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In this paper we deal with the category of nonlinear evolution equations~NLEEs!
associated with the spectral problem and provide an approach for constructing their
algebraic structure andr -matrix. First we introduce the category of NLEEs, which
is composed of various positive order and negative order hierarchies of NLEEs
both integrable and nonintegrable. The whole category of NLEEs possesses a gen-
eralized Lax representation. Next, we present two different Lie algebraic structures
of the Lax operator: one of them is universal in the category, i.e., independent of
the hierarchy, while the other one is nonuniversal in the hierarchy, i.e., dependent
on the underlying hierarchy. Moreover, we find that two kinds of adjoint maps are
r -matrices under the algebraic structures. In particular, the Virasoro algebraic struc-
tures without a central extension of isospectral and nonisospectral Lax operators
can be viewed as reductions of our algebraic structure. Finally, we give several
concrete examples to illustrate our methods. Particularly, the Burgers’ category is
linearized when the generator, which generates the category, is chosen to be inde-
pendent of the potential function. Furthermore, an isospectral negative order hier-
archy in the Burgers’ category is solved with its general solution. Additionally, in
the KdV category we find an interesting fact: the Harry–Dym hierarchy is con-
tained in this category as well as the well-known Harry–Dym equation is included
in a positive order KdV hierarchy. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1532769#

I. INTRODUCTION

The integrability study of nonlinear evolution equations has been an attractive topic in soliton
theory and nonlinear phenomenon. Calogero1 proposed theC-integrable~namely, linearizable by
an appropriate change of variables! andS-integrable~namely, integrable via some spectral trans-
form technique! terminology for dealing with nonlinear partial diiferetial equations~PDEs!. Many
nonlinear PDEs were shownC-integrable andS-integrable.2 Mikhailov, Shabat and Sokolov3

discussed some classes of nonlinearC-integrable andS-integrable PDEs through using the sym-
metry approach. Flaschka, Newell and Tabor4 considered in detail the Painleve analysis process
for both ODEs and PDEs and investigated its test for integrable equations.

a!Electronic mail: qiao@cnls.lanl.gov; qiaozj@hotmail.com
b!Electronic mail: cwcao@public2.zz.ha.cn
c!Electronic mail: strampp@hrz.uni-kassel.de
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On the other hand, ther -matrix method is also an important part in classical and quantum
integrable systems.5 The classicalr -matrix has been first introduced by Sklyanin in Refs. 6 and 7
as the limit of its quantum counterpart. Subsequently, Drinfeld used this to introduce a new
geometric notion, that of a Poisson Lie group.8 Following Drinfeld’s ideas8 Semenov–Tian–
Shansky showed that the concept of a classicalr -matrix leads to an algebraic construction of
integrable systems generalizing the AKS scheme. In terms of ther -matrix9 an effective view of the
multi-Hamiltonian property of such equations can be presented. In addition, it gives a general
explanation of the dressing transformations used for obtaining solutions in terms of group
factorizations.10 In Ref. 11 Jimbo constructed explicit solutions of the quantum YB equation for
the generalized Toda system and moreover obtained many beautiful results12–14 by using the
r -matrix method.

For the study of an algebraic structure of integrable evolution equations, there has also been
a discussion in the literature. For example, the well-knownW-algebra was constructed by Orlov
and Schulman through using the vertex operator.15 The KP system was also found to have this
kind of W-algebraic structure by Dickey,16 which includes the Virasoro algebra as its subalgebra.
TheW-algebra played an important role in the so-called second Poinsson structure.16 For this, the
most important thing is to find the generators ofW-algebra. All these facts were only for the case
of integrable hierarchies. How about the case for both integrable and nonintegrable hierarchies? In
this paper we will deal with this problem through introducing the category of nonlinear evolution
equations~NLEEs!. The category of NLEEs develops the positive order to the negative order
hierarchies for both the integrable and the nonintegrable cases. In particular, the positive and the
negative order integrable hierarchies will be generated by the recursion operator, its inverse, and
some kernel elements from the pair of Lenard’s operators. Mikhailov, Shabat and Sokolov3 ex-
tended the integrable equations by employing the symmetry procedure and discussed the classifi-
cations for the integrable hierarchies. All of their results were forC-integrable andS-integrable
cases. In this paper, we will discuss the case for both integrable and nonintegrable hierarchies and
will not interfere with the existence of symmetries. Here, we point out that throughout this paper:
‘‘integrable’’ means the sense of Lax, namely, the PDE admits isospectral~i.e., l t50) or usual
nonisospectral~i.e., l t5aln, nPZ, aPR/C) Lax form; otherwise, we say the PDE is noninte-
grable in the sense of the Lax form.

Our purpose in the present paper is to give an approach to the category of nonlinear evolution
equations directly from a spectral problem and to connect ther -matrix to the category of NLEEs.
The whole paper is organized as follows. In the next section we first introduce the notation of the
category of NLEEs, which is composed of various positive and negative order hierarchies of both
integrable and nonintegrable NLEEs, and then we give the generalized Lax representation~GLR!.
In Secs. III and IV we, respectively, present two different Lie algebraic structures of the Lax
operator. One structure is produced independently of the hierarchy in the category while the other
holds only within one hierarchy. Moreover, by using these algebraic structures we find that two
kinds of adjoint maps result inr -matrices for the NLEEs. In Sec. V, it is pointed out that the well
known Virasoro algebraic structures~without the central extension! of isospectral and nonisospec-
tral Lax operators are obtained as reductions of our algebraic structure. Finally, in Sec. VI the
examples of several continuous spectral problems are given to illustrate our methods. Particularly,
the Burgers’ category is linearized when the generator, which generates the category, is chosen to
be independent of the potential function. Furthermore, an isospectral negative order hierarchy in
the Burgers’ category is solved with its general solution. Additionally, in the KdV category we find
an interesting fact: the Harry–Dym hierarchy is contained in this category as well as the well-
known Harry-Dym equation is included in a positive order KdV hierarchy.

Before displaying our main results, let us first give some necessary notations:
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for arbitrarily fixed t, S(Rl ,R) stands for the Schwartz function space onRl . B denotes all
complex~or real! value functionsP(x,t,u) of the classC` with respect tox, t, and of the class
C` in Gateaux’s sense with respect tou. B N5$(P1 , . . . ,PN)TuPiPB%, V N stands for all linear
operatorsf5f(x,t,u): B N→B N which are of the classC` with respect tox, t, and of the class
C` in Gateaux’s sense with respect tou.

The Gateaux derivate of vector functionXPB n in the directionYPB m is defined by

X* ~Y!5
d

de U
e50

X~u1eY!. ~1.1!

For the two arbitrary vector fieldsX, YPB m, define the following operation:

@X, Y#5X* ~Y!2Y* ~X!. ~1.2!

Then,B m composes a Lie algebra about the above multiplication operation.17 For the operator
fPV N, its Gateaux derivate operatorf* :B m→V N in the directionj is defined as follows:

f* ~j!5
d

de U
e50

f~u1ej!, jPB m. ~1.3!

