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Battese-Coelli Estimator with Endogenous Regressors

Levent Kutlu�

Keywords: Battese-Coelli Estimator; Endogeneity; E¢ ciency.
JEL Classi�cation: C13.

Abstract

We provide a framework for dealing with the endogeneity problem in the Battese-Coelli
estimator for productive e¢ ciency measurement.

1 Introduction

The Battese-Coelli (1992) (BC) estimator is a very widely used estimator in stochas-
tic frontier analysis literature. This is mostly because of its simplicity and availability.
Unfortunately, in the presence of endogenous regressors this estimator gives inconsistent
parameter estimates. Following Kim and Kim (2007)1 , we deal with the endogeneity
problem for the BC estimator. This is accomplished by decomposing the irregular term
into two parts: one correlated with the regressors and the other not. After the decompo-
sition, one can use a slightly modi�ed version of the BC estimator in order to estimate
the parameters model and the technical e¢ ciencies of the �rms.
Section 2 gives the model speci�cation and derivations of our estimator. Section

3 provides Monte Carlo experiments to investigate the performance of our estimator.
Section 4 gives summary and conclusion.

2 Estimation Procedure

Consider the following production model with endogenous explanatory variables:

yit = x0it� + "it � uit (1)

xit = Z 0it� + vit (2)�
~vit
"it

�
�

�
�
�1=2
v vit
"it

�
� N(

�
0
0

�
;

�
Im ��"
�0�" �2"

�
) (3)

where yit is the dependent variable; xit is a m � 1 vector of regressors; Zit = Im 
 zit
where zit is a l � 1 (with l � m) vector of exogenous variables.

�Department of Economics, Rice University, MS 22, P.O. Box 1892, Houston, TX 77251, USA. Contact:
e-mail:levent.kutlu@rice.edu, Tel: +1 713 348 2304

1See also Kim (2006), Kim and Nelson (2006), and Kutlu and Sickles (2010).
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For the sake of avoiding unnecessary details, we assume that all regressors are endoge-
nous. It is assumed that the irregular term "it is correlated with the regressors though
independent of the ine¢ ciency term uit = �tui, where ui is a non-negative truncation of
the N(�; �2u) distribution and �t = exp(��(t�T )). Moreover, regressors are independent
with the ine¢ ciency term.

By a Cholesky decomposition of the variance-covariance matrix of
�
~v0it "it

�0
, we

can represent
�
~v0it "it

�0
as follows:

�
~vit
"it

�
=

�
Im 0
�"�

0 �"
p
1� �0�

� �
~vit
wit

�
(4)

where ~vit and wit � N(0; (1� �0�)�2") are independent.

Hence, we can write the production equation as follows:

yit = x0it� + �"�
0~vit + wit � uit (5)

= x0it� + �"�
0��1=2v (xit � Z 0it� ) + wit � uit

Let yi = (yi1; yi2; :::; yiT )
0; xi = (x0i1; x

0
i2; :::; x

0
iT )

0; y = (y01; y
0
2; :::; y

0
N )

0; and x =
(x01; x

0
2; :::; x

0
N )

0. The joint density function of y and x is given by:

f(y; x) =
YN

i=1
f(yijxi)f(xi) (6)

De�ning eit = wit � uit, ei = (ei1; ei2; :::; eiT )0; and vi = (v0i1; v0i2; :::; v0iT )0, the condi-
tional density function of ui given ei and vi is given by:

fuijei;vi(ui) =
exp(� 1

2 [(ui � �
�
i )=�

�]2)

(2�)1=2��[1� �(���i =��)]
; ui � 0 (7)

where

��i =
�(1� �0�)�2" � �0ei�2u
(1� �0�)�2" + �0��2u

��2 =
(1� �0�)�2"�2u

(1� �0�)�2" + �0��2u

The conditional expectation of technical e¢ ciency, TEit = exp(�uit), is:

E[exp(�uit)jei; vi] =
1� �(�t�� � (��i =��))

1� �(���i =��)
exp(��t��i +

1

2
�2t�

�2) (8)

The log-likelihood function for the sample observations, (y; x), is:
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lnL = ln f(yjx) + ln f(x) (9)

where

ln f(yjx) = �NT
2
ln(2�)� N(T � 1)

2
ln((1� �0�)�2")�

N

2
ln((1� �0�)�2" + �0��2u)

�N ln(1� �(��=�u)) +
PN
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�
i =�
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2
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2
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2
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2

PN
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t=1 v

0
it�
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v vit

Using the parametrization of the model, where (1 � �0�)�2" + �2u = �2S and 
 =
�2u
�2s
,

the conditional log-likelihood function, f(yjx), is expressed by2 :

ln f(yjx) = �NT
2
ln(2�)� NT

2
ln(�2s)�

N(T � 1)
2

ln(1� 
) (10)
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where z = �
(
�2s)

1=2 , � = �( (1�
)�
2
s

(1��0�) )
1=2�

�1=2
v �, Xi =

�
xi1 xi2 : : : xiT

�
; x̂it(�) =

Z 0it�; X̂i(�) =
�
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�
; Ai = yi � X 0
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])1=2
.

