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In this paper we deal with the category of nonlinear evolution equatidh&ES)
associated with the spectral problem and provide an approach for constructing their
algebraic structure andmatrix. First we introduce the category of NLEES, which

is composed of various positive order and negative order hierarchies of NLEEs
both integrable and nonintegrable. The whole category of NLEEs possesses a gen-
eralized Lax representation. Next, we present two different Lie algebraic structures
of the Lax operator: one of them is universal in the category, i.e., independent of
the hierarchy, while the other one is nonuniversal in the hierarchy, i.e., dependent
on the underlying hierarchy. Moreover, we find that two kinds of adjoint maps are
r-matrices under the algebraic structures. In particular, the Virasoro algebraic struc-
tures without a central extension of isospectral and nonisospectral Lax operators
can be viewed as reductions of our algebraic structure. Finally, we give several
concrete examples to illustrate our methods. Particularly, the Burgers’ category is
linearized when the generator, which generates the category, is chosen to be inde-
pendent of the potential function. Furthermore, an isospectral negative order hier-
archy in the Burgers’ category is solved with its general solution. Additionally, in
the KdV category we find an interesting fact: the Harry—Dym hierarchy is con-
tained in this category as well as the well-known Harry—Dym equation is included
in a positive order KdV hierarchy. @003 American Institute of Physics.

[DOI: 10.1063/1.1532769

[. INTRODUCTION

The integrability study of nonlinear evolution equations has been an attractive topic in soliton
theory and nonlinear phenomenon. Caloggnmposed theC-integrable(namely, linearizable by
an appropriate change of variablesd S-integrable(namely, integrable via some spectral trans-
form techniqué terminology for dealing with nonlinear partial diiferetial equatigR®ES. Many
nonlinear PDEs were showB-integrable andS-integrable? Mikhailov, Shabat and Sokoldv
discussed some classes of nonlin€aintegrable ands-integrable PDEs through using the sym-
metry approach. Flaschka, Newell and Tdboonsidered in detail the Painleve analysis process
for both ODEs and PDEs and investigated its test for integrable equations.
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On the other hand, the-matrix method is also an important part in classical and quantum
integrable systensThe classicat-matrix has been first introduced by Sklyanin in Refs. 6 and 7
as the limit of its quantum counterpart. Subsequently, Drinfeld used this to introduce a new
geometric notion, that of a Poisson Lie grdupollowing Drinfeld’s idea® Semenov—Tian—
Shansky showed that the concept of a classiealatrix leads to an algebraic construction of
integrable systems generalizing the AKS scheme. In terms at-thatrix’ an effective view of the
multi-Hamiltonian property of such equations can be presented. In addition, it gives a general
explanation of the dressing transformations used for obtaining solutions in terms of group
factorizations® In Ref. 11 Jimbo constructed explicit solutions of the quantum YB equation for
the generalized Toda system and moreover obtained many beautiful ¥es6iy using the
r-matrix method.

For the study of an algebraic structure of integrable evolution equations, there has also been
a discussion in the literature. For example, the well-kndisalgebra was constructed by Orlov
and Schulman through using the vertex oper&tdthe KP system was also found to have this
kind of W-algebraic structure by Dickéy,which includes the Virasoro algebra as its subalgebra.
The W-algebra played an important role in the so-called second Poinsson stritfdfarethis, the
most important thing is to find the generatorséfalgebra. All these facts were only for the case
of integrable hierarchies. How about the case for both integrable and nonintegrable hierarchies? In
this paper we will deal with this problem through introducing the category of nonlinear evolution
equations(NLEES). The category of NLEEs develops the positive order to the negative order
hierarchies for both the integrable and the nonintegrable cases. In particular, the positive and the
negative order integrable hierarchies will be generated by the recursion operator, its inverse, and
some kernel elements from the pair of Lenard’s operators. Mikhailov, Shabat and So&wiov
tended the integrable equations by employing the symmetry procedure and discussed the classifi-
cations for the integrable hierarchies. All of their results wereGentegrable ands-integrable
cases. In this paper, we will discuss the case for both integrable and nonintegrable hierarchies and
will not interfere with the existence of symmetries. Here, we point out that throughout this paper:
“integrable” means the sense of Lax, namely, the PDE admits isospdctal\;=0) or usual
nonisospectrali.e., \;=a\", neZ, ae R/C) Lax form; otherwise, we say the PDE is noninte-
grable in the sense of the Lax form.

Our purpose in the present paper is to give an approach to the category of nonlinear evolution
equations directly from a spectral problem and to connect 4imatrix to the category of NLEES.
The whole paper is organized as follows. In the next section we first introduce the notation of the
category of NLEEs, which is composed of various positive and negative order hierarchies of both
integrable and nonintegrable NLEEs, and then we give the generalized Lax represd@h&n
In Secs. lll and IV we, respectively, present two different Lie algebraic structures of the Lax
operator. One structure is produced independently of the hierarchy in the category while the other
holds only within one hierarchy. Moreover, by using these algebraic structures we find that two
kinds of adjoint maps result inrmatrices for the NLEEs. In Sec. V, it is pointed out that the well
known Virasoro algebraic structurésithout the central extensigf isospectral and nonisospec-
tral Lax operators are obtained as reductions of our algebraic structure. Finally, in Sec. VI the
examples of several continuous spectral problems are given to illustrate our methods. Particularly,
the Burgers’ category is linearized when the generator, which generates the category, is chosen to
be independent of the potential function. Furthermore, an isospectral negative order hierarchy in
the Burgers’ category is solved with its general solution. Additionally, in the KdV category we find
an interesting fact: the Harry—Dym hierarchy is contained in this category as well as the well-
known Harry-Dym equation is included in a positive order KdV hierarchy.