If not otherwise stated, the spectral operatorsL5L(u) @or the spectral operatorsL
5L(u, l) with the spectral parameterl# considered in this paper are denoted byLPV N, and we
always assume thatL* :B m→V N is an injective homomorphism. An operatorH acting on a
function f is denoted byH• f . I stands for theN3N unit operator.

II. CATEGORY OF NLEEs AND GENERALIZED LAX REPRESENTATION „GLR…

In this section, a procedure for constructing the category of NLEEs and generalized Lax
representations are presented, and, moreover, it is shown how to construct theL2A2B triple
representation18 for a given nonlinear quation.

Let us start from a generalN3N spectral problem:

L•c5lc, LPV N, ~2.1!

wherel is a spectral parameter,cPB N. Denote the functional gradient of spectral parameterl
with regard to the potential vectoru by dl/du 5(dl/du1 ,¯ , dl/dum)T. Tu and Cao, respec-
tively, gave some discussions about the calculations of the functional gradient in Ref. 19 and Ref.
20. Strampp ever studied recursion operators, spectral problems, and Ba¨cklund transformations by
introducing a relation between recursion operators and eigenvalue functions.21,22 Thus, we define
the Lenard operators as follows:

Definition 2.1: If there exists a pair of m3m operators K5K(u), J5J(u): Sm(Rl , R)
→Sm(R,R) such that

K•

dl

du
5lcJ•

dl

du
, ~2.2!

then K, J are called a pair of Lenard operators of (2.1), and (2.2) is called the Lenard spectral
problem of (2.1). Here the constant c is definitely chosen by the concrete form of (2.1).

In many cases, there exist~but not unique! the pair of Lenard’s operators satisfying~2.2!, and
frequently both of them are Hamiltonian operators. For instance, for the KdV–Schro¨dinger spec-
tral problemcxx1uc5lc, dl/du 5c2, only choosingK52 1

4]
32 1

2(u]1]u), J5]5 ]/]x, we
haveK• dl/du 5lJ• dl/du. Eq. ~2.2! plays an important role in the nonlinearization theory and
the construction of completely integrable finite-dimensional systems.23
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Let M5(mi j )N3N , M̃5(m̃i j )N3N be the arbitrarily given 11 l -dimensional@i.e., independent
variables (x, t)PRl3R, l>1] linear N3N matrix operators. Then we have the following defi-
nitions.

Definition 2.2: G0PSm(Rl , R), G21PSm(Rl , R) are, respectively, called the positive order
and the negative order generators, if they, respectively, satisfy the operator equations,

L* ~J•G0!5M , ~2.3!

L* ~K•G21!5M̃ . ~2.4!

Denote the solution sets of~2.3! and ~2.4! by NJ(M ) andNK(M̃ ), respectively. In general,
they are not empty.

Definition 2.3: LetNJ(M )ÞB, NK(M̃ )ÞB and choose G0PNJ(M ), G21PNK(M̃ ). Write
the recursion operatorL5J21K. The sequence$Gj% j 52`

` #Sm(Rl ,R) recursively determined by

Gj5HL j
•G0 , j >0,

L j 11
•G21 , j ,0,

~2.5!

is called the Lenard’s sequence of (2.1); the set of the following nonlinear equations:

ut5Xm~u,G0 ,G21!, mPZ, ~2.6!

produced by the vector field

Xm~u,G0 ,G21!,J•Gm , mPZ, ~2.7!

is called the category of nonlinear evolution equations of (2.1). The subset of the equations (2.6)
obtained for m>0 is called the positive order category while the subset obtained for m,0 is
called the negative order category.

Apparently, the positive and the negative order generatorsG0 , G21 depend on the choice of
matrix operatorsM , M̃ , thus the category~2.6! is composed of various hierarchies~both inte-
grable and nonintegrable! of NLEEs which are generated according to the choice of operatorsM ,
M̃ .

For example, withM[0 ~i.e., G0PKer J), the hierarchy in the positive order category of
~2.6! just reads as the isospectral hierarchy of evolution equations;24 with M̃[0 ~i.e., G21

PKerK), the hierarchy in the negative order category of~2.6! is exactly the second isospectral
hierarchy of evolution equations studied in Ref. 25. Additionally, the negative order generator
G21 can be considered to produce finite-dimensional constrained Hamiltonian systems.26 Obvi-
ously, the negative order category of~2.6! is generated with the help of the inverse recursion
operatorL. Strampp and Oevel gave the inverse recursion operator in an explicit form for the
nonlinear derivative Schro¨dinger equation.27 In 1991 we suggested the commutator representa-
tions for the negative order hierarchy of isospectral NLEEs.28 Afterwards, we29 further found that
the same spectral problem can generate two different hierarchies of integrable NLEEs: one is the
usual higher order~i.e., positive order! hierarchy of NLEEs, the other is the negative order
hierarchy of NLEEs. All these equations have the Lax representations.29 Here we study the gen-
eralized case, i.e., the category of NLEEs.

With M5I or M̃5I , under the basic conditionNJ(I )ÞB or NK(I )ÞB, Eq. ~2.6! actually
gives the positive and the negative order hierarchies of nonisospectral evolution equations, which
can be obtained from the following, Theorem 2.2. Thus, by the arbitrariness ofM and M̃ , Eq.
~2.6! unifies together all possible hierarchies of evolution equations associated with the spectral
problem ~2.1!. Due to this fact, Eq.~2.6! is named ‘‘the category of nonlinear evolution equa-
tions.’’

704 J. Math. Phys., Vol. 44, No. 2, February 2003 Qiao, Cao, and Strampp

Downloaded 26 Aug 2003 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



Theorem 2.1: Let M5(mi j )N3N , M̃5(m̃i j )N3N be two arbitrarily given N3N linear ma-

trix operators, NJ(M )ÞB, and NK(M̃ )ÞB. Suppose that for G5(G[1] ,...,G[m] )T

PSm(Rl , R) and a,bPZ the operator equation,

@V,L#5L* ~K•G!Lb2L* ~J•G!La, ~2.8!

possesses a solution V5V(G); then the vector field Xm5Xm(u,G0 ,G21) satisfy

L* ~Xm!5@Wm ,L#1M̄Lmh, mPZ, M̄5H M , m>0,

M̃ , m,0,
~2.9!

whereh5a2b and the operator Wm is given by

Wm5( V~Gj !L
(m2 j )h2a, ( 55 (

j 50

m21

, m.0,

0, m50,

2 (
j 5m

21

, m,0.

~2.10!

Here Gj are determined by (2.5), and L21 is the inverse of L, i.e., LL215L21L5I , and @•,•#
denotes the usual commutator.

Proof: For m50, it is obvious. Form.0,

@Wm ,L#5 (
j 50

m21

@V~Gj !,L#L (m2 j )h2a

5 (
j 50

m21

$L* ~K•Gj !L
(m2 j 21)h2L* ~J•Gj !L

(m2 j )h%

5 (
j 50

m21

$L* ~J•Gj 11!L (m2 j 21)h2L* ~J•Gj !L
(m2 j )h%5L* ~Xm!2L* ~J•G0!Lmh

5L* ~Xm!2MLmh.

