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People’s Republic of China
2College of Mathematics and Information Science, Shaanxi Normal University,
Xi’an 710062, People’s Republic of China
3Department of Mathematics, The University of Texas-Pan American, Edinburg,
Texas 7839, USA

(Received 1 November 2010; accepted 1 December 2010; published online 5 January 2011)

In this paper, a new integrable two-component system, mt = [m(uxvx − uv + uvx

− uxv)]x , nt = [n(uxvx − uv + uvx − uxv)]x , where m = u − uxx and n = v − vxx ,
is proposed. Our system is a generalized version of the integrable system mt = [m(u2

x
− u2)]x , which was shown having cusped solution (cuspon) and W/M-shape soliton
solutions by Qiao [J. Math. Phys. 47, 112701 (2006). The new system is proven
integrable not only in the sense of Lax-pair but also in the sense of geometry, namely,
it describes pseudospherical surfaces. Accordingly, infinitely many conservation laws
are derived through recursion relations. Furthermore, exact solutions such as cuspons
and W/M-shape solitons are also obtained. C© 2011 American Institute of Physics.
[doi:10.1063/1.3530865]

I. INTRODUCTION

The Camassa–Holm (CH) equation1, 2

mt + 2ux m + umx = 0, m = u − uxx + k (1.1)

has attracted much attention in the past 2 decades. The CH equation has multipeaked solitons and is
completely integrable in the sense of Lax-pair and bi-Hamiltonian structure. A lot of works concern-
ing about its well-posedness, blow up, exact solutions, and algebraic and geometric formulations
have been fulfilled (see Refs. 3–8 and references therein). More interestingly, geometric interpreta-
tion for the CH equation has been provided from several different points of view. For the standard
CH equation mt + 2ux m + umx = 0 with m = u − uxx , it describes the geodesic flow with respect
to the H 1 right-invariant metric on the diffeomorphism group of the circle,9 and in the case of
m = u − uxx + k, k �= 0, the CH equation is able to take on the geodesic equation with respect to
the H 1 right-invariant metric on the Bott-Virasoro group.10 The apparent similarity for both cases
was further explained by Constantin and Kolev in Ref. 11. In Ref. 12, Constantin et al. noticed that
the Riemannian exponential map provides a smooth chart on the diffeomorphism group, but not
on the Bott-Virasoro group. In Ref. 13, Chou and Qu proved that the CH equation arises from a
nonstretching invariant plane curve flow in the centro-affine differential geometry. It was shown by
Reyes14 that the CH equation describes pseudospherical surfaces.

A two-component extension to the CH equation is the following system:15–17

mt + 2ux m + um ± ρρx = 0,

ρt + (ρu)x = 0, (1.2)

a)Author to whom correspondence should be addressed. Electronic mail: qiao@utpa.edu.
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where m = σu − uxx , σ = 0, 1. They are referred to the two-component CH system and Hunter–
Saxton system corresponding to σ = 1 and σ = 0, respectively. Since those two systems have
Lax-pair and bi-Hamiltonian structure, they are completely integrable. Guha and Olver18 verified
that the system (1.2) with “ + ” describes geodesic flows with respect to the H 1 metric on the
semidirect product space Diffs(S1) � C∞(S1) . Well-posedness and wave breaking phenomena for
the system (1.2) with certain initial values have been studied. [19–22].

One may notice that the nonlinear terms in the CH system, the Hunter–Saxton system, and their
two-component extensions are quadratic. An interesting question is whether there exist integrable
systems admitting peaked solitons (peakons) and nonlinear cubic terms. Indeed, two integrable
equations with peaked solitons and cubic nonlinearity have been found, which are

mt + [
m

(
u2 − u2

x

)]
x = 0, (1.3)

and

mt + u2mx + 3uux m = 0. (1.4)

Equation (1.3) was found to admit tri-Hamiltonian structure by Olver and Rosenau,15 and re-
cently Qiao gave its Lax-pair and cusp soliton solutions and first time proposed a new kind of
solitons—W/M-shape solitons.23 Equation (1.4) (named Novikov’s equation) arises from symmetry
classification of nonlinear partial differential equations (PDEs) with cubic nonlinearity (see Ref. 24
for the derivation of this equation).