Before displaying our main results, let us first give some necessary notations:

m

xeR!, teR, u=(uy,...,u,)TeS™R’, R)=S(R!, R)X---XS(R', R),

u=ux,t)eS(R, R), i=12,...,m,
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for arbitrarily fixedt, S(R',R) stands for the Schwartz function space Bh B denotes all
complex(or rea) value functionsP(x,t,u) of the classC* with respect tax, t, and of the class
C” in Gateaux’s sense with respectuo BN={(P4,...,P\)"|P;e B}, VN stands for all linear
operatorsp= ¢(x,t,u): BN— BN which are of the clas€” with respect t, t, and of the class
C” in Gateaux’s sense with respectuo

The Gateaux derivate of vector functidhe B" in the directionY e B™ is defined by

x*(Yy=£% X(u+ €Y). (1.1)
e=0

For the two arbitrary vector fieldx, Y e B™, define the following operation:
[X, Y]=X, ()= Y, (X). (1.2

Then, B™ composes a Lie algebra about the above multiplication oper&tiBor the operator
¢ VN, its Gateaux derivate operater, :B™— VN in the directioné is defined as follows:

d
¢*(§)=£ p(uteé), &eB™ (1.3
=0

€

If not otherwise stated, the spectral operatdrs-L(u) [or the spectral operatorg
=L(u, \) with the spectral parametail considered in this paper are denotedlby VN, and we
always assume thdt, :B™—VN is an injective homomorphism. An operatbr acting on a
function f is denoted byH - f. | stands for theN X N unit operator.

Il. CATEGORY OF NLEEs AND GENERALIZED LAX REPRESENTATION (GLR)

In this section, a procedure for constructing the category of NLEEs and generalized Lax
representations are presented, and, moreover, it is shown how to constriict e B triple
representatiolf for a given nonlinear quation.

Let us start from a gener& XN spectral problem:

L-gy=\y, LeVN (2.1

where\ is a spectral parametey,e BN. Denote the functional gradient of spectral paramater
with regard to the potential vectar by d\/Su =(N/buy, -+, SMdu,,)T. Tu and Cao, respec-
tively, gave some discussions about the calculations of the functional gradient in Ref. 19 and Ref.
20. Strampp ever studied recursion operators, spectral problems, ekidiBhtransformations by
introducing a relation between recursion operators and eigenvalue funttforius, we define
the Lenard operators as follows:

Definition 2.1: If there exists a pair of mm operators K=K(u), J=J(u): S"(R', R)
—S"(R'R) such that

Kﬁ)\_)\c\] 2 2.2
“ou T Y su (22

then K, J are called a pair of Lenard operators of (2.1), and (2.2) is called the Lenard spectral
problem of (2.1). Here the constant c is definitely chosen by the concrete form of (2.1)

In many cases, there exidiut not unique the pair of Lenard’s operators satisfyif@2), and
frequently both of them are Hamiltonian operators. For instance, for the KdV-@nber spec-
tral problemy,,+ ugr= X\, SN/ Su =2, only choosingk = — 39> — X(ud+ du), J=d= alIx, we
haveK - 6A/Su=\J- \/Su. Eq.(2.2) plays an important role in the nonlinearization theory and
the construction of completely integrable finite-dimensional systéms.
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LetM=(m;;)nxn M= (Mi;)nxn be the arbitrarily given % |-dimensionali.e., independent
variables &, t) e R’ XR, 1=1] linear NXN matrix operators. Then we have the following defi-
nitions.

Definition 2.2: Ge S"(R', R), G_; e S"(R', R) are, respectively, called the positive order
and the negative order generators, if they, respectively, satisfy the operator equations

Li(J-Go)=M, (2.3
L,(K-G_))=M. (2.4)

Denote the solution sets ¢2.3) and (2.4) by A5(M) and Nk (M), respectively. In general,
they are not empty.

Definition 2.3: Let\3(M)# @, Nx(M)# @ and choose Ge N3(M), G_; e Ny (M). Write
the recursion operato=J"'K. The sequencéGj}}’L,mgSm(R',R) recursively determined by

L£L1.Gy, =0,

Ci=\civtg_,, j<o

(2.5

is called the Lenard’'s sequence of (2.1); the set of the following nonlinear equations:
ui=Xn(u,Gg,G_1), meZ, (2.6
produced by the vector field
Xm(U,Go,G_1)2J-G,,, meZ, (2.7

is called the category of nonlinear evolution equations of (2.1). The subset of the equations (2.6)
obtained for n=0 is called the positive order category while the subset obtained ferOnis
called the negative order category

Apparently, the positive and the negative order generdigrsG_,; depend on the choice of
matrix operatorsM, M, thus the category2.6) is composed of various hierarchiésoth inte-
grable and nonintegrablef NLEEs which are generated according to the choice of operdors
M.

For example, withM =0 (i.e., Gye Ker J), the hierarchy in the positive order category of
(2.6) just reads as the isospectral hierarchy of evolution equatibmsth M=0 (i.e., G_;
e KerK), the hierarchy in the negative order category(2f) is exactly the second isospectral
hierarchy of evolution equations studied in Ref. 25. Additionally, the negative order generator
G_, can be considered to produce finite-dimensional constrained Hamiltonian syStEinsi-
ously, the negative order category (.6) is generated with the help of the inverse recursion
operatorL. Strampp and Oevel gave the inverse recursion operator in an explicit form for the
nonlinear derivative Schdinger equatiod’ In 1991 we suggested the commutator representa-
tions for the negative order hierarchy of isospectral NLEtterwards, wé® further found that
the same spectral problem can generate two different hierarchies of integrable NLEEs: one is the
usual higher ordefi.e., positive order hierarchy of NLEEs, the other is the negative order
hierarchy of NLEEs. All these equations have the Lax representatidrere we study the gen-
eralized case, i.e., the category of NLEEs.

With M=1 or M=1, under the basic condition;(1)# & or Nx(1)#J, Eq. (2.6) actually
gives the positive and the negative order hierarchies of nonisospectral evolution equations, which
can be obtained from the following, Theorem 2.2. Thus, by the arbitrarinebs ahd M, Eq.
(2.6) unifies together all possible hierarchies of evolution equations associated with the spectral
problem(2.1). Due to this fact, Eq(2.6) is named “the category of nonlinear evolution equa-
tions.”
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Theorem 2.1:Let M= (m;;)nxn M = (M;j)nxn be two arbitrarily given NKN linear ma-
trix operators A3(M)#Q, and N(M)#Z. Suppose that for & (G, ... GI™)T
e S™(R', R) and a, 8 Z the operator equatign

[V,.L]=L,(K-G)LP—L,(J-G)L?, (2.9

possesses a solution®V(G); then the vector field §=X,(u,Gy,G_) satisfy

_ _ [M, m=0,
= mn —
L, (X)) =[Wy,L]+ML™”, meZ, M i m<o, (2.9
where n=a— B and the operator \} is given by
r m—1
2, m>0,
i=0
Wp= 2 V(G)LMD7e 3 =¢ 0, m=0, (2.10
-1
—.E, m<<0.
\ =m

Here G are determined by (2.5), and ! is the inverse of Li.e, LL™'=L"'L=1, and[-,-]
denotes the usual commutator
Proof: For m=0, it is obvious. Fom>0,

m—1

[Wp,L1= EO [V(G)),L]LM-D7-a
=

m—1

= 20 {L*(K'Gj)L(m_j_l)”—L*(J-Gj)L(m_j)W}
i=

m—1

:,Zo {Le (-G LM ImD7— L (3-GOLIM D= Ly (Xin) — L (3 Go) L™

=L, (Xy)—MLM.