For m,0, the proof is similar. j

Remark 2.1:The structure equation~2.8! of commutator representations is a natural generali-
zation of the structure equation@V,L#5L* (K•G)2L* (J•G)L presented by Cao Cewen.30

Remark 2.2:The choice of constantsa,bPZ is determined by the concrete form of~2.1!. In
many cases,29 V5V(G) can be solved for the givenL.

Theorem 2.2:The category (2.6) of NLEEs has the following representation:

Lt5@Wm ,L#1M̄Lmh, mPZ, M̄5H M , m.0,

M̃ , m,0.
~2.11!

Proof: For m>0, becauseL* (ut)5Lt andL* is injective,

Lt5@Wm ,L#1MLmh⇔L* ~ut2Xm!50⇔ut5Xm ,

which completes the proof. j

Definition 2.4: Equation (2.11) and Wm are called the generalized Lax representations (GLR)
and the generalized Lax-operator (GLO), respectively.
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Obviously, withM̄50 ~i.e., G0PKer J, G21PKerK), Eq. ~2.11! reduces the standard~i.e.,
isospectral case:l t50) Lax representations, and withM̄5I @of courseNJ(I )ÞB and NK(I )
ÞB are needed#, Eq.~2.11! reduces the nonisospectral~i.e.,l t5lmh, mPZ) Lax representations.
For two special cases: the isospectral case~i.e. M5M̃50) and the nonisospectral case~i.e., M

5M̃5I ), Ma31 discussed the Lax operator algebras of the positive order~i.e., m.0) hierarchy of
NLEEs. But a general framework has not been obtained for all integermPZ and all linear matrix
operatorsM ,M̃ . In the following sections, we shall construct a general frame–generalized alge-
braic structure and furthermore present ther -matrix for the category of NLEEs.

Remark 2.3:Equation~2.11! admits the structure ofL2A2B representations of the category
~2.6! in an explicit form. Thus, we give a constructive approach to the Manakov operator pairA,
B in the L2A2B triple representation.18 In Ref. 32, we determined the range of theL2A2B
triple representation through defining the Lie quotient algebras.

Remark 2.4:Equation~2.11! contains both the integrable and the nonintegrable hierachies
because of the multiple choices ofM̄ . Therefore, our category of NLEEs are not included in the
system of multi-component KP and its reduction.

Corollary 2.1: Assume that the potential vector functionu is independent oft and the fol-
lowing condition holds:

F (
i 52r

s

ciWi ,LG52M̄ (
i 52r

s

ciL
ih,

with constantsci (2r< i<s). Thenu will satisfy the stationary system of the category~2.6!:

(
i 52r

s

ciXi~u!50, ;r ,sPZ1.

We shall give several concrete examples in Sec. VI.

III. UNIVERSAL ALGEBRAIC STRUCTURE AND r -MATRIX

From ~2.9!, we have seen that for various linear matrix operatorsM ,M̃ , the category~2.6! of
NLEEs indeed yields different hierarchies of NLEEs. That means the hierarchy in the category
~2.6! changes according to the choice ofM ,M̃ . In this section, we shall construct the algebraic
structure andr -matrix which holds for all hierarchies of NLEEs in the category~2.6!. Let us start
from the following definition.

Definition 3.1: Suppose that for a spectral operator LPV N and an integer nPZ there exist
pairs (A,M ) of vector fields XPB m and operators A,MPV N with the property

@A,L#5L* ~X!2MLn. ~3.1!

Then(A,M ) is called a Manakov operator pair of L. The set of all Manakov operator pairs is
denoted byM L

n . X is called the vector field corresponding to(A,M ). The set of all vector fields
X is denoted by V(M L

n). The set of all triples(A,M ,X) is denoted byP L
n .

As long as Eq.~2.8! has an operator solution for a givenLPV N, then by theorem 2.1 and Eq.
~2.9! there exists a triple (A,M ,X)PP L

n satisfying~3.1!.
It is easy to prove the following proposition.
Proposition 3.1:

(1) The vector field associated with each Manakov operator pair is unique;
(2) bothP L

n and M L
n form linear spaces.

Apparently, if there isA, MPV N for XPB m such that Eq.~3.1! holds, thenut5X possesses
the GLRLt5@A, L#1MLn. It is not difficult to see thatP L

n andP L
0 , M L

n andM L
0 are equiva-
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lent, respectively, under the bijective mapF: P L
n→P L

0 , defined by (A, M , X)°(A, MLn, X).
So, in the following we simply considerP L

0 , M L
0 and writeM L

05ML , P L
05PL .

Definition 3.2: Let(A, M , X), (B, N, Y)PPL . In ML , define a binary operation as fol-
lows:

~A, M !(~B, N!5~A(B, M(N!, ~3.2!

where

A(B5A* ~Y!2B* ~X!1@A,B#, ~3.3!

M(N5M* ~Y!2N* ~X!1@M ,B#2@N,A#. ~3.4!

Obviously ~3.2! is a skew-symmetric and bilinear operation.
Theorem 3.1:Let (A, M , X), (B, N, Y)PPL , then(A(B, M(N, @X, Y#)PPL , andML

form a Lie algebra under the operation (3.2).
Proof: Since (V N, @•,•#) builds up a Lie algebra under the usual commutator operation, we

have

†@A, B#,L‡5†@L, B#,A‡2†@L, A#, B‡

5@L* ~X!2M , B#2@L* ~Y!2N, A#

5@L* ~X!, B#2@L* ~Y!, A#1@N, A#2@M , B#.

For arbitraryLPV N, X, YPB m, we also have

„L* ~X!…* ~Y!2„L* ~Y!…* ~X!5L* ~@X,Y# !.

Thus,

@A(B, L#5@A* ~Y!2B* ~X!1@A, B#, L#

5@A* ~Y!, L#2@B* ~X!, L#1@L* ~X!, B#2@L* ~Y!, A#1@N, A#2@M , B#

5~@A, L# !* ~Y!2~@B, L# !* ~X!1@N, A#2@M , B#

5„L* ~X!…* ~Y!2„L* ~Y!…* ~X!2M* ~Y!1N* ~X!1@N, A#2@M , B#

5L* ~@X, Y# !2M(N.

That means (A(B, M(N, @X, Y#)PPL .
Now, we shall prove the Jacobi identity. Choosing any (Ai , Mi , Xi)PPL , i 51, 2, c3, then

we have

~A1(A2!(A31c.p.5„A1* ~X2!2A2* ~X1!1@A1 , A2#…(A31c.p.

5†@A1 , A2#, A3‡1c.p.

50.

Similarly, we can show the following equality:

~M1(M2!(M31c.p.50, ~* !

which completes the proof. j

Corollary 3.1: The set of all vector fields V(ML) forms a Lie subalgebra ofB m with regard
to the operation (1.2).
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Denote the vector fields of (A, M ) and (B, N) by X and Y, respectively, thenut5X, ut

5Y represent the twodifferenthierarchies of NLEEs, respectively, determined byM ,N. Theorem
3.1 shows that there is universal algebraic structure for thedifferenthierarchies of NLEEs, and if
both ut5X, andut5Y (X, YPB m) have GLR, then so does the new hierarchy of equationsut

5@X, Y# produced byX, Y.
For the given spectral operatorLPV N, we now consider the following adjoint map:

adL :A°M5adL A5@L, A#, ;APV N. ~3.5!