The PDE notion describing pseudospherical surfaces was introduced first by Chern and
Tenenblat.25 They showed that several well-known nonlinear evolution equations solved by the
inverse scattering method, such as Korteweg-de Vries, modified Korteweg-de Vries, Schrödinger,
and sine-Gordon equations, describe pseudospherical surfaces. Furthermore, they provided a com-
plete classification to evolution equations of the form

ut = F(u, u1, · · · , un),

where u j = ∂ j u/∂x j and F is a smooth function of the indicated variables, when they describe
pseudospherical surfaces. In the subsequent works, their approach was applied to perform other
types of evolution equations, which describe pseudospherical surfaces (see Ref. 26 and references
therein).

One of the remarkable properties of the CH equation is the existence of peakons.1 It was noted
in Refs. 27, 28, and 29 that the peakons replicate a feature of the waves for great height waves of
largest amplitude that are exact solutions of the governing equations for irrotational water waves.
Another type of interesting solutions, called cusped solutions (cuspons) for integrable equations,
frequently appeared in a hydrodynamical context. It is worthy of noticing that the only known
explicit solution without a flat free surface for steady water waves is Gerstners family of waves, the
limiting forms of which admit a cusp at their crest.30, 31 There are even three-dimensional traveling
waves (whose free surface is genuinely nonflat and two-dimensional) which also present cusps.32 It
was found by Qiao23 that Eq. (1.3) has cuspons and W/M-shape soliton solutions.

The purpose of this paper is to propose the following two-component extension of Eq. (1.3);
that is,

mt = [m(uxvx − uv + uvx − uxv)]x ,

nt = [n(uxvx − uv + uvx − uxv)]x , (1.5)

where m = u − uxx and n = v − vxx . Apparently, it reduces to (1.3) when v = u. We will show
that this system is integrable, namely, it has Lax-pair and is also geometrically integrable. As a
consequence of geometric integrability, its conservation laws are constructed by expanding the
pseudopotential. Finally, the cuspons and W/M-shape solitons of system (1.5) are obtained.

Downloaded 06 Jan 2011 to 124.115.173.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



013503-3 A new integrable two-component system J. Math. Phys. 52, 013503 (2011)

II. LAX-PAIR OF SYSTEM (1.5)

It was shown in Ref. 23 that Eq. (1.3) has the Lax-pair(
ψ1

ψ2

)
x

= U (λ, m)

(
ψ1

ψ2

)
, (2.1)

and (
ψ1

ψ2

)
t

= V (λ, u, m)

(
ψ1

ψ2

)
, (2.2)

where

U (λ, m) =
(

− 1
2

1
2λm

− 1
2λm 1

2

)
, m = u − uxx ,

V (λ, u, m) =
(

λ−2 + 1
2 (u2 − u2

x ) −λ−1(u − ux ) − 1
2λm(u2 − u2

x )

λ−1(u + ux ) + 1
2λm(u2 − u2

x ) −λ−2 − 1
2 (u2 − u2

x )

)
.

Similarly we have the following result.
Theorem 2.1: System (1.5) has the following Lax-pair(

ψ1

ψ2

)
x

=
( 1

2 λm
λn − 1

2

)(
ψ1

ψ2

)
, (2.3)

and (
ψ1
ψ2

)
t

=
(

1
4λ−2 + 1

2 Q 1
2λ−1(u + ux ) + λm Q

1
2λ−1(v − vx ) + λnQ − 1

4λ−2 − 1
2 Q

) (
ψ1

ψ2

)
, (2.4)

where m = u − uxx , n = v − vxx , Q = uxvx − uv + uvx − uxv.
Remark 1.1: Equation (1.3) has bi-Hamiltonian structure,15, 23 namely, it can be written as

mt = J
δH0

δm
= K

δH1

δm
,

where

J = −∂m∂−1m∂,

K = ∂3 − ∂,

H0 = 2
∫
R

umdx,

H1 = 1

4

∫
R

(u4 + 2u2u2
x − 1

3
u4

x )dx .