For m<0, the proof is similar. |
Remark 2.1The structure equatiof?2.8) of commutator representations is a natural generali-
zation of the structure equatig¥,L]=L, (K-G)—L, (J-G)L presented by Cao Cewéh.
Remark 2.2The choice of constants, 8 e Z is determined by the concrete form @&.1). In
many case&’ V=V/(G) can be solved for the given.
Theorem 2.2: The category (2.6) of NLEEs has the following representation:

_ _ M, m>0,
Ly=[Wy,L]+ML™, meZ, M= M m<o. (2.11)
Proof: For m=0, becausé , (u;)=L; andL, is injective,
Li=[W,,L]+ML"sL, (u;— X, =0=u=X,,,
which completes the proof. |

Definition 2.4: Equation (2.11) and \Ware called the generalized Lax representations (GLR)
and the generalized Lax-operator (GLO), respectively
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Obviously, withM =0 (i.e., Gge Ker J, G_; e KerK), Eq. (2.1)) reduces the standafde.,

isospectral casex,=0) Lax representations, and witi =1 [of courseN;(1)# & and N (1)

# & are needel] Eq.(2.11) reduces the nonisospectfak., \;=\"7, me Z) Lax representations.

For two special cases: the isospectral cdse M=M=0) and the nonisospectral caée., M
=M=1), Ma® discussed the Lax operator algebras of the positive digeym=>0) hierarchy of
NLEEs. But a general framework has not been obtained for all integeZ and all linear matrix
operatorsM, M. In the following sections, we shall construct a general frame—generalized alge-
braic structure and furthermore present theatrix for the category of NLEEs.

Remark 2.3Equation(2.11) admits the structure df — A— B representations of the category
(2.6) in an explicit form. Thus, we give a constructive approach to the Manakov operatok pair
B in the L—A—B triple representatioff In Ref. 32, we determined the range of the A—B
triple representation through defining the Lie quotient algebras.

Remark 2.4:Equation(2.11) contains both the integrable and the nonintegrable hierachies
because of the multiple choices F. Therefore, our category of NLEEs are not included in the
system of multi-component KP and its reduction.

Corollary 2.1: Assume that the potential vector functionis independent of and the fol-
lowing condition holds:

with constantx; (—r=<i<s). Thenu will satisfy the stationary system of the categ¢gy6):

S

> ¢X(u)=0,Vr,sezZ".

I=—r

We shall give several concrete examples in Sec. VI.

[ll. UNIVERSAL ALGEBRAIC STRUCTURE AND r-MATRIX

From (2.9), we have seen that for various linear matrix operabd$/, the category2.6) of
NLEEs indeed yields different hierarchies of NLEEs. That means the hierarchy in the category
(2.6) changes according to the choice MfM. In this section, we shall construct the algebraic
structure and-matrix which holds for all hierarchies of NLEESs in the categ{®y6). Let us start
from the following definition.

Definition 3.1: Suppose that for a spectral operatoe N and an integer re Z there exist
pairs (A,M) of vector fields X B™ and operators AM € VN with the property

[AL]=L, (X)—ML". (3.0

Then(A,M) is called a Manakov operator pair of.LThe set of all Manakov operator pairs is
denoted byM | . X is called the vector field corresponding ¢&,M). The set of all vector fields
X is denoted by YM ). The set of all triple{A,M,X) is denoted byP/' .

As long as Eq(2.8) has an operator solution for a givere VN, then by theorem 2.1 and Eq.
(2.9 there exists a tripleA,M,X) e P| satisfying(3.1).

It is easy to prove the following proposition.

Proposition 3.1:

(1) The vector field associated with each Manakov operator pair is upique
(2) bothP] and M| form linear spaces

Apparently, if there isA, M e VN for X e B™ such that Eq(3.1) holds, theru,= X possesses
the GLRL=[A, L]+ML". Itis not difficult to see thaP] andP?, M| and M are equiva-
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lent, respectively, under the bijective mdp PE—>PE, defined by A, M, X)—(A, ML", X).
So, in the following we simply conside??, M and write M= M, , PP=P, .
Definition 3.2: Let(A, M, X), (B, N, Y)eP_. In M_, define a binary operation as fol-

lows:
(A, M)O(B, N)=(A©®B, MON), (3.2

where
AGB=A, (Y)—B, (X)+[A,B], (3.3
MON=M, (Y)—N, (X)+[M,B]-[N,A]. (3.9

Obviously (3.2) is a skew-symmetric and bilinear operation.

Theorem 3.1:Let(A, M, X), (B, N, Y)eP_, then(AOB, MON, [X, Y]) e P, and M
form a Lie algebra under the operation (3.2)

Proof: Since (N, [-,-]) builds up a Lie algebra under the usual commutator operation, we
have

[[A, B].LI=[[L, BL.,A]-[[L, A], B]
=[L.(X)=M, B]=[L,(Y)—N, A]
=[L«(X), B]=[Li(Y), A]*+[N, A]=[M, B].

For arbitraryL e VN, X, YeB™, we also have

(L (X)) (V)= (L (V) (X) =L, ([ X,Y]).
Thus,

[AOB, L]1=[A,(Y) =B, (X)+[A, B], L]
=[Ac(Y), LI=[By(X), L]+[L,(X), B]=[L,(Y), A]+[N, A]=[M, B]
=([A LD« (Y)=([B, LD« (X)*+[N, A]=[M, B]
= (L (XD (V) = (L (Y, (X) =M, (Y) + Ny (X) +[N, A]=[M, B]
=L, ([X, Y)—MON.