Then according to the original definition of anr -matrix,9 we have the following theorem.
Theorem 3.2:The adjoint mapadL is an r-matrix.
Proof: For anyA, BPV N, write M5adL A, N5adL B. Then we have

@A, B#adL
,@adLA, B#1@A, adLB#5@M , B#1@A, N#5M(N.

The last equality holds because the associated vector fields are obviously zero. And Eq.~* ! implies
that @A,B#adL

satisfies the Jacobi identity. Thus the adjoint map adL is an r -matrix. j

In the last section we shall illustrate that through giving several examples.

IV. NONUNIVERSAL ALGEBRAIC STRUCTURE AND r -MATRIX

For a given spectral operatorLPV N and integernPZ, in the above section we discussed the
Manakov operator pair (A,M ), the universal Lie algebraic structure and ther -matrix available for
differenthierarchies of NLEEs. Now, for a givenN3N matrix operatorM and a spectral operator
LPV N, we study the operator algebra andr -matrix which can be attached only to theunderlying
hierarchy of NLEEs.

Let us first give some conventions in this section:~i! M is invertible; ~ii ! For a givenL
PV N, V L

N stands for all matrix operatorsS:B N→B N possessing the following formS
5(aPZPa(u)La, Pa(u)PB, where (aPZ is a finite sum. Next, we introduce the following
definition.

Definition 4.1: Let LPV N and M be a spectral operator and an N3N matrix operator,
respectively. If there exist a vector field XPB m and operators A,PPV L

N such that

@A, L#1M P5L* ~X!, ~4.1!

then(A, P) is said to be an LM operator pair of L. The set of all such pairs is denoted byL L
M .

X is called the vector field of(A, P) associated with LM. The set of all associated vector fields
is denoted by V(L L

M). Furthermore, we denote the set of all triples(A, P, X) by R L
M .

For a givenLPV N and anN3N matrix operatorM or M̃ theorem 2.1 and Eq.~2.8! assure
that there exists a triple (A, P, X)PR L

M satisfying ~4.1!. Definition 4.1 directly leads to the
following proposition.

Proposition 4.1:

(1) The vector field associated with each LM operator pair is unique.
(2) BothL L

M and R L
M are linear spaces.

If for given operatorsL, M there existA, PPV L
N such that~4.1! holds, then obviously the

evolution equationut5X has the following representation@also called generalized Lax represen-
tation ~GLR!#:

Lt5@A, L#1M P. ~4.2!

Now, we define a binary operation inL L
M .

Definition 4.2: Let(A, P),(B, Q )PL L
M ,X,YPV(L L

M), respectively, be the vector fields of
(A, P),(B, Q). Declare a binary operation,
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~A,P!*~B,Q!5~A*B,P*Q!, ~4.3!

through

A*B5A* ~Y!2B* ~X!1@A,B#, ~4.4!

P*Q5P* ~Y!2Q* ~X!1@A,Q#2@B,P#

1M 21
„M* ~Y!2@B,M #…P2M 21

„M* ~X!2@A,M #…Q. ~4.5!

Proposition 4.2:

(1) Equation (4.3) is a skew-symmetric, bilinear binary operation.
(2) V L

N is closed under the operations (4.4) and (4.5).

Proof: The proof follows directly from Definition 4.2. j

Theorem 4.1: Let (A, P, X),(B, Q, Y)PR L
M , then (A*B, P*Q, @X,Y#)PR L

M , where
@X, Y# is defined by (1.2). Thus under the operation (4.3)L L

M forms an algebra, and
„V(L L

M), @•,•#… composes a Lie subalgebra ofB m.
Proof: Because (A, P, X),(B, Q, Y)PR L

M , and

†@A, B#, L‡5†@L, B#, A‡2†@L, A#, B‡5@L* ~X!, B#2@L* ~Y!, A#1@MQ, A#2@M P, B#,

we have

@A*B, L#5@A* ~Y!, L#2@B* ~X!, L#1†@A, B#, L‡

5„L* ~X!…* ~Y!2„L* ~Y!…* ~X!2~M P!* ~Y!1~MQ!* ~X!1@MQ,A#2@M P, B#

5L* ~@X, Y# !2M ~P*N!,

which completes the proof. j

For a given spectral operatorL and anN3N matrix operatorM , denote the vector fields of
(A, P),(B, Q) by X, Y, respectively. Then from Sec. II we knowut5X, ut5Y are the two
different NLEEs in thesamehierarchy. Theorem 4.1 reveals that there exists an algebraic structure
available for all equations in thesamehierarchy. And ifut5X, ut5Y (X, YPB m) have the GLR
~4.2!; then the evolution equationut5@X, Y# is still in the same hierarchy, and possesses the GLR
~4.2!, too.

Remark 4.1:In general,L L
M is not forming a Lie algebra under the operation~4.3!, because

the Jacobi identity cannot be guaranteed. Nevertheless, the subsetSL
M,L L

M , considered below, is
an exception.

Set SL
M5$(A, P)PV L

N3V L
Nu P5M 21 adL A%; then SL

M is corresponding to the stationary
systemX(u)50 of evolution equationut5X(u).

Theorem 4.2:For all (A, P)PSL
M , define a map rM:A°P5M 21 adL A. The map rM is an

r -matrix under the operation (4.5) iff M5aI, aÞ0,aPR.
Proof: For any (A, P),(B, Q)PSL

M , define

@A, B# r M,@r M~A!, B#1@A, r M~B!#.

Then

@A, B# r M5@P, B#1@A, Q#5P*Q⇔M5aI, aÞ0, aPR,

i.e., the mapr M is an r -matrix ⇔M5aI, aÞ0, aPR. j
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Since M and M̃ can be fixed arbitrarily we have found two algebraic operator structures,
namely a universal one being independent of the hierarchy in the category and a nonuniversal one
depending on the underlying hierarchy. In addition, in this procedure we have found two kinds of
adjoint maps beingr -matrices.

The two algebraic structures are associated with the category of NLEEs~2.11! which includes
both the integrable and the nonintegrable cases~see Remark 2.4!. Therefore, here our algebraic
structures are not contained in anyW-algebras which are usually suitable for the integrable
hierarchy such as the KP, etc.

In the next section, we shall give two reductions of the algebraic structure and the related
r -matrix.

V. TWO REDUCTIONS: VIRASORO ALGEBRA AND r -MATRIX OF ISOSPECTRAL AND
NONISOSPECTRAL LAX OPERATOR

If we chooseM50 in Definition 4.1, then we have@A,L#5L* (X). That meansA is an
isospectral (l t50) Lax operator. Set@B,L#5L* (Y); then the operationA*B defined by~4.4!
forms an algebraic structure of the isospectral Lax operator, which just coincides with the result
described in Ref. 31. In this case, ther -matrix is zero, i.e., adL A50, ;APV N.