III. GEOMETRIC INTEGRABILITY OF SYSTEMS (1.5)

According to Ref. 25, a PDE

E(x, t, u, ux , ut , · · · , uxntm ) = 0 (3.1)

for a real function u(x, t) with two independent variables t and x is said to describe pseudospherical
surfaces if it is a necessary and sufficient condition for the existence of smooth function fi j , 1 ≤ i ≤ 3,
1 ≤ j ≤ 2, depending on u and its derivatives such that the 1-forms dωi = fi1dx + fi2dt , 1 ≤ i ≤ 3,
satisfy the structure equations of a surface with a constant Gaussian curvature equal to −1; that is,

dω1 = ω3 ∧ ω2,

dω2 = ω1 ∧ ω3,

dω3 = ω1 ∧ ω2, (3.2)

where u = u(x, t) is a solution of E = 0.

Downloaded 06 Jan 2011 to 124.115.173.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



013503-4 Song, Qu, and Qiao J. Math. Phys. 52, 013503 (2011)

Definition 3.1: Equation (3.1) is geometrically integrable if it describes a nontrivial one-
parameter family of pseudospherical surfaces.

We now have the following result.
Theorem 3.1: System (1.5) describes pseudospherical surfaces.
Proof: Consider the following three 1-forms ωi , i = 1, 2, 3:

ω1 = λ[e(1−λ)x n + e(λ−1)x m]dx + [2λ(e(λ−1)x m + e(1−λ)x n)Q

+λ−1
(
e(λ−1)x (u + ux ) + e(1−λ)x (v − vx )

)
]dt,

ω2 = λdx + (
1

2
λ−2 + Q)dt,

ω3 = λ[e(1−λ)x n − e(λ−1)x m]dx + [2λ(e(1−λ)x n − e(λ−1)x m)Q

+λ−1
(
e(1−λ)x (v − vx ) − e(λ−1)x (u + ux )

)
]dt. (3.3)

Through a direct computation, we know that the structure equations (3.2) hold whenever u(x, t) and
v(x, t) are solutions of system (1.5).

Proposition 3.1: (Ref. 33) Let E = 0 be a differential equation of pseudospherical type with
associated 1-forms dωi = fi1dx + fi2dt , 1 ≤ i ≤ 3. Then E = 0 is the integrability condition of
the sl(2,R)-valued linear problem

dv = 	v, (3.4)

where 	 is the matrix-valued 1-form

	 = Xdx + T dt = 1

2

(
ω2 ω1 − ω3

ω1 + ω3 −ω2

)
. (3.5)

Consequently, if E = 0 is geometrically integrable, it is the integrability condition of a 1-parameter
family of linear problems.

It follows from the 1-forms (3.3) and (3.4) that the integrability condition of the sl(2,R) linear
problem

vx = Xv,

vt = T v,

gives the system (1.5). The expression (3.5) implies that the matrices X and T are

X = 1

2

(
λ 2λe(λ−1)x m

2λe(1−λ)x n −λ

)
,

T = 1

2

(
1
2λ−2 + Q e(λ−1)x

(
λ−1(u + ux ) + 2λm Q

)
e(1−λ)x

(
λ−1(v − vx ) + 2λnQ

) − 1
2λ−2 − Q,

)
. (3.6)

Therefore we have gotten the following result.
Corollary 3.1: System (1.5) is geometrically integrable.