That meansA©B, MON, [X, Y])eP, .
Now, we shall prove the Jacobi identity. Choosing aAy,(M;, X;)eP_, i=1, 2, c3, then
we have

(A10A2)OAz+C.p.= (AL, (X2) = Az (X)) +[A1, Az])OAz+cC.p.
=[[A1, Az], Asl+c.p.
=0.
Similarly, we can show the following equality:
(M;©OM5,)OM3z+c.p.=0, (%)

which completes the proof. |
Corollary 3.1: The set of all vector fields(W1,) forms a Lie subalgebra a8™ with regard
to the operation (1.2)

Downloaded 26 Aug 2003 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



708 J. Math. Phys., Vol. 44, No. 2, February 2003 Qiao, Cao, and Strampp

Denote the vector fields ofA; M) and B, N) by X andY, respectively, themu,=X, u,
=Y represent the twdifferenthierarchies of NLEES, respectively, determined\byN. Theorem
3.1 shows that there is universal algebraic structure fodifierenthierarchies of NLEEs, and if
bothu,=X, andu,=Y (X, Ye B™ have GLR, then so does the new hierarchy of equatigns
=[X, Y] produced byX, Y.

For the given spectral operatbre VN, we now consider the following adjoint map:

ad :A—M=ad A=[L, A], VAe VN (3.5

Then according to the original definition of armatrix? we have the following theorem.
Theorem 3.2: The adjoint mapad is an r-matrix.
Proof: For anyA, Be VN, write M=ad A, N=ad B. Then we have

[A, Blag2[ad A, B]+[A, adB]=[M, B]+[A, N]=MON.

The last equality holds because the associated vector fields are obviously zero. Andiaglies
that[A,B]aq satisfies the Jacobi identity. Thus the adjoint map iadanr-matrix. |

In the last section we shall illustrate that through giving several examples.

IV. NONUNIVERSAL ALGEBRAIC STRUCTURE AND r-MATRIX

For a given spectral operathre VN and integein e Z, in the above section we discussed the
Manakov operator pairX,M), the universal Lie algebraic structure and theatrix available for
differenthierarchies of NLEEs. Now, for a givédxX N matrix operatotM and a spectral operator
L e VN, we study the operator algebra andnatrix which can be attached only to thaderlying
hierarchy of NLEEs.

Let us first give some conventions in this sectidn: M is invertible; (i) For a givenL
eVN, VY stands for all matrix operator$:BN— BN possessing the following forns
=2 ,7P(U)L% P,(u)eB, whereX, ., is a finite sum. Next, we introduce the following
definition.

Definition 4.1: Let L= YN and M be a spectral operator and an>\N matrix operator,
respectively. If there exist a vector field=23™ and operators AP e V'[' such that

[A, L]+ MP=L,(X), 4.9

then(A, P) is said to be an LM operator pair of LThe set of all such pairs is denoted BQ" .
X is called the vector field dfA, P) associated with LM The set of all associated vector fields
is denoted by Y£ ). Furthermore, we denote the set of all triples, P, X) by R}

For a givenL e VN and anNx N matrix operatoM or M theorem 2.1 and Eq2.8) assure
that there exists a tripleX, P, X) eR,’Y' satisfying (4.1). Definition 4.1 directly leads to the
following proposition.

Proposition 4.1:

(1) The vector field associated with each LM operator pair is unique
(2) Both£} andR [ are linear spaces

If for given operatord, M there existA, Pevf such that(4.2) holds, then obviously the
evolution equatioru;= X has the following representatigalso called generalized Lax represen-
tation (GLR)]:

L=[A, L]+MP. 4.2

Now, we define a binary operation i\)" .
Definition 4.2: Let(A, P),(B, Q )e LM ,X,YeV(L), respectively, be the vector fields of
(A, P),(B, Q). Declare a binary operation

Downloaded 26 Aug 2003 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 44, No. 2, February 2003 Category of NLEEs, algebras, and r-matrix 709

(A,P)S(B,Q)=(AEB,POSQ), 4.3
through
ASB=A, (Y)—B, (X)+[A,B], (4.4

POQ=P,(Y)~Q.(X)+[A,Q]-[B,P]
+M M, (Y)=[B,M])P—M (M, (X)~[A,M])Q. (4.9

Proposition 4.2:

(1) Equation (4.3) is a skew-symmetric, bilinear binary operation
(2) VE is closed under the operations (4.4) and (4.5)

Proof: The proof follows directly from Definition 4.2. |

Theorem 4.1: Let (A, P, X),(B, Q, Y)eRM, then (ASB, POQ, [X,Y])eRM, where
[X, Y] is defined by (1.2). Thus under the operation (413&’I forms an algebra, and
V(£M), [-,-1) composes a Lie subalgebra Bf".

Proof: Because A, P, X),(B, Q, Y)eR !, and

[[Ar B]! L]:[[Lr B]! A]_[[L! A]! B]:[L*(X), B]_[L*(Y)! A]+[MQ, A]_[MP! B],
we have

[ASB, LI=[A,(Y), L1=[B,(X), LI+[[A, B], L]
= (Le (XD (V) = (L (V)4 (X) = (MP) (Y) +(MQ), (X) +[MQ,A] = [MP, B]
=L, ([X, Y))=M(PESN),

which completes the proof. |

For a given spectral operatarand anNxX N matrix operatoiM, denote the vector fields of
(A, P),(B, Q) by X, Y, respectively. Then from Sec. Il we know=X, u;=Y are the two
different NLEEs in thesamehierarchy. Theorem 4.1 reveals that there exists an algebraic structure
available for all equations in theamehierarchy. And ifu,=X, u,=Y (X, Ye B™) have the GLR
(4.2); then the evolution equatiam=[ X, Y] is still in the same hierarchy, and possesses the GLR
(4.2), too.

Remark 4.11n general,/j[" is not forming a Lie algebra under the operati@n3), because
the Jacobi identity cannot be guaranteed. Nevertheless, the Sthset]!, considered below, is
an exception.

Set S,'i"={(A, P) eV',_“XVN P=Mtad A}; then S’i" is corresponding to the stationary
systemX(u) =0 of evolution equation,=X(u).

Theorem 4.2:For all (A, P)e S, define a map¥:A—P=M'ad A. The map M is an
r-matrix under the operation (4.5) iff Mal, a#0,aeR.

Proof: For any @, P),(B, Q) e S, define

[A, Blm2[rM(A), B]+[A, rM(B)].
Then
[A, B],u=[P, B]+[A, Q]=POQ&eM=al, a#0, acR,

i.e., the map™ is anr-matrix &M =al, a#0, acR. |
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SinceM and M can be fixed arbitrarily we have found two algebraic operator structures,
namely a universal one being independent of the hierarchy in the category and a nonuniversal one
depending on the underlying hierarchy. In addition, in this procedure we have found two kinds of
adjoint maps being-matrices.