We consider a similar two-stage procedure in our Monte Carlo experiments. In the
�rst stage the econometrician predicts ~vit via OLS using (2), and then maximizes the
following log-likelihood function:

lnL = �NT
2
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) (11)
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where b~vit is the estimate of ~vit from OLS, z = �
(
�2s)

1=2 , � = (
(1�
)�2s
(1��0�) )

1=2�, Xi =�
xi1 xi2 : : : xiT

�
; b~vi = � b~vi1 b~vi2 : : : b~viT �

; Ai = yi � X 0
i� � b~v0i�, and z�i =

�(1�
)�
�0Ai

(
(1�
)�2s[1+(�0��1)
])1=2
.

2This parametrization is a variation of the parametrization suggested by Battese and Corra (1977).
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Unfortunately, the standard errors from this two-stage method are inconsistent. The
problem is that the estimates are conditional on estimated standardized error terms from
the �rst stage. Hence, a proper bootstrapping procedure should be implemented in order
to get the correct standard errors.

3 Monte Carlo Simulations

In this section we implement Monte Carlo experiments to examine the small sample per-
formance of our estimator. For this purpose we considered the following data generating
process:

Yit = x1it�1 + x2it�2 + "it � uit; "it � N(0; �2") (12)

x2it = zit� + vit; vit � N(0; �2v) (13)�
x1it
zit

�
= R

�
x1i;t�1
zi;t�1

�
+ �it, �it � N(0; I2) (14)�

vit
"it

�
� N(

�
0
0

�
;

�
�2v ��"�v

��"�v �2"

�
) (15)

where �1 = 0:5, �2 = 0:5, �2v = 1, �2" = 1, � = 0:8, � = 1, ui � N+(0; 1) = jN(0; 1)j,
uit = exp(�0:05(t� T ))ui, R =

�
0:4 0:05
0:05 0:4

�
, and

�
x1i1
zi1

�
� N(0; (I2 �R2)�1).

Then the generated values for x1 and z are shifted around three di¤erent means to
obtain three balanced groups of �rms. We chose �1 = (5; 5)0, �2 = (7:5; 7:5)0, and
�3 = (10; 10)0 as the group means.3 Although, v is determined by only z, we used the
constant, x1, and z to estimate v. Simulation experiments were repeated 10000 times.
Simulation results for coe¢ cient estimates are given in Table 1 and Table 2.

N=50 T=30 � = 0 BC BCIV BCIV2
Coef. MSE 0:0006 0:0009 0:0009
Coef. Var1 0:0004 0:0004 0:0004
Coef. Var2 0:0003 0:0004 0:0004
Coef. Bias1 0:0008 0:0008 0:0008
Coef. Bias2 0:0007 0:0008 0:0008
E¤. MSE 0:0214 0:0214 0:0214
Ave. Rho � 0:0003 0:0003

Table 1: Performances for exogenous case

3When generating regressors we followed Park, Sickles, and Simar (2003 and 2007).
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N=50 T=30 � = 0:8 BC BCIV BCIV2
Coef. MSE 0:1154 0:0003 0:0003
Coef. Var1 0:0004 0:0002 0:0002
Coef. Var2 0:0002 0:0002 0:0002
Coef. Bias1 0:1284 0:0001 0:0001
Coef. Bias2 �0:3135 0:0003 0:0002
E¤. MSE 0:0809 0:0087 0:0088
Ave. Rho � 0:8002 0:8001

Table 2: Performances for endogenous case

Simulations show that when there is no correlation both the joint and the two-stage
estimators perform almost as good as the BC estimator. But if there is correlation, then
the BC estimator is severely biased and our method �xes this bias.

4 Summary and Conclusion
This paper paved the way for estimating time-varying technical e¢ ciency via a modi�ed
version of the Battese-Coelli estimator in the presence of endogenous regressors. This is
done by decomposing the irregular term into two parts: one correlated with the regressors
and the other not. The correlated part is used as a bias correction term and the other
part remained an irregular term. Unfortunately, the standard errors for the two-stage
procedure are inconsistent and should be corrected via a bootstrapping procedure. As a
conclusion, our Monte Carlo experiments show that the proposed method works �ne in a
small sample.
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