IV. PSEUDOPOTENTIALS AND CONSERVATION LAWS OF SYSTEM (1.5)

It was known that the equations of pseudospherical type admit quadratic pseudopotentials.33, 34

Let 
 = ψ1/ψ2, γ = ψ2/ψ1, where ψ1 and ψ2 satisfy (2.3) and (2.4). One can easily verify that

d
 = −1

2
(ω̃3 − ω̃1) + ω̃2
 − 1

2
(ω̃3 + ω̃1)
2, (4.1)

and

dγ = 1

2
(ω̃3 + ω̃1) − ω̃2γ + 1

2
(ω̃3 − ω̃1)γ 2 (4.2)

Downloaded 06 Jan 2011 to 124.115.173.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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are completely integrable, where

ω̃1 = λ(n + m)dx + [1

2
λ−1(v − vx + u + ux ) + λ(n + m)Q

]
dt,

ω̃2 = dx + (1

2
λ−2 + Q

)
dt,

ω̃3 = λ(n − m)dx + [1

2
λ−1(v − vx − u − ux ) + λ(n − m)Q

]
dt.

It follows from (4.2) that γ satisfies the following two equations:

γx = −λmγ 2 − γ + λn, (4.3)

and

γt = −[1

2
λ−1(u + ux ) + λm Q

]
γ 2 − (1

2
λ−2 + Q

)
γ

+1

2
λ−1(v − vx ) + λnQ. (4.4)

A direct computation shows that γ satisfies the conservation law

(mγ )t = [
1

2
λ−2(u + ux )γ + (γ m + 1

2
λ−1)Q]x . (4.5)

Based on Eqs. (4.3) and (4.5), using the standard algorithm we are able to obtain infinitely
many of conservation laws of system (1.5) by expanding the pseudopotential γ . As usual, two sets
of expansions for γ will be used. The first one is

γ =
∞∑

n=0

γnλ
−n. (4.6)

Substituting (4.6) into (4.3), we arrive at the following systems of γn:

n − mγ 2
0 = 0,

γ0,x + 2mγ0γ1 + γ0 = 0,

γ1,x + m(2γ0γ2 + γ 2
1 ) + γ1 = 0,

γ2,x + m(2γ0γ3 + 2γ1γ2) + γ2 = 0,

· · · ,

γn,x +
n+1∑
k=0

γkγn−k + γn = 0. (4.7)

Solving the system, we get the first few solutions given by

γ0 =
√

n

m
,

γ1 = − 1

2m
(
γ0,x

γ0
+ 1),

γ2 = − 1

2m

[
(
γ1

γ0
)x − 1

4mγ0
(
γ0,x

γ0
+ 1)2

]
,

· · · ,
which lead to the first two conservation functionals

H−1 =
∫
R

√
mndx,

H−2 =
∫
R

1√
mn

(
γ0,x

γ0
+ 1)2dx .

Downloaded 06 Jan 2011 to 124.115.173.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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These Hamiltonians will generate the negative members of the integrable hierarchy associated with
the spectral problem (2.3).

Next, we consider the expansion of γ in the form

γ =
+∞∑
n=0


nλ
n.

Substituting it into (4.3) yields the following system:


0,x + 
0 = 0,


1,x + 
1 = n − m
2
0,


2,x + 
2 = −2m
0
1,

· · · ,


n,x + 
n = −m
n−1∑
k=0


k
n−1−k . (4.8)

Similarly, we can obtain the first few conservation functionals

H1 =
∫
R

m(v − vx )dx,

H2 =
∫
R

(u + ux )(v − vx )2mdx,

H3 =
∫
R

(u + ux )(v − vx )m
3dx .

These Hamiltonians will generate the positive members of the integrable hierarchy associated with
the spectral problem (2.3).

V. EXACT SOLUTIONS OF SYSTEM (1.5)

We are now seeking traveling wave solutions of (1.5) by setting

u = U (x − ct), v = V (x − ct), (5.1)

where c is the wave speed. Let ξ = x − ct , then u = U (ξ ) and v = V (ξ ) satisfy the system

[m(uξ vξ + uvξ − vuξ − uv + c)]ξ = 0,

[n(uξ vξ + uvξ − vuξ − uv + c)]ξ = 0.

