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A Distribution-Free Stochastic Frontier Model
with Endogenous Regressors

Levent Kutlu
School of Economics

Georgia Institute of Technology

December 11, 2017

Abstract

We provide a guideline for estimating a distribution-free panel data
stochastic frontier model in the presence of endogenous variables. In par-
ticular, we consider variations of the within estimator of Cornwell et al.
(1990) to allow endogenous regressors.

Keywords: Endogeneity; time-varying effi ciency; panel data; stochas-
tic frontier

JEL classification numbers: C13, C23

1 Introduction

The stochastic frontier literature started with the cross-sectional works of Meeusen
and van den Broeck (1977) and Aigner et al. (1977). Pitt and Lee (1981) and
Schmidt and Sickles (1984) provided panel data models with time-invariant in-
effi ciency. Cornwell et al. (1990), Kumbhakar (1990), and Battese and Coelli
(1992) exemplify earlier panel data models that relaxed time-invariance assump-
tion.1 Starting with Guan et al. (2009) and Kutlu (2010), there is a recent trend
in the stochastic frontier literature that aims to handle endogeneity issues. Both
Guan et al. (2009) and Kutlu (2010) present models that allow regressors in
the frontier to be correlated with the two-sided error term. Among others,
Karakaplan and Kutlu (2017a,b) and Amsler et al. (2017) further developed
models where the environmental variables can also be correlated with the two-
sided error term. However, many of the studies that solve endogeneity problems
rely on distributional assumptions and are considerably harder to estimate com-
pared to the within estimator of Cornwell et al. (1990) (CSSW).2 Hence, it is
our interest to extend the CSSW estimator to allow endogeneity. However, the

1See Duygun et al. (2016) for a dynamic counterpart of Cornwell et al. (1990).
2For more details about cons and pros of CSSW estimator, see Kutlu (2017) and Kutlu

et al. (2017). Also, see Adams and Sickles (2007) for a semi-parametric distribution-free
estimator.
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purpose of this study is beyond such an extension of this well-known estima-
tor. In particular, we aim to provide a guideline for empirical researchers about
how endogeneity issues can be solved in a distribution-free stochastic frontier
framework. For this purpose, we provide solutions where the parameters and in-
effi ciency can be estimated consistently when frontier or environmental variables
are correlated with the two-sided error term.

2 Distribution-Free Estimators and Endogene-
ity

Consider a panel of N productive units observed over Ti periods for panel unit i.
For the sake of fixing ideas, we consider stochastic frontier production function
estimation. A commonly used stochastic frontier model for production function
is given by:

yit = α+ x′itβ − uit + vit (1)

where yit is the logarithm of the output and xit is a vector of frontier variables,
uit ≥ 0 is the panel unit effects representing technical ineffi ciency, vit is the
usual two-sided error term, and α and β are parameters.
In the panel data context, many researchers assume that vit ∼ N

(
0, σ2

v

)
and

uit = h (w′itγ)u∗i where h > 0 is a function, wit is a vector of environmental
variables and constant that effect technical ineffi ciency, and u∗i ≥ 0 is drawn from
a one-sided distribution such as half-normal, exponential, truncated normal, and
gamma distribution. The conventional assumption of these models is that u∗i ,
vit, and (x′it, w

′
it) are independent of each other. Guan et al. (2009) and Kutlu

(2010) relax the independence assumption of xit and vit. Karakaplan and Kutlu
(2017b) relax the independence assumption of (x′it, w

′
it) and vit.

Unlike these models, Cornwell et al. (1990) consider a distribution-free sto-
chastic frontier model:

yit = αit + x′itβ + vit (2)

where αit = α − uit. Cornwell et al. (1990) assume that αit = w′itδi where wit
is a vector of environmental variables and constant that determine ineffi ciency
and δi is a panel unit specific parameter vector.3 The model becomes:

yit = w′itδi + x′itβ + vit. (3)

In matrix notation, the model is:

y = wδ + xβ + v (4)

3Schmidt and Sickles (1984) and Cornwell et al. (1990) use wit = 1 and wit =
(
1, t, t2

)′,
respectively.
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where w = IN ⊗ wi. is a block-diagonal matrix and wi. is a matrix with rows
w′it.
We denote the projection matrix onto the column space of a matrix A by

PA = A (A′A)
−1
A′ and the projection matrix onto the null space of A byMA =

I − PA. Hence, the subscripts refer to the matrix on which the projections are
made. Using a model transformation by Mw, Cornwell et al. (1990) eliminate
the wδ term and obtain:

ỹ = x̃β + ṽ (5)

where ỹ = Mwy, x̃ = Mwx, and ṽ = Mwv. The CSSW estimator of β is given
by:

β̂ = (x̃′x̃)
−1
x̃′ỹ. (6)

Then, δi can be estimated by regressing residuals, yit − x′itβ̂, for panel unit
i on wit. The fitted values from this regression gives an estimate of αit that
is consistent as Ti → ∞. The frontier intercept at time t, αt, and the panel
unit-specific level of ineffi ciency, uit, for panel unit i at time t are estimated,
respectively, as:

α̂t = max
j
{α̂jt} (7)

ûit = α̂t − α̂it.

This model allows the ineffi ciency to be correlated with frontier variables.
Unlike the models that we mentioned above, this model does not need to worry
about the u∗i term and its correlation with the regressors, as it is not present in
the model. However, when the two-sided error term is correlated with the fron-
tier or environmental variables, the CSSW estimator, β̂, would be inconsistent.
Below, we discuss endogeneity problems and their solutions in this framework.
For now, we assume that w is independent of v but x has endogenous vari-

ables. In this case, the CSSW estimator, β̂, would be inconsistent. However, the
following instrumental variables estimator (CSSWIV) of β would be consistent:

β̂IV = (x̃′Pz̃x̃)
−1
x̃′Pz̃ ỹ (8)

where z̃ is a vector of instrumental variables for x̃ so that E [ṽ | z̃] = 0. In
our case, a particular choice for z̃ would be so that z̃ = Mwz where z satisfies
E [v | z] = 0. For this estimator, since Mw annihilates w, we do not include
w in z. The consistency of β̂IV follows as E [v | z] = 0 and independence of
w and v implies that E [ṽ | z̃] = 0. Basically, we estimate Equation (5) by the
two-stage least squares (2SLS) using the transformed instruments, i.e., z̃. As
earlier, δi can be estimated by regressing residuals, yit − x′itβ̂IV , for panel unit
i on wit and the ineffi ciency is estimated by Equation (7).
When both w and x have endogenous variables, a solution is estimating

Equation (4) by 2SLS without transformation (WTIV) using z as instruments
for w and x so that E [v | z] = 0. Here, z includes instruments q that are
specifically designed for w, i.e., q = IN ⊗ qi. and qi. is a matrix with rows q′it.
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An alternative solution would be handling the endogeneity issue in two stages
as it is done by Cornwell et al. (1990). Therefore, we consider the following
transformation of the original model:

ȳ = x̄β + v̄ (9)

where ȳ = PzMwy, x̄ = PzMwx, v̄ = PzMwv, and z is the matrix of instrumen-
tal variables for w and x so that E [v | z] = 0 and PzMw is independent from
v. The following instrumental variables estimator (CSSWIV2) of β would be
consistent:

β̂IV 2 = ( x̄′ Pz̄