In this section, we always chooseM5M̃5I and assume that the conditions of Theorem 2.1
hold. Then, by Theorem 2.1, we obtain

~Wm , Lmh, sm!PR L
I , mPZ,

whereWm is expressed through~2.10!, sm stands for the corresponding vector field. ThereforeWm

is a sequence of nonisospectral (l t5lmh,mPZ) Lax operators and this matches with choosing
A5Wm , P5Lmh (mPZ), X5sm in ~4.1!. By Theorem 4.1$(Wm ,Lmh),mPZ% represents an
algebra under the operation~4.3!, which is called the nonisospectral Lax operator algebra of the
spectral operatorL. In the stationary case wheres i5s j50 the following holds.

Theorem 5.1: A realization of the operations (4.5) and (4.4) on pairs(Wi ,Lih), (Wj ,L j h)
PSL

I is given by

Lih*L j h5~ u i u2u j u!L ( i 1 j 21)h, ; i , j PZ, ~5.1!

Wi*Wj5~ u i u2u j u!Wi 1 j 21 , ; i , j PZ, ~5.2!

respectively.
Proof: For (Wi , Lih),(Wj , L j h)PSL

I , we have

@Wi , L#52Lih, @Wj , L#52L j h.

Thus, in the casei , j >0,

Lih*L j h5@Lih, Wj #2@L j h, Wi #

5 (
k50

i 21

L ( i 212k)hIL (k1 j )h2 (
k50

j 21

L ( j 212k)hIL (k1 i )h

5 iL ( i 1 j 21)h2 jL ( i 1 j 21)h5~ i 2 j !L ( i 1 j 21)h.

Similarly, Eq. ~5.1! holds for the other three casesi>0, j <0; i<0, j <0; i<0, j >0.
Equation~5.2! can be directly obtained by~5.1! and Theorem 4.1. j

Corollary 5.1: If M5M̃5I , under the operation~5.1! the mapr I :Wi°Lih is an r -matrix.
Proof: This can be directly derived from Theorem 5.1 and Theorem 4.3. j
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Remark 5.1:Theorem 5.1 and Corollary 5.1 actually describe the Lie algebraic structure of the
Lax operator for the stationary equations j50 ( j PZ) and ther -matrix of a concrete form of an
operation~4.5! and ~4.4!, respectively.

For the usual nonstationary vector fields jÞ0 ( j PZ) in the nonisospectral case,~5.1! and
~5.2! do not hold. But, we have the following results.

Theorem 5.2:Let (Wj , L j h)PL L
I , j PZ; then for any i, j PZ, L satisfies the relation

Lih*L j h5~ u i u2u j u!hL ( i 1 j 11)h21, ; i , j PZ. ~5.3!

Proof: We give the proof only for the case ofi>0, j >0. The other cases are shown analo-
gously.

Let (Wi , Lih, s i), (Wj , L j h, s j )PR L
I ; then we have

~Lih!* ~s j !5 (
k50

i 21

L ( i 212k)hL
*
h ~s j !L

kh

5 (
k50

i 21

L ( i 212k)h~@Wj , Lh#1hL ( j 11)h1h21!Lkh

5@Wj , Lih#1 ihL ( i 1 j 11)h21,

and

~L j h!* ~s i !5@Wi , L j h#1 j hL ( i 1 j 11)h21.

So, by Eq.~4.5! and noticingM5I , we obtain

Lih*L j h5~ i 2 j !hL ( i 1 j 11)h21, ; i , j PZ1, ~5.4!

which is the desired result. j

Equations~5.1!, ~5.2!, and~5.3! are three special Virasoro algebras, namely, without a central
extension. Because here we do calculations based on our definitions of binary operations~4.4! and
~4.5!, they have no central extensions.

Remark 5.2:For the usual nonstationary vector fields jÞ0 ( j PZ) in the nonisospectral case
the operation~5.1! does not always satisfy the Jacobi identity,~see Remark 4.1!. Thus Corollary
5.1 does not hold in general.

Remark 5.3:A particular case of Theorem 5.2 ish51. Then Eq.~5.3! becomes

Li*L j5~ u i u2u j u!Li 1 j , ; i , j PZ, ~5.5!

which implies the following equations:

Wi*Wj5~ u i u2u j u!Wi 1 j , ; i , j PZ, ~5.6!

and

@s i ,s j #5~ u i u2u j u!s i 1 j , ; i , j PZ. ~5.7!

Theorem 5.2 reveals that under Eq.~5.5! for the same nonisospectral hierarchy the following
holds: if ut5sm andut5sn , respectively, possess the nonisospectral Lax operatorsWm andWn ,
then ut5sm1n still possesses the nonisospectral Lax operator 1/(umu2unu) Wm*Wn , ;m,n
PZ. Thus, the Virasoro operator algebras~without the central extension! for the nonisospectral
hierarchy of NLEEs is reflected by Eqs.~5.5!–~5.7!.

Remark 5.4:If we chooseM50 andM5I , respectively, then under the algebraic operation
~3.3! we can also have the Virasoro algebra of the Lax operator for the isospectral hierarchy and
the nonisospectral hierarchy, which is actually a special case of universal algebraic structure.
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VI. SOME EXAMPLES

Through taking several examples, we illustrate our methods. For our convenience, we make
the following conventions:

f t5] f /]t , f mxt5]m11f /]t ]xm (m>0), ]5 ]/]x , ]21 is the inverse of], i.e., ]]215]21]
51, ]mf means the operator]mf acts on some functiong, i.e.,]mf •g5]m( f g), mPZ. Cm

k stands
for the combinatorial constants:Cm

k 5m(m21)¯(m2k11)/k! , i an imaginary unit satisfying
i 2521, andI 232 the 232 unit matrix.

In the spectral problems~6.1!, ~6.32! and ~6.74! the functionu stands for the potential func-
tion, and the potential functions in spectral problems~6.43! and ~6.56! are denoted byq, r . In
those spectral problems,l is always assumed to be a spectral parameter. The domain of the spatial
variable x is V which becomes equal to (2`, 1`) or (0, T), while the domain of the time
variablet is the positive time axisR15$tutPR, t>0%. In the caseV5(2`, 1`) the decaying
condition at infinity and in the caseV5(0, T) the periodicity condition for the potential function,
is imposed.

6.1: Consider the Burger’s spectral problem:33

L•y5ly, L5L~u!5]1u. ~6.1!

Choosing the recursion operatorL5]1]u]21 leads to

L•yx5lyx . ~6.2!

Obviously,L* (j)5j,;jPB, i.e., L* is an identity operator. In this case, the Lenard’s operators
pair is chosen asJ51, andK5L.

The Lenard recursive sequence$Gj% j 52`
` (Gj5L j

•M , j PZ) gives the Burgers category of
NLEEs:

ut5L m
•M5„e2u(21)

~eu(21)
M (21)!(m)

…x , mPZ, ~6.3!

where MPB is an arbitrarily given function, and L5]e2u(21)
]eu(21)

]21, L 21

5]e2u(21)
]21eu(21)

]21 which impliesL j5]e2u(21)
] jeu(21)

]21, j PZ.
For an arbitraryGPB, the operator equation@V, L#5L* (L•G)2L* (G)L, which matches

with choosingb50, a51 in ~2.8!, has the following solution:

V5V~G!52G1G(21)]. ~6.4!