After integration, we arrive at the system

m(uξ vξ + uvξ − vuξ − uv + c) = a,

n(uξ vξ + uvξ − vuξ − uv + c) = b, (5.2)

where a and b are integration constants. We consider two possibilities:
Case (i): ab = 0. In this case, u and v must satisfy the equation

uξ vξ + uvξ − vuξ − uv + c = 0,

which can be written as

(eξ u)ξ (e−ξ v)ξ = −c. (5.3)

One can readily see that Eq. (5.3) has the following solution:

u = c1e|ξ | + c2e−|ξ |,

v = d1e|ξ | + d2e−|ξ |, (5.4)

Downloaded 06 Jan 2011 to 124.115.173.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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where ci and di , i = 1, 2, are constants satisfying the constraint

2c1d2(1 + sign ξ ) + 2d1c2(1 − sign ξ ) − c = 0.

We are not interested in such solutions since u −→ ∞, v −→ ∞ as ξ −→ ∞.
Case (ii): a, b �= 0. It follows from (5.2) that

a

m
= b

n
,

which implies that w = av − bu satisfies

w − wξξ = 0.

It has the general solution

w = c3eξ + c4e−ξ ,

where c3 and c4 are constants. Therefore, we have

v = b

a
u + c3eξ + c4e−ξ .

If we require that

lim
|ξ |−→∞

u = A, lim
|ξ |−→∞

v = B,

where A and B are constants. It implies that

B = b

a
A, c3 = c4 = 0.

Consequently, v = b
a u and u satisfies

b

a
m(u2

ξ − u2) + cm + a = 0,

where m = U − Uξξ . Let d = (ac)/b, β = −a2/b, then Usatisfies the equation

[d − (U 2 − U ′2)]2 = α − 4βU,

where α is an integration constant. Solving it, one gets

U ′2 = U 2 − d ±
√

α − 4βU .

Noticing limξ−→∞ U = A, limξ−→∞ Uξ = 0, we immediately have

β = A(d − A2), α = (d − A2)(d + 3A2).

Thus U satisfies the equation

[d − (U 2 − U ′2)]2 = (d − A2)(d + 3A2 − 4AU ). (5.5)

Using a similar discussion as shown in Ref. 23, we know that Eq. (5.5) has the following solution

U = A[
5

3
− (3z + 2)(z −

√
z2 − 4

9
)],

where z = cosh( |ξ |
2 − ln 2) − 1

3 , c = 11
3 A2, which are the W/M-shape solitons corresponding to

A > 0 or A < 0.
Equation (5.5) also has the following cusp solitons:

U = A[
5

3
− (3z + 2)(z −

√
z2 − 4

9
)],

Downloaded 06 Jan 2011 to 124.115.173.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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where z = cosh( x
2 − 11

6 t2) − 1
3 . Let A = ±1, then the solution reads as

U (X ) = ±
(

2 − 3 cosh2 X + (cosh X + 1

3
)
√

3(3 cosh X + 1)(cosh X − 1)

)
,

X = x

2
− 11

6
t.

It has the following properties:

U (0) = ∓1, U ′(0+)± = ∞, U ′(0−) = ∓∞,

which imply that U (X ) is indeed a cusp soliton.

VI. CONCLUDING REMARKS

In this paper, we present a new integrable two-component cubic system, which is a natural
extension to Eq. (1.3). It is shown that system (1.5) admits the Lax-pair, and thus it is integrable.
Moreover, we show that the system is geometrically integrable, namely, it describes pseudospherical
surfaces. As a consequence, its infinite number of conservation laws are able to be constructed
through some recursion relations. The explicit solutions of Eq. (1.3), including cuspons and W/M-
shape solitions are also derived. Following the idea in Ref. 35, we may extend Eq. (1.3) to an
integrable hierarchy since all Hamiltonians, both positive and negative orders, are found through the
above goemetric procedure.
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D 4, 47 (1981).