The two algebraic structures are associated with the category of NCEEB which includes
both the integrable and the nonintegrable casee Remark 2)4 Therefore, here our algebraic
structures are not contained in aiy-algebras which are usually suitable for the integrable
hierarchy such as the KP, etc.

In the next section, we shall give two reductions of the algebraic structure and the related
r-matrix.

V. TWO REDUCTIONS: VIRASORO ALGEBRA AND r-MATRIX OF ISOSPECTRAL AND
NONISOSPECTRAL LAX OPERATOR

If we chooseM =0 in Definition 4.1, then we havgA,L]=L, (X). That meansA is an
isospectral X;=0) Lax operator. SeffB,L]=L,(Y); then the operatioMSB defined by(4.4)
forms an algebraic structure of the isospectral Lax operator, which just coincides with the result
described in Ref. 31. In this case, thenatrix is zero, i.e., gdA=0, VAe VN,

In this section, we always choosé=M =1 and assume that the conditions of Theorem 2.1
hold. Then, by Theorem 2.1, we obtain

(Wn, L™, ) eR|, meZ,

whereW,, is expressed througl2.10, o, stands for the corresponding vector field. Therefittg

is a sequence of nonisospectrak£\"7,me Z) Lax operators and this matches with choosing

A=W, P=L"" (meZ), X=0, in (4.1). By Theorem 4.1{(W,,,L™"),me Z} represents an

algebra under the operati@A.3), which is called the nonisospectral Lax operator algebra of the

spectral operatok. In the stationary case wheeg= ;=0 the following holds. _
Theorem 5.1: A realization of the operations (4.5) and (4.4) on pafi&;,L'”), (W;,L'7")

e S is given by

Li7oLin=(|i|—|jL0-V7 Vi jez, (5.
WOW,=(li|—|jDWiij-1, Vi,jeZ, (5.2

respectively ' '
Proof: For (W;, L'7),(W,, LI") e S, we have

[W;, L]=—L", [w;, L]=—-LI".
Thus, in the case,j=0,
LmoLin=[L'"7, w;]-[L17, W;]
i—1 i—-1

= L(iflfk)n”_(kﬂ)n_z LU=1=K) ) (k+i)7
k=0 k=0

S L+~ L= Dn= (— LG+~ D,

Similarly, Eq.(5.1) holds for the other three cases0, j<0;i<0, |<0;i<0, j=0.

Equation(5.2) can be directly obtained b§s.1) and Theorem 4.1. [ |
Corollary 5.1: If M=M =1, under the operatiofb.1) the mapr':W,—L!” is anr-matrix.
Proof: This can be directly derived from Theorem 5.1 and Theorem 4.3. |
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Remark 5.1Theorem 5.1 and Corollary 5.1 actually describe the Lie algebraic structure of the
Lax operator for the stationary equatiof=0 (j € Z) and ther-matrix of a concrete form of an
operation(4.5 and(4.4), respectively.

For the usual nonstationary vector fiedd#0 (j € Z) in the nonisospectral casg.1) and
(5.2) do not hold. But, we have the following results.

Theorem 5.2:Let (W;, L17) e£:_, j€Z; then for any jj e Z, L satisfies the relation

Lo 7=(i|=[j)) pL D71 i, jeZ. (5.3

Proof: We give the proof only for the case 00, j=0. The other cases are shown analo-
gously.
Let (Wi, L'7, o), (W;, LI7, 0))e R ; then we have
i—1
(L) ()= 2 LOTE0L T (o)L

i—1
:kgo L(i—l—k)n([wj , L7+ LUt D7t n=1y) kn

=[W,, L] 4igl0+ie D1
and
(L"), () =[W;, LI7]+jgL 007,
So, by Eq.(4.5 and noticingM =1, we obtain
Li7oLin=(i—j)pL0ti+ 021 i jez*, (5.4

which is the desired result. |
Equationg5.1), (5.2), and(5.3) are three special Virasoro algebras, namely, without a central
extension. Because here we do calculations based on our definitions of binary opé#atioasd
(4.5, they have no central extensions.
Remark 5.2For the usual nonstationary vector fiefg#0 (j € Z) in the nonisospectral case
the operation5.1) does not always satisfy the Jacobi identigee Remark 4)1 Thus Corollary
5.1 does not hold in general.
Remark 5.3A particular case of Theorem 5.2 #=1. Then Eq.(5.3 becomes

L'oti=(li|-[jhL"", Vi, jez, (5.5
which implies the following equations:

WeW;=(li|—|jW4j, Vi, jeZ, (5.6
and

Loy, o]=(i|=]iDoij, Vi, jeZ (5.7

Theorem 5.2 reveals that under E§.5) for the same nonisospectral hierarchy the following
holds: if u;= o, andu,= o, , respectively, possess the nonisospectral Lax operdigrandW,,
then u;=o,,, still possesses the nonisospectral Lax operatoil4 |n|) W,©W,, Vm,n
e Z. Thus, the Virasoro operator algebr@gthout the central extensigrior the nonisospectral
hierarchy of NLEEs is reflected by Eq&.5—(5.7).

Remark 5.41f we chooseM =0 andM =1, respectively, then under the algebraic operation
(3.3) we can also have the Virasoro algebra of the Lax operator for the isospectral hierarchy and
the nonisospectral hierarchy, which is actually a special case of universal algebraic structure.
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VI. SOME EXAMPLES

Through taking several examples, we illustrate our methods. For our convenience, we make
the following conventions:

&m
- f= =0 , m>0,
axm f fmx’ m ? 120
f(m): E =4 0, m=0,
jf fdx, m<0, -1
S——— _E ] m<0,
—m \ j=m

fi=0flot, fo=d" /ot ox™(m=0), 9= aldx, 9~ is the inverse ofg, i.e., 99 1=09"19
=1, 9™ means the operataf'f acts on some functiog, i.e.,#™f -g=4d"(fg), me Z. CX stands
for the combinatorial constanteﬁ;:m(m—l)-~-(m—k+ 1)/k!, i an imaginary unit satisfying
i2=—1, andl,, the 2X 2 unit matrix.

In the spectral problemé.1), (6.32 and(6.74) the functionu stands for the potential func-
tion, and the potential functions in spectral problef@t3 and(6.56 are denoted by, r. In
those spectral problems,is always assumed to be a spectral parameter. The domain of the spatial
variablex is ) which becomes equal to>, +«) or (0, T), while the domain of the time
variablet is the positive time axiR* ={t|te R, t=0}. In the cas€)=(—, +=) the decaying
condition at infinity and in the cade = (0, T) the periodicity condition for the potential function,
is imposed.