Thus the category~6.3! possesses the generalized Lax representation~GLR!,

Lt5@Wm , L#1MLm, mPZ, ~6.5!

with Wm5M (21)Lm2Lm
•M (21), Lm5e2u(21)

]meu(21)
, mPZ.

The transformationu5(ln v)x yields a simple form of Eq.~6.3!:

v t5~vM (21)!(m), mPZ, ~6.6!

712 J. Math. Phys., Vol. 44, No. 2, February 2003 Qiao, Cao, and Strampp

Downloaded 26 Aug 2003 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



which has the GLR Lt5@Wm , L#1MLm with L5]1(ln v)x , Wm5v21
„M (21) ]mv

2 (vM (21))(m)
….

Apparently, if M is chosen to be independent ofv (v5eu(21)
), then the category~6.3! is

linearized. Thus,~6.3! includes many linearized hierarchies. Now, let us discuss reductions of the
category~6.3! or ~6.6!.

A. Positive case „mÄ0, 1, 2,...…

In this case, the Lax operatorWm can be written as

Wm5v21(
k51

m

Cm
k v (m2k)~M (21) ]k2M (k21)!. ~6.7!

~i! With M50, 0(21)51, the positive order category of~6.3! reads as the well-known Bur-
gers’ hierarchy,

ut5„~]1u!m
•1…x . ~6.8!

Particularly, withm52 it becomes the Burger’s equationut5uxx12uux whose Lax operator is
W25]212u] in the standard Lax representationLt5@W2 ,L#. This corresponds to the isospectral
case:l t50. According to Eq.~6.6!, a simple but quite interesting fact is that under the transfor-
mationu5vx /v the whole Burgers’ hierarchy~6.8! is linearized as

vt5vmx, m50,1,2,... . ~6.9!
Equation ~6.9! can be solved very easily and have the standard Lax pairWm

5v21(k51
m Cm

kv (m2k)]k and L5]1 vx /v. In this way, the solutions of all equations in the
Burgers’ hierarchy~6.8! can be worked out.

~ii ! With M5a, a(21)5ax1 f (t), aPR, f (t)PC`(R), the positive order category of~6.3!
becomes the nonisospectral (l t5alm) Burgers’ hierarchy,

ut5~~]1u!m•„ax1 f ~ t !…!x . ~6.10!
A representative equation (m52) of Eq. ~6.10! is

ut5„ax1 f ~ t !…~uxx12uux!13aux1au2, ~6.11!

possessing the GLRLt5@W2 ,L#1aL2 with W25„ax1 f (t)…(]212u])22au andL5]1u. By
virtue of M5a andu5(ln v)x , Eq. ~6.10! is linearized as

vt5„ax1 f ~ t !…vmx1mav (m21)x , ~6.12!
which can be solved. Equation~6.12! has the generalized Lax operator~GLO! Wm5(ax
1 f (t))v21(k51

m Cm
k v (m2k)]k2mav21v (m21). Particularly, Eq.~6.11! has a linearization equation

(m52),
vt5„ax1 f ~ t !…vxx12av, ~6.13!

possessing the GLOW25„ax1 f (t)…(]212v21vx])22av21vx . In a general case,M can be
extended asM5( j 50

n cj (t)x
j , cj (t)PC`(R), which will be considered below.

~iii ! With M5( j 50
n cj (t)x

j , cj (t)PC`(R), the positive order category of~6.3! reads as a
nonisospectral (l t5„( j 50

n cj (t)x
j
…lm) hierarchy,

ut5S~]1u!m•S f~t!1(
j50

n

cj~t!
xj11

j11DD
x

, ~6.14!

where an arbitraryf (t)PC`(R) is attached by virtue of integration with respect tox. Of course,
Eq. ~6.14! is easily linearized as

vt5
]m

]xmSvf~t!1v(
j50

n
cj~t!

j11
xj11D, ~6.15!

via u5(ln v)x . Equation~6.15! has the generalized Lax operator,
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Wm5v21(
k51

m

Cm
k v(m2k)~M(21)]k2M(k21)!,

with

M(21)5f~t!1(
j50

n
cj~t!

j11
xj11.

~iv! With M5(u21)x , M (21)5u21, the positive order category of~6.3! reads as the follow-
ing hierarchy of NLEEs:

ut5„~]1u!m
•u21

…x , m50,1,2... . ~6.16!

A representative equation of~6.16! is

ut5S 1

uD
xx

, ~6.17!

with the GLOW052(u21)x1u21].

B. Negative case „mÄÀ1,À2,...…

~i! With M50, the generatorG215]e2u(21)
]21eu(21)

]21
•0 is determined by the following

two seed functions:

Ḡ215 f ~ t !~e2u(21)
!x ~6.18!

and

G̃215g~ t !„e2u(21)
~eu(21)

!(21)
…x , ~6.19!

wheref (t), g(t)PC`(R) are two arbitrarily given functions. Apparently, the seed function~6.18!
produces the following isospectral (l t50) negative order hierarchy of~6.3!,

ut5 f ~ t !~e2u(21)
1(m)!x , m,0, mPZ, ~6.20!

i.e.,

ut5 f ~ t !e2u(21)

(
k50

2m21

ck

x2m2k22~2m2k212xu!

~2m2k21!!
, c051, ~6.21!

whereck5ck(t)PC`(R) (2m21>k>1) is arbitrarily given. Thus although Eq.~6.20! is non-
linear, we have its general solution:

u~x,t !5

(k50
2m22ck~ t !

x2m2k22

~2m2k22!!
] t

21f ~ t !1h8~x!

(k50
2m21ck~ t !

x2m2k21

~2m2k21!!
] t

21f ~ t !1h~x!

, ;h~x!, ck~ t !PC`~R!, ~6.22!

where] t
21f (t)5* f (t)dt, c0(t)51, h8(x)5(d/dx) h(x). Of course, Eq.~6.21! has the standard

Lax representationLt5@Wm ,L# with Wm52 f (t)e2u(21)
(k50

2m21ck(t) x2m2k21/(2m2k21)!.
On the other hand, the seed function~6.19! generates the following isospectral (l t50) nega-

tive order hierarchy of~6.3!:

ut5g~ t !~e2u(21)
~eu(21)

!(m)!x , m,0, mPZ, ~6.23!
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which is a hierarchy of integro-differential equations and can be changed to the linear differential
equations,

v2mxt5g~ t !v, m,0, mPZ, ~6.24!

via the transformationu5v21vx . The Lax operatorWm of ~6.23! or ~6.24! is Wm52g(t)e2u(21)

(eu(21)
) (m) or Wm52g(t)v21v (m), m,0.

