spectra (XPS) were recorded on a SHIMADZU-

Kratos AXIS-ULTRA DLD-600W X-ray photoelectron spectrometer at a base pressure of 2 × 10−9 

Pa in the analysis chamber using Al Kα radiation. Scanning electron microscopy (SEM) images 

were recorded using a FEI Sirion 200 field-emission scanning electron microscope operating at 10 

kV. Transmission electron microscopy (TEM) were recorded using a FEI Tecnai G2 F20 equipped 

with an X-ray energy dispersive spectroscopy (EDS).

Uncertainty analysis

Uncertainty analysis is taken into account. Due to the uncertainty of the data acquisition device and 

thermocouples, the temperature measurement error range for each measuring point is ±0.5 oC. The 

accuracy of rotary viscometer is ±3% at a working temperature from 0 to 100 oC. The thermal 
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conductivity analyser has an accuracy of ±3% at a working temperature from -200 to 150 oC.

Preparation of SiO2-SH

To a 250 ml round bottom flask, n-hexadecylamine (3.31 mmol, 0.8 g) was dissolved at room 

temperature in an aqueous mixture of water (18 mL) and ethanol (21 mL). Then, tetraethoxysilane 

(TEOS, 0.039mol, 4.15 g) and (3-mercaptopropyl)trimethoxysilane (MPTMS, 1.97 g, 0.01 mol) 

were premixed in ethanol (14 mL) and simultaneously dropped in the reaction mixture through a 

dropping funnel at a 50 oC reaction temperature. The mixture was allowed to stir for another 20 h. 

After completion of the reaction, the resulting mixture was subjected to filtration to obtain a white 

powder raw silica material. The final SiO2-SH nanomaterial (1.89 g) was gained after a soxhlet 

washing with methanol as solvent for 48 h and drying in a 60 oC oven for 18 h. 

Preparation of SiO2-SH-DP

To a 100 mL round bottom flask, SiO2-SH (2.0) was mixed with DP (4.0 mmol, 0.85 g) and ZnCl2 

(0.8 mmol, 0.109 g) in acetonitrile (20 mL). The mixture was heated to 80 oC and stirred at that 

temperature for 10 h. After the completion of reaction, the mixture was then undergone a filtration 

and ethanol washing for three times. SiO2-SH-DP (2.42 mg) was obtained as a white powder after 

drying for 18 h in a 60 oC oven. 

Preparation of SiO2-SH-DP-Cu

To a 100mL round bottom flask, SiO2-SH-DP (0.5 g) was mixed with Cu(acac)2 (0.2 mmol, 52.0 

mg) in ethanol (20 mL). The mixture was heated to 70 oC and stirred at that temperature for 24 h. 

NaBH4 (6.873 mmol, 260 mg) was added into the reaction in one portion, the solution was continued 

to stir at the same temperature for another 24 h. SiO2-SH-DP-Cu (349.8 mg) was obtained as a white 

powder after drying for 18 h in a 60 oC oven.

Preparation of GL/ChCl DES32

The reaction was conducted in a 500 mL round bottom flask with a magnetic stirrer. GL (150 g, 

1.63 mol) was mixed with ChCl (75.5 g, 0.54 mol).The mixture was heated to 100 oC and allowed 

to stir for 1 h. GL/ChCl DES was obtained after cooling the mixture to room temperature. Unless 

otherwise noted the mole ratio of GL to ChCl and GC to ChCl was 3:1 in this paper. 

A typical preparation procedure of nanofluids

The reaction was conducted in a 50 mL glass sealed tube with a magnetic stirrer. GL/ChCl DES 
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(100 mL) was mixed with silica nanoparticle (varied according to the mass fraction of the nanofiller), 

the mixture was then heated to 80 oC and allowed to stir for 2 h. After reaction, the mixture was 

cooled to room temperature. Subsequently, the solution was subjected to sonication (53 KHz) for 2 

h to obtain the final nanofluid. 
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Figure captions:
Fig. 1 A logical research thread of this work.

Fig. 2 (a) Schematic illustration of the DP and Cu nanoparticle modified SiO2 nanoparticle, (b) 

preparation procedure and conditions of SiO2-SH, SiO2-SH-DP and SiO2-SH-DP-Cu. 

Fig. 3 SEM image of (a) SiO2-SH, (b) SiO2-SH-DP, (c) SiO2-SH-DP-Cu; TEM image of (d) SiO2-

SH, (e) SiO2-SH-DP, (f) SiO2-SH-DP-Cu; TEM image of (g) SiO2-SH, (h) SiO2-SH-DP, (i) SiO2-

SH-DP-Cu; (j) EDS elemental mapping of SiO2-SH-DP-Cu. 

Fig. 4 (a) XRD, (b) FT-IR, (c) 13C MAS NMR, (d) TGA spectra of the as-prepared chemical 

modified silica; XPS spectra of SiO2-SH-DP in the region of (e) C 1s and (f) Cu 2p; XPS spectra of 

SiO2-SH-DP-Cu in the region of (g) C 1s and (h) Cu 2p.

Fig. 5 Thermal conductivity (a) and thermal conductivity enhancement (b) of GL/ChCl based 

nanofluids with different types of nanofillers; thermal conductivity (c) and thermal conductivity 

enhancement (d) of EG/ChCl based nanofluids with different types of nanofillers; thermal 

conductivity (e) and thermal conductivity enhancement (f) of GL/ChCl based nanofluids with 

different mass fraction of SiO2-SH-DP-Cu; thermal conductivity (g) and thermal conductivity 

enhancement (h) of EG/ChCl based nanofluids with different mass fraction of SiO2-SH-DP-Cu.