6.1: Consider the Burger’s spectral probléfh:

L-y=\y, L=L(u)=d+u. (6.1
Choosing the recursion operatfe= 9+ dud~ ! leads to
L-yy=NYy. (6.2

Obviously,L, (§)=¢,Vée B, i.e., L, is an identity operator. In this case, the Lenard’s operators
pair is chosen ag§=1, andK=_L. _

The Lenard recursive sequen@®;};_ _.. (Gj=L'-M, j e Z) gives the Burgers category of
NLEEs:

u=LmM=e " e IMED)m)  mez, (6.3

N )

where MeB is an arbitrarily given function, andL=de” get o7t 7t

=0e Y 571ev" Y =1 which implies i =ge v P ale VoL jez.
For an arbitraryG € 3, the operator equatiorv, L]=L,(£-G)—L, (G)L, which matches
with choosing8=0, a=1 in (2.8), has the following solution:
V=V(G)=—-G+G( Dy, (6.4
Thus the category6.3 possesses the generalized Lax representéGam),
Li=[W,, L]+ML™, meZ, (6.5

with W, =MEDLm— | m (D me gmu D mut™D -y 7
The transformatiomu = (Inv), yields a simple form of Eq(6.3):

ve=(MEDYM - mez, (6.6)
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which has the GLR L=[W,, L]+ML™ with L=d+(Inv)y, Wy=v MV gm
— (oM DY),

Apparently, if M is chosen to be independent mf(v:e“(_l)), then the category6.3) is
linearized. Thus(6.3) includes many linearized hierarchies. Now, let us discuss reductions of the
category(6.3) or (6.6).

A. Positive case (m=0,1, 2,...)
In this case, the Lax operatdV,, can be written as

m

Wm:‘flkZl ckpM=MED gk—pm k1), (6.7)

(i) With M=0, 0" V=1, the positive order category 8.3 reads as the well-known Bur-
gers’ hierarchy,
Uu=((9+u)™1),. (6.9
Particularly, withm=2 it becomes the Burger’s equatiop=u,,+ 2uu, whose Lax operator is
W, = 3%+ 2ud in the standard Lax representatibp=[W,,L]. This corresponds to the isospectral
case:\;=0. According to Eq(6.6), a simple but quite interesting fact is that under the transfor-
mationu=uv, /v the whole Burgers’ hierarch§6.8) is linearized as
Ui=Umx, M=0,1,2,.... (6.9
Equation (6.9 can be solved very easily and have the standard Lax Py,
=p 130 Cr*v (MWK and L=a+ v, /v. In this way, the solutions of all equations in the
Burgers’ hierarchy(6.8) can be worked out.

(i) With M=a, al"V=ax+f(t), aeR, f(t)e C*(R), the positive order category 6.3
becomes the nonisospectral,&€a\™) Burgers’ hierarchy,
U=((+u)™ (@x+f(t)))y. (6.10
A representative equatiom=2) of Eq.(6.10 is

Ur=(ax+ (1)) (Uyyt 2uUUy) + 3au, +au?, (6.11)

possessing the GLR,=[W,,L]+aL? with W,= (ax+ f(t))(d?+2ud)—2au andL=d+u. By
virtue of M=a andu=(Inv),, Eq.(6.10 is linearized as

vt=(ax+ f(t))UmX+ Mav (m—1)x» (612
which can be solved. Equatiof6.12 has the generalized Lax operat6GLO) W,,=(ax
+E(t))o 1=, CRo (MW gk—map ~L (MY, Particularly, Eq(6.11) has a linearization equation
(m=2),

vi=(ax+f(1))vy+ 2av, (6.13

possessing the GLAV,= (ax+ f(t))(#%+2v  tv,d)—2av lv,. In a general caseyl can be
extended ad =E-“=Oc-(t)xj, ¢;(t) e C*(R), which will be considered below.

(iii) With M= E 0c ()X, c; () e C*(R), the positive order category @6.3) reads as a
nomsospectral)(t—(E _oCj (t)x'))\m) hierarchy,
j+1
=|(g+u)™ | f(t) +2 c,(t)
where an arbitrary (t) e C*(R) is attached by virtue of integration with respectxtoOf course,
Eq. (6.19 is easily linearized as

(6.19

Jm
0= Uf(t)-i-vE J_]::E JH), (6.15

via u=(Inv),. Equation(6.15 has the generallzed Lax operator,

Downloaded 26 Aug 2003 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



714 J. Math. Phys., Vol. 44, No. 2, February 2003 Qiao, Cao, and Strampp

m
Wi=v ">, Cip™ 9MEDF—mED),
k=1
with

" g(h)
MED=f(t)+ > ———xi*1,
® 1261—1-1

(iv) With M=(u™Y),, MO D=u"1, the positive order category 8.3 reads as the follow-
ing hierarchy of NLEEs:
w=((d+uw™u"b,, m=01.2... (6.16

A representative equation ¢6.16) is

1
ut=(—) , (6.1

with the GLOWy=—(u™ 1), +u~1s.

B. Negative case (m=-—1,—-2,...)

)

(i) With M =0, the generatoG_l:ae‘”(f1 91" Y910 is determined by the following

two seed functions:

)

G_,=f(t)(e "), 6.189

and
G_i=gt) (e Ve ), (6.19

wheref(t), g(t) e C*(R) are two arbitrarily given functions. Apparently, the seed funct®i8
produces the following isospectral (=0) negative order hierarchy ¢6.3),

u=f(t)(e v Y1)  m<o0, mez, (6.20

X" M K=2(—m—k—1-xu)
(—m—k—1)!

-m—1
u=fe " "> ¢ . Co=1, (6.21)
k=0
wherec,=cy(t) e C*(R) (—m—1=k=1) is arbitrarily given. Thus although E¢6.20 is non-
linear, we have its general solution:
X—m—k—2
Zk_:mO_ZCk(t)m(%_lf(t)‘i‘h/(X)
u(x,t)= k=T , Vh(x), c(t)eC*(R), (6.22
-m-1 -1
I Ck(t)mﬁt f(t)+h(x)

whered; Mf(t)=[f(t)dt, co(t)=1, h'(x)=(d/dx) h(x). Of course, Eq(6.21) has the standard
Lax representatioh,=[W,,,L] with Wy,=— f(t)e*”(_l)Egzmo‘lck(t) x~ M k=l (—=m—k—1)!.