~ii ! With M5a, a(21)5ax1 f (t), aPR, f (t)PC`(R), the negative order category of~6.3!
through settingu5v21vx reads as the linear equations,

v2mxt5„ax1 f ~ t !…v, m,0, mPZ, ~6.25!

which corresponds to the nonisospectral case:l t5alm, and has the GLOWm5v21
„ax

1 f (t)…]mv2v21(v„ax1 f (t)…)(m), m,0. For a general case, we have the following.
~iii ! SettingM5( j 50

n cj (t)x
j
„cj (t)PC`(R)… yields a negative order hierarchy of~6.3!,

ut5S e2u(21)
]meu(21)

•(
j 50

n

cj~ t !
xj 11

j 11D
x

, m,0, mPZ, ~6.26!

which corresponds to the nonisospectral casel t5„( j 50
n cj (t)x

j
…lm, and can be linearized as

v2mxt5v(
j 50

n

cj~ t !
xj 11

j 11
, m,0, mPZ, ~6.27!

via u5v21vx . Equation~6.27! has the Lax operator

Wm5v21(
j 50

n
cj~ t !

j 11
„xj 11 ]mv2~vxj 11!(m)

…, m,0.

~iv! With M5(v/vx)x , ]21M5 v/vx , the associated negative order hierarchy of~6.3! is

v2mxt5
v2

vx
, m,0, mPZ, ~6.28!

which has a representative equation (m521)

vxvxt5v2, ~6.29!

with the Lax operatorW215(1/vx) ]21v2 (1/v) (v2/vx)
(21).

Through choosing differentM , we still have other hierarchies of~6.3!. Because of the arbi-
trariness ofM , all results in Secs. III–V are valid for the Burgers’~B! spectral problem~6.1!.
Particularly, ther -matrix adL becomes

adL
B :Wm°MLm, mPZ, ~6.30!

whereWm5M (21)Lm2Lm
•M (21), Lm5e2u(21)

]meu(21)
, MPB is an arbitrarily given function.

And the r -matrix r M (M5aÞ0, aPR) reads as

r B
a :Wm°Lm, mPZ, ~6.31!

whereWm5„ax1 f (t)…Lm2Lm
•„ax1 f (t)…. Equations~6.30! and ~6.31! generate the stationary

B-categorical systems (Lm
•M (21))x50 and (Lm

•„ax1 f (t)…)x50, respectively.
We can also apply the above procedure to other spectral problems. Now, we list some main

results as follows.
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6.2: KdV case. The KdV–Schro¨dinger spectral problem,34

L•y5ly, L5L~u!5]21u, ~6.32!

has the following Lenard operator pair:

K5 1
4 ]31 1

2 ~]u1u]!, J5]. ~6.33!

Apparently,L* (j)5j,;jPB. Settingu52 fxx /f yields the product-form ofK and its inverse,

K5 1
4 f22 ]f2 ]f2 ]f22,

~6.34!
K2154f2 ]21f22 ]21f22 ]21f2.

Let M , M̃PB be two arbitrarily given functions. Then the positive order and negative order
generators,

G05M (21); G215K21
•M̃54f2 ]21f22 ]21f22 ]21

•~f2M̃ !, ~6.35!

leads to the KdV category of NLEEs

ut5J•Gm , mPZ, Gm5HL m
•G0 , m>0,

L m11
•G21 , m,0,

~6.36!

where the recursion operatorL is given by

L5J21K5 1
4 ]21 1

2 ~u1]21u]!5 1
4 ]21f22 ]f2 ]f2 ]f22,

and its inverse is

L 2154f2 ]21f22 ]21f22 ]21f2 ].

For an arbitraryGPB, the operator equation@V,L#5L* (K•G)2L* (J•G)L has the follow-
ing operator solution:

V5V~G!52 1
4 Gx1 1

2 G], ~6.37!

which implies that the KdV category~6.36! possesses the GLR,

Lt5@Wm , L#1M̄Lm, mPZ, M̄5H M , m>0,

M̃ , m,0,
~6.38!

with the GLO

Wm5( V~Gj !L
m2 j 21. ~6.39!

HereV(Gj ) is determined by~6.37! with G5Gj5L j
•G0 , j >0 or G5Gj5L j 11

•G21 , j ,0,
L5]21u5f21 ]f22 ]f22, andL215f2 ]21f2 ]21f.

In particular, we are concerned with the following reduction.

~i! With M54(u21/2)x , G05M (21)54u21/2, the positive order category of~6.36! reads as
the well-known Harry–Dym hierarchy,

ut5JL m
•4u2 1/2, m50,1,2,... . ~6.40!
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With m51, Eq. ~6.40! yields the Harry–Dym equation,

ut5S 1

Au
D

xxx

, ~6.41!

which has now the GLRLt5@W0 ,L#14(u21/2)xL with W052(u21/2)x12u21/2], and appar-
ently belongs to the KdV category~6.36!; with m52, Eq.~6.40! yields a higher order Harry–Dym
equation,

ut5
1
4 S 1

Au
D

4x

1uS 1

Au
D

3x

1 1
2 uxS 1

Au
D

xx

~6.42!

possessing the GLOW152u21/2]32(u21/2)x]
21 1

2((u
21/2)xx14u21/2)]2 1

4(u
21/2)xxx1u21/2ux .

So, we have obtained an interesting fact:the Harry–Dym equation (6.41) can be included in
the KdV category (6.36) with the generalized Lax operator. Similar to the process of the Burgers’
case, we can also have many reduced hierarchies both positive and negative from Eq.~6.36!.

6.3: AKNS case. The ZS-AKNS spectral problem,35,36

L•y5ly, L5L~q,r !5 i S ] 2q

r 2]
D , y5S y1

y2
D , ~6.43!

has its Lenard’s operators pair,

K5S q ]21q 1
2 ]2q ]21r

1
2 ]2r ]21q r ]21r

D , J5 i S 0 21

1 0 D . ~6.44!

Apparently,

L* ~j!5S 0 2 i j1

i j2 0 D , j5~j1 ,j2!TPB 2, ~6.45!

is an injective homomorphism.
Equation~6.44! gives the recursion operator

L5J21K5
1

2
i S 2]12r ]21q 22r ]21r

2q ]21q ]22q ]21r D . ~6.46!

Choosing two functionsu, sPC`(R) satisfying ux5 1
2u

21r 21r xu22qr, sx5 1
2s

21q21qxs
22qr, leads to the inverse ofL,

L 215K21J522i S 2E~]r 21 ]r 2122qr21! 22E
2F F~]q21 ]q2122rq21!

D , ~6.47!

whereE, F denote the following two operators:

E5e2u(21)
]21eu(21)

r ]21r eu(21)
]21e2u(21)

, F5e2s(21)
]21es(21)

q ]21q es(21)
]21e2s(21)

.
~6.48!