3 A. Constantin, “On the Cauchy problem for the periodic Camassa-Holm equation,” J. Differ. Equations 141, 218 (1997).
4 A. Constantin, “On the blow-up of solutions of a periodic shallow water equation,” J. Nonlinear Sci. 10, 391 (2000).
5 A. Constantin and J. Escher, “On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,”

Math. Z. 233, 75 (2000).
6 A. Constantin and H. P. McKean, “A shallow water equation on the circle,” Commun. Pure Appl. Math. 52, 949 (1999).
7 G. Misiolek, “Classical solutions of the periodic Camassa-Holm equation,” Geom. Funct. Anal. 12, 1080 (2002).
8 Z. J. Qiao, “The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a sym-

plectic submanifold,” Commun. Math. Phys. 239, 309 (2003).
9 S. Kouranbaeva, “A shallow water equation as a geodesic flow on the Bott-Virasoro group,” J. Math. Phys. 40, 857 (1999).

10 G. Misiolek, “The Camassa-Holm equation as a geodesic flow on the diffeomorphism group,” J. Geom. Phys. 24, 203
(1998).

11 A. Constantin and B. Kolev, “Geodesic flow on the diffeomorphism group of the circle,” Comment. Math. Helv. 78, 787
(2003).

12 A. Constantin, T. Kappeler, B. Kolev, and P. Topalov, “On geodesic exponential maps of the Virasoro group,” Ann. Global
Anal. Geom. 31, 155 (2007).

13 K. S. Chou and C. Z. Qu, “Integrable equations arising from motions of plane curves,” Physica D 162, 9 (2002).
14 E. G. Reyes, “Geometric integrability of the Camassa-Holm equation,” Lett. Math. Phys. 59, 117 (2002).
15 P. J. Olver and P. Rosenau, “Tri-Hamiltonian duality between soliton and compactons,” Phys. Rev. E 53, 1900 (1996).
16 A. Constantin and R.I. Ivanov, “On an integrable two-component Camassa-Holm shallow water sysem,” Phys. Lett. A 372,

7129 (2008).
17 M. Chen, S. Liu, and Y. Zhang, “A 2-component generalization of the Camassa-Holm equation and its solutions,” Lett.

Math. Phys. 75, 1 (2006).
18 P. Guha and P.J. Olver, “Geodesic flow and two-component analogy of the Camassa-Holm equation, SIGMA Integrability”

Symmetry, Integr. Geom. Methods Appl. 2, 054 (2006).
19 J. Escher, O. Lechtenfeld, and Z.Y. Yin, “Well-posedeness and blow-up for the 2-component Camassa-Holm equation,”

Discrete Contin. Dyn. Syst. 19, 493 (2007).

Downloaded 06 Jan 2011 to 124.115.173.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/PhysRevLett.71.1661
http://dx.doi.org/10.1016/0167-2789(81)90004-X
http://dx.doi.org/10.1016/0167-2789(81)90004-X
http://dx.doi.org/10.1006/jdeq.1997.3333
http://dx.doi.org/10.1007/s003329910017
http://dx.doi.org/10.1007/PL00004793
http://dx.doi.org/10.1002/(SICI)1097-0312(199908)52:8protect $
elax <$949::AID-CPA3protect $
elax >$3.0.CO;2-D
http://dx.doi.org/10.1007/PL00012648
http://dx.doi.org/10.1007/s00220-003-0880-y
http://dx.doi.org/10.1063/1.532690
http://dx.doi.org/10.1016/S0393-0440(97)00010-7
http://dx.doi.org/10.1007/s00014-003-0785-6
http://dx.doi.org/10.1007/s10455-006-9042-8
http://dx.doi.org/10.1007/s10455-006-9042-8
http://dx.doi.org/10.1016/S0167-2789(01)00364-5
http://dx.doi.org/10.1023/A:1014933316169
http://dx.doi.org/10.1103/PhysRevE.53.1900
http://dx.doi.org/10.1016/j.physleta.2008.10.050
http://dx.doi.org/10.1007/s11005-005-0041-7
http://dx.doi.org/10.1007/s11005-005-0041-7


013503-9 A new integrable two-component system J. Math. Phys. 52, 013503 (2011)

20 G. Gui and Y. Liu, “On the global existence and wave breaking criteria for the two-component Camassa-Holm system,” J.
Funct. Anal. 258, 4251 (2010).