On the other hand, the seed functi@19 generates the following isospectral,&0) nega-
tive order hierarchy of6.3):

ut:g(t)(e—u(fl)(eu(fl))(m))X’ m<0, meZ, (6.23
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which is a hierarchy of integro-differential equations and can be changed to the linear differential
equations,
U_mx=9(t)v, m<0, meZ, (6.24)
via the transformation=v ~'v,. The Lax operatoW,, of (6.23 or (6.24) is W,,=—g(t)e" uy
(e Y™ or W, = —g(t)v o™, m<o0.
(i) With M=a, al"V=ax+1(t), aeR, f(t)e C*(R), the negative order category 5.3
through settingi=v ~'v, reads as the linear equations,

U _mx=(@x+f(t))v, m<0, meZ, (6.25

which corresponds to the nonisospectral casg=a\™, and has the GLOW,=v l(ax
+(1))dM —v (v (ax+f(1)))(™, m<0. For a general case, we have the following.
(iii ) SettingM =EJ“:001-(t)xJ (c;(t) e C*(R)) yields a negative order hierarchy (§.3),

Xj+l

u=| e U Vgmeu E ¢()+—| , m<0, meZ, (6.26)

j+1
which corresponds to the nonisospectral cnse(E}LOcj(t)xi))\m, and can be linearized as
n Xj+1
v,mxt:vjzo c]-(t)j+—1, m<0, meZ, (6.27)
via u=v~lv,. Equation(6.27 has the Lax operator
12

(iv) With M= (v/vy)y, 9 M= vlvy, the associated negative order hierarchy68) is

]+1 (X]+1 oMy — (UXJ+1)(m)) m<o0.

2
1%
Vo mxt= m<0, meZ, (6.28

X

which has a representative equation=f —1)
UxUxt= v?, (6.29

with the Lax operatoW_,=(1/v,) ¢ *v— (1) (vv,) Y.

Through choosing differenl, we still have other hierarchies ¢6.3). Because of the arbi-
trariness ofM, all results in Secs. IlI-V are valid for the Burgek8) spectral problen(6.1).
Particularly, ther-matrix aq becomes

adf :W,,—~ML™, meZ, (6.30

G omou- D

whereW,,=MCDLM— M. M M=~ “yMe
And ther-matrix rM (M=a#0, acR) reads as

, M e B is an arbitrarily given function.

rg:Wo,—L" meZz, (6.31

whereW,,,= (ax+ f(t))L™— L™ (ax+f(t)). Equations(6.30 and (6.31) generate the stationary
B-categorical systemd {"-M (1), =0 and (™ (ax+ f(t))),=0, respectively.

We can also apply the above procedure to other spectral problems. Now, we list some main
results as follows.
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6.2: KdV case. The KdV—Schrdinger spectral problerif,
L-y=\y, L=L(u)=d*+u, (6.32
has the following Lenard operator pair:
K= 15+ Z(ou+ug), J=a. (6.33

Apparently,L, (&) =¢,V ée B. Settingu= — ¢,,/ ¢ yields the product-form oK and its inverse,

K=3¢ 294" a¢? ap™?,
K_1=4¢2 a—ld)—z 5_1¢_2&_1¢2, (634)

Let M, M e BB be two arbitrarily given functions. Then the positive order and negative order
generators,

Go=MY; G_ 1=K 1 M=4¢?0"1¢p 207 p 2971 (¢*M), (6.3
leads to the KdV category of NLEEs

L™ Gy, m=0,

u=J-Gy, mezZ, G,= L™L.G_,, m<0

(6.39

where the recursion operatdris given by
L=3"K=17+i(u+d ud)=310"1p 29¢?dp? 92,
and its inverse is
£—1:4¢2 (9—1(25—2 (9—1(1)—2 (9—1¢2 dJ.

For an arbitraryG € B, the operator equatiorv,L]=L, (K-G)—L, (J-G)L has the follow-
ing operator solution:

V=V(G)=— 1G+ 1Gy, (6.37
which implies that the KdV categor{6.36) possesses the GLR,

_ _ M, m=0,
Li=[Wq, L]+ML™ meZ, M= i (6.38

with the GLO
W= V(G)L™ 7L, (6.39
Here V(G;) is determined by(6.37) with G=G;=L!-Gy, j=0 orG=G;=£/**.G_,, j<0,

L=d?+u=¢ Lap 20¢ 2 andL 1=¢? 9 1?0 1¢.
In particular, we are concerned with the following reduction.

(i) With M=4u~?),, Go=MY=4u"2 the positive order category ©6.36 reads as
the well-known Harry—Dym hierarchy,

u=JL™4u" 2 m=0,1,2,... (6.40
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With m=1, Eq.(6.40 yields the Harry—Dym equation,

ih) 64
N “

XXX

Ut:

which has now the GLR.,=[W,,L]+4(u"Y?),L with Wo=—(u"Y?),+2u"Y2%9, and appar-
ently belongs to the KdV categor$.36); with m=2, Eq.(6.40 yields a higher order Harry—Dym
equation,

1

1 1
“Z%<§E>M+“ & Qﬁ)m

possessing the GL@V; =2u~*20%— (u=%?),0%+ 3((u™ Y3, + 4u" 29— 2(u Y2 t U~ Y2, .
So, we have obtained an interesting fabe Harry-Dym equation (6.41) can be included in
the KdV category (6.36) with the generalized Lax operamilar to the process of the Burgers’
case, we can also have many reduced hierarchies both positive and negative fri@B8&q.
6.3: AKNS case. The ZS-AKNS spectral problefr®

+ Uy
3x

(6.42

_ _ . g —q _ Y1)
L-y=Ay, L—L(q,r)—l(Ir —a)’ y—(y2 , (6.43

has its Lenard’s operators pair,

( qd 'q %a—q&%) 0 -1
K= , Jzi( ) (6.44)

to-ralq ro'r 1 0
Apparently,
0 _|§1
L*(§>=(i§ 0 ) E=(b.6) e B, (6.45
2

is an injective homomorphism.
Equation(6.44) gives the recursion operator

1
L=]"1K=Zi

5 (6.49

—o+2ro g —2ro
2q9 1q 9—2q9 )’

Choosing two functionsd, e C*(R) satisfying 6,=26%+r r,0—2qr, o.=3%0?+q o0
—2qr, leads to the inverse of,