Let A,B,C,DPB be four arbitrarily given functions; then iff

M5S 0 2B

2A 0 D , M̃5S 0 2D

2C 0 D , ~6.49!
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the operator equationsL* (J•G0)5M , L* (K•G21)5M̃ give the positive order and negative
order generators~function vectors!,

G05S A
BD , G21522i S 2E•„]r 21

•~r 21C!x22qr21C12D…

F•„]q21
•~q21D !x22rq21D12C…

D , ~6.50!

which directly leads to the AKNS category of NLEEs:

S q
r D

t

5H JL m
•~A,B!T, m50,1,2,...,

JL m
•~C,D !T, m521,22,...,

~6.51!

whereJ, L andL 21 are defined by~6.44!, ~6.46! and ~6.47!, respectively.
For an arbitrarily givenG5(G[1] ,G[2] )TPB 2, the operator equation@V,L#5L* (K•G)

2L* (J•G)L has the solution

V5V~G!5
1

2 S 2~rG [2]2qG[1] !(21) G[2]

G[1] ~rG [2]2qG[1] !(21)D , ~6.52!

which is obviously a function matrix. Thus, the AKNS category~6.51‘! has the GLR:

Lt5@Wm ,L#1M̄Lm, mPZ, ~6.53!

M̄55 S 0 B

A 0 D , m>0,

S 0 D

C 0 D , m,0,

with the GLO

Wm5( V~Gj !L
m2 j 21, mPZ. ~6.54!

HereV(Gj ) is given by~6.52! with G5Gj5L j
•(A,B)T, j >0 or L j

•(C,D)T, j ,0, L is defined
by ~6.43!, and its inverseL21 is determined by

L215 i S S ]q21 2S
2T T ]r 21D , ~6.55!

with the operators S5e2r(21)
]21e2r(21)

q ]21e2r(21)
,T5e2m(21)

]21e2m(21)
r ]21e2m(21)

,
wherer andm are two functions satisfyingrx5r21q21qxr2qr, mx5m21r 21r xm2qr.

Here, we omit the reductions and ther -matrix representation of the AKNS category~6.51!.
6.4: WKI ~Wadati–Konno–Ichikowa! case. The WKI spectral problem,37

L•y5ly, L5L~q,r !5
1

12qr S i 2q

2r 2 i D ], y5S y1

y2
D , ~6.56!

has the following Lenard’s operators pair:

K5
1

2i S 2
1

2
]2

q

p
]21

q

p
]2 ]31

1

2
]2

q

p
]21

r

p
]2

]31
1

2
]2

r

p
]21

q

p
]2 2

1

2
]2

r

p
]21

r

p
]2
D , ~6.57!
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J5S 0 2]2

]2 0 D , p5A12qr, ~6.58!

which yields the recursion operatorL5J21K

L5
1

2i S ]1
r

2p
]21

q

p
]2 2

r

2p
]21

r

p
]2

q

2p
]21

q

p
]2 2]2

q

2p
]21

r

p
]2
D . ~6.59!

Apparently, the Gateaux derivative operatorL* (j) of the spectral operatorL in the direction
j5(j1 ,j2)TPB 2 is

L* ~j!5
1

12qr S qj2 2 i j1

i j2 r j1
D L, ~6.60!

which is an injective homomorphism.
Through lengthy calculations, one can obtain the invertible operators ofL, J, K andL:

L215S 2 i ]21 ]21q

]21r i ]21 D , ~6.61!

J215S 0 ]22

2]22 0 D , ~6.62!

K2152iS 1

2
]21r ]21r ]21 ]232

1

2
]21r ]21q ]21

]232
1

2
]21q ]21r ]21

1

2
]21q ]21q ]21

D , ~6.63!

L 2152iS ]212
1

2
]21r ]21q ] 2

1

2
]21r ]21r ]

1

2
]21q ]21q ] 2]211

1

2
]21q ]21r ]

D . ~6.64!

Let A, B, C, D be four arbitrarily givenC`-functions; then iff

M5
1

12qr S qA iB

iA 2rB D L, M̃5
1

12qr S qC iD

iC 2rD D L, ~6.65!

the operator equationsL* (J•G0)5M , L* (K•G21)5M̃ have the following solutions:

G05S A(22)

B(22)D , ~6.66!

G215S 2iC (23)2 i ]21r ]21
•~rD (21)1qC(21)!

22iD (23)1 i ]21q ]21
•~rD (21)1qC(21)! D , ~6.67!

which directly yields the WKI category of NLEEs:
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S q
r D

t

5J•Gm , mPZ, ~6.68!

Gm5HL m
•~A(22),B(22)!T, m50,1,2,...,

L m
•~C(22),D (22)!T, m521,22,...,

~6.69!

whereJ, L andL 21 are defined by~6.58!, ~6.59! and ~6.64!, respectively.
For any givenG5(G[1] , G[2] )TPB 2, the equation@V, L#5L* (K•G)L212L* (J•G) has

the following operator solution:

V5V~G!5S 0 B̄

C̄ 0
D 1ĀS 2 i q

r i D L, ~6.70!

whereĀ, B̄, C̄ are the following three functions given by

Ā5Ā~G!5
1

2p S q

p
Gxx

[1]2
r

p
Gxx

[2] D (21)

, p5A12qr,

B̄5B̄~G!5
1

4i S 2Gxx
[2]2]

q

p
•S q

p
Gxx

[1]2
r

p
Gxx

[2] D (21)D ,

C̄5C̄~G!5
1

4i S 2Gxx
[1]1]

r

p
•S q

p
Gxx

[1]2
r

p
Gxx

[2] D (21)D .

Thus, the WKI category~6.68! has the GLR:

Lt5@Wm ,L#1M̄Lm11, mPZ, ~6.71!

M̄55
1

12qr S qA iB

iA 2rB D , m>0,

1

12qr S qC iD

iC 2rD D , m,0,

~6.72!

with the GLO

Wm5( V~Gj !L
m2 j , mPZ. ~6.73!

Here L, L21 and V(Gj ) are given by~6.56!, ~6.61! and ~6.70! with G5Gj defined by~6.69!,
respectively.

6.5: The following spectral problem:

L•y5ly, L5L~u!5
1

u S i 12u

1 2 i D ], y5S y1

y2
D , ~6.74!

yields its Lenard operators pair,

K5]3, J522~]u1u]!.

The Gateaux derivative operatorL* (j) of the spectral operatorL in the directionjPB is
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L* ~j!5
j

u2 S 2 i 21

21 i D ]5
j

u S 0 2 i

0 21D L. ~6.75!

Apparently,L* is a homomorphism andL* (j)50⇔j50.
In the category derived from Eq.~6.75!, we can obtain the Harry–Dym hierarchy as well as

some new integrable equations. For example, the following nonlinear equation:

vxt22
52vvxx1vx

2 ~6.76!

is a new integrable equation with many unknown physical properties. In fact, this equation is
included in an isospectral (l t22

50) negative order hierarchy of~6.74!, and its standard Lax
operator is

W2252V~G22!L212V~G21!L23,

whereV(Gj ) ( j 522,21) is given by

V5V~G!5GxxS 0 1

0 0D 1GxS 1 22i

0 21 D L12GS 2 i u21

21 i D L2, ~6.77!

with G5G2252v (21), G215 1
2, respectively, andL21 is the inverse ofL, given by

L215S 2 i ]21 ]21vx2]21

2]21 i ]21 D . ~6.78!

We will give in detail some reductions for the latter four spectral problems in a later paper.
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