Fig. 6 Viscosity of (a) GL/ChCl and (b) EG/ChCl based nanofluids with different types of 

nanofillers; viscosity of (c) GL/ChCl and (d) EG/ChCl based nanofluids with different mass fraction 

of SiO2-SH-DP-Cu.

Fig. 7 (a) Schematic diagram of convective heat transfer coefficient testing platform, (b) convective 

heat transfer coefficient as a function of Reynolds number.

Fig. 8 Molecule model description of (a) SiO2/glycerol system, (b) SiO2-SH-DP/glycerol system, 

(c) the number of vicinal oxygen atom on the surface of nanoparticles as a function of radial 

distribution. 

Page 20 of 31

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table captions:

Table 1 Summary of silica nanoparticles in this work.

Table 2 Some reported results on the thermal conductivity performance of silica filled nanofluids.

Table 3 Some related thermo-physical parameters of EG/ChCl based nanofluids.

Table 4 The diffusion coefficient and lifetime of SiO2/glycerol heterogeneous system.
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Fig. 1 A logical research thread of this work.

(a)

(b)

Fig. 2 (a) Schematic illustration of the DP and Cu nanoparticle modified SiO2 nanoparticle, (b) preparation procedure 
and conditions of SiO2-SH, SiO2-SH-DP and SiO2-SH-DP-Cu. 
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C O Si S Cu

Fig. 3 SEM image of (a) SiO2-SH, (b) SiO2-SH-DP, (c) SiO2-SH-DP-Cu; TEM image of (d) SiO2-SH, (e) SiO2-SH-

DP, (f) SiO2-SH-DP-Cu; TEM image of (g) SiO2-SH, (h) SiO2-SH-DP, (i) SiO2-SH-DP-Cu; (j) EDS elemental 

mapping of SiO2-SH-DP-Cu. 
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Fig. 4 (a) XRD, (b) FT-IR, (c) 13C MAS NMR, (d) TGA spectra of the as-prepared chemical modified silica; XPS 
spectra of SiO2-SH-DP in the region of (e) C 1s and (f) Cu 2p; XPS spectra of SiO2-SH-DP-Cu in the region of (g) 
C 1s and (h) Cu 2p.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

  

Fig. 5 Thermal conductivity (a) and thermal conductivity enhancement (b) of GL/ChCl based nanofluids with 

Page 26 of 31

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



different types of nanofillers; thermal conductivity (c) and thermal conductivity enhancement (d) of EG/ChCl based 

nanofluids with different types of nanofillers; thermal conductivity (e) and thermal conductivity enhancement (f) of 

GL/ChCl based nanofluids with different mass fraction of SiO2-SH-DP-Cu; thermal conductivity (g) and thermal 

conductivity enhancement (h) of EG/ChCl based nanofluids with different mass fraction of SiO2-SH-DP-Cu.

(a) (b)

(c) (d)

       
Fig. 6 Viscosity of (a) GL/ChCl and (b) EG/ChCl based nanofluids with different types of nanofillers; viscosity of 
(c) GL/ChCl and (d) EG/ChCl based nanofluids with different mass fraction of SiO2-SH-DP-Cu.
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(a) (b)

Fig. 7 (a) Schematic diagram of convective heat transfer coefficient testing platform, (b) convective heat transfer 

coefficient as a function of Reynolds number. 

(a) (b)

(c)

 

Fig. 8 Molecule model description of (a) SiO2/glycerol system, (b) SiO2-SH-DP/glycerol system, (c) the number of 

vicinal oxygen atom on the surface of nanoparticles as a function of radial distribution. 
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Table 1 Summary of silica nanoparticles in this work.

Sample name Preparation procedure

SiO2-SH Made from TEOS and MPTMS through a base mediated sol-gel method

SiO2-SH-DP Treated SiO2-SH with DP under the catalysis of Lewis acid

SiO2-SH-DP-Cu Treated SiO2-SH-DP with Cu(acac)2 and followed by NaBH4 reduction

Table 2 Some reported results on the thermal conductivity performance of silica filled nanofluids.

Base solvent Author Fraction of silica Thermal 
conductivity 
enhancement 
(%) 

Reference

Water Hwang
et al.

1.0 vol% 3.0 53

Water Iqbal et al. 1.0 vol% 6.0 54

Water Yan et al. 5.0 wt% 6.8 55

Water Xie et
al.

4.0 vol% 10.0 56

Water Pryazhnikov et 
al.

2.0 vol% 7.2 57

Water Ferrouillat et al. 5.0 wt% 10.0 58

Ethanol Mohammad et 
al.

0.44 vol% 6.0 59

GL Akilu et al. 2.0 vol% 6.1 60

Water Guo et al. 0.5 vol% 1.0 61

EG Guo et al. 1.0 vol% 3.4 61

Table 3 Some related thermo-physical parameters of EG/ChCl based nanofluids.

Nanoparticle Density (Kg/m3) Specific heat Viscosity (mPa·s)
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capacity 

(J/(Kg·K))

-- 1086.4 2.504 24.2

SiO2-SH 1083.5 2.503 24.7

SiO2-SH-DP 1076.8 2.504 23.4

SiO2-SH-DP-Cu 1081.0 2.504 21.8

Table 4 The diffusion coefficient and lifetime of SiO2/glycerol heterogeneous system.

Heterogeneous 
system

Diffusion 
coefficient 

(×10-12 m-1·s-1)

Lifetime of 
hydrogen 
bond (fs)

SiO2/Glycerol 3.32975 539.563

SiO2-SH-
DP/Glycerol

1.86119 541.798
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For Table of Contents Use Only
A chemically decorated silica filled DES based nanofluid that could fulfill both thermal conductivity 
enhancement and static stability was fabricated.
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