R —&artort-2qr7t) —-2& 64
B - 2F Floq toq t-2rqg 1Y)’ 6.47
where&, F denote the following two operators:
=V g1tV g1 et g1 00 pogmolT ym1e0lTH g o1 @Y grlg oY
(6.48
Let A,B,C,D e B be four arbitrarily given functions; then iff
0 -B - 0 -D
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the operator equations, (J-Gg)=M, L,(K-G_;)=M give the positive order and negative
order generatorgfunction vectory

—&-(r t(r Cc),—2qr C+2D)

B F-(99°1-(q"'D),—2rq D +2C) |’ (6.50

A .
GOZ y G_1:_2|

which directly leads to the AKNS category of NLEES:

r Jc™(c,D)T, m=-1,-2,..., 6.5D

q) [Jﬁm-(A,B)T, m=0,1,2,...,

t

whereJ, £ and£ ~! are defined by6.44), (6.46 and(6.47), respectively.
For an arbitrarily givenG= (G GI?))Te B2, the operator equatiofV,L]=L, (K-G)

—L,(J-G)L has the solution

1 _(rG[Zl_qell])(*l) Gl2l
V:V(G):z( Gl (rGl2— gl 1) (6.52
which is obviously a function matrix. Thus, the AKNS categ8y51‘ has the GLR:
L,=[W,,,L]+ML™ meZ, (6.53
0 B
, m=0,
[ ol
M=1/0 D
, m<QO,
cC o0
with the GLO
Wp=2> V(G)L™ 7%, mezZ. (6.54)

HereV(G;) is given by(6.52 with G=G;=L!-(A,B)T, j=0 or£-(C,D)T, j<0, L is defined
by (6.43, and its inversd. ! is determined by

o, [Seat =S
L™ =i s T{?r_l , (655)
with the operators S=e ?" Vg 1e2' Vo te Y 7= nY y1e2n Y grlgmnY),

wherep and u are two functions satisfying,= p%+q~ 1q.,0—qr, uy=u2+r tr,u—qr.
Here, we omit the reductions and thematrix representation of the AKNS categd§.51).
6.4: WKI (Wadati—Konno—Ichikowacase. The WKI spectral problet,

Ly=ay, L=La@n=——[ " 794 —(yl (6.56
y_ y! - qy _1_qr —r —l !y_ y2 ) .
has the following Lenard’s operators pair:
1 1 r
Y VN kPR
T2 1 . 1. r : '
(93.}__32_5*190—,2 _ TRyl g2
2. p p 2 p p
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0 -4
Jz(&Z 0 )’ p= Vl_qrv (65&
which yields the recursion operatdr=J"1K
r r r
StadlaP o glig?
1 2pp 2p p
L= o7 q q q . (6.59
_(9_1_(92 _a__a—l (92
2p p 2p

Apparently, the Gateaux derivative operatqr(¢) of the spectral operatdr in the direction
£=(£1,6) eB?is

1
Le(§)= 7 (6.60

qé, —ié& L
1—qr '

i& ré&

which is an injective homomorphism.
Through lengthy calculations, one can obtain the invertible operatadrs 8f K and L:

. —io"t 97 1q
L 1= . , :
e (6.63
» 0 97
J = _0,',2 0 ’ (662
1
Ea‘lr 9 trot 93— =0 ro lqo?t
K™ 1=2i , 6.6
g3 léflq(;a rot Ea*lqa*lqofl o
2 2
1 1
a‘l—ia‘lra‘lqa —Ea‘lra‘lra
“1=2j : 6.6
C | 1 -1 -1 -1 1 -1 -1 ( 4)
597 'a0'q0 —o 50t g

Let A, B, C, D be four arbitrarily givenC”-functions; then iff

1 [gA iB - 1 [qC iD
M_l—qr iA —rB L, M_l—qr iC —rD L. (6.69

the operator equatiorls, (J-G,)=M, L, (K-G_;)=M have the following solutions:

A(-2)
Go= ( B(z)) ' (6.66)
2iICC¥—i o7 r 97 .(rDCV+qCct D)
G-1=| _2ip-3+i 971q g7 (1D D+ qCD) | (6.67

which directly yields the WKI category of NLEES:
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(q) ~J.G,, meZ, (6.68
t

LM (AC2 BE2)T m=0,1,2,...,
m— (6.69

£m(CcEApENT m=-1-2,...,

whereJ, £ and£ ~* are defined by6.59, (6.59 and(6.64), respectively.
For any givenG= (G, GI?1)Te B2, the equatior[V, L]=L,(K-G)L *—L, (J-G) has

the following operator solution:
0 B —i q
_ +A L, T
c o Co (6.70

whereA, B, C are the following three functions given by

V=V(G)=

r r =1
2G[X1X1+(95.<9G[X1X]— —G[XZX]) )

S 1
C=C(G)=E

Thus, the WKI category6.68 has the GLR:

Li=[W,,,L]+ML™?1 meZz, (6.70)
1 A iB
.q ) mBOY
_ 1—qr(|A —rB) 6.72
M= _ 7
1 C iD
) . m<o,
1—qr(|C —rD)
with the GLO
Wq=2> V(G)L™ ), meZ, (6.73

HereL, L™" and V(G;) are given by(6.56), (6.61) and (6.70 with G=G; defined by(6.69),
respectively.
6.5: The following spectral problem:

B 3 _1 i 1-u (V1
L-y=Ay, L=L(u)= 1 i |? Y= , (6.74

yields its Lenard operators pair,
K=¢% J=—2(du+ud).

The Gateaux derivative operatby, (¢) of the spectral operatdr in the directioné e B is
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¢f—i -1\ ¢/0 —i

Apparently,L, is a homomorphism and, (£§) =0 ¢=0.
In the category derived from E@6.75), we can obtain the Harry—Dym hierarchy as well as
some new integrable equations. For example, the following nonlinear equation:

UX172:2UUXX+U)2( (6.76

is a new integrable equation with many unknown physical properties. In fact, this equation is
included in an isospectral)\(ﬁ:O) negative order hierarchy a6.74), and its standard Lax
operator is

W_,==V(G o)L ' =V(G_yL~3,
whereV(G;j) (j=—2,—1) is given by

1 -2i

+ Gy 0o -1

01
V=V(G)=G,, L+2G

0 0

—i u-—-1
B LA (6.77
with G=G_,=—v("Y, G_;=1, respectively, and. " is the inverse of_, given by

-1 —io™t 9T tu—a7t 67
I it ) ©.78

We will give in detail some reductions for the latter four spectral problems in a later paper.
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