21 G. Gui and Y. Liu, “On the Cauchy problem for the two-component Camassa-Holm system,” Math. Z. (to be published).
22 P. Zhang and Y. Liu, “Stability of solitary and wave-breaking phenomena for the two-component Camassa-Holm system,”

Int. Math. Res. Notices 2010, 1981 (2010).
23 Z. J. Qiao, “A new integrable equation with cuspons and W/M-shape-peaks solitons,” J. Math. Phys. 47, 112701 (2006).
24 A. N. W. Hone and J. P. Wang, “Integrable peakon equations with cubic nonlinearity,” J. Phys. A: Math. Theor. 41, 372002

(2008).
25 S. S. Chern and K. Tenenblat, “Pseudo-spherical surfaces and evolution equations,” Stud. Appl. Math. 74, 55 (1986).
26 E. G. Reyes, “Some geometric aspects of integrability of differential equations in two independent variables,” Acta Appl.

Math. 64, 75 (2000).
27 A. Constantin, “The trajectories of particles in Stokes waves, I” Invent. Math. 166, 523 (2006).
28 J. F. Toland, “Stokes waves,” Topol. Methods Nonlinear Anal. 7, 1 (1996).
29 A. Constantin and J. Escher, “Particle trajectories in solitary water waves,” Bull. Am. Math. Soc. 44, 423 (2007).
30 A. Constantin, “On the deep water wave motion,” J. Phys. A: Math. Theor. 34, 1405 (2001).
31 D. Henry, “On Gerstners water wave,” J. Nonlinear Math. Phys. 15, 87 (2008).
32 A. Constantin, “Edge waves along a sloping beach,” J. Phys. A: Math. Theor. 34, 9723 (2001).
33 R. Sasaki, “Soliton equations and pseudo-spherical surfaces,” Nucl. Phys. 13, 343 (1979).
34 J. A. Cavalcante and K. Tenenblat, “Conservation laws for nonlinear evolution equations,” J. Math. Phys. 29, 1044 (1988).
35 Z. J. Qiao, “New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W-shape peak solutions,”

J. Math. Phys. 48, 08270 (2007).

Downloaded 06 Jan 2011 to 124.115.173.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
View publication statsView publication stats

http://dx.doi.org/10.1016/j.jfa.2010.02.008
http://dx.doi.org/10.1016/j.jfa.2010.02.008
http://dx.doi.org/10.1007/s00209-009-0660-2
http://dx.doi.org/10.1063/1.2365758
http://dx.doi.org/10.1088/1751-8113/41/37/372002
http://dx.doi.org/10.1023/A:1010774630016
http://dx.doi.org/10.1023/A:1010774630016
http://dx.doi.org/10.1007/s00222-006-0002-5
http://dx.doi.org/10.1090/S0273-0979-07-01159-7
http://dx.doi.org/10.1088/0305-4470/34/7/313
http://dx.doi.org/10.2991/jnmp.2008.15.s2.7
http://dx.doi.org/10.1088/0305-4470/34/45/311
http://dx.doi.org/10.1016/0550-3213(79)90517-0
http://dx.doi.org/10.1063/1.528020
http://dx.doi.org/10.1063/1.2759830
https://www.researchgate.net/publication/234880284

	A new integrable two-component system with cubic nonlinearity
	Recommended Citation

	tmp.1574178087.pdf.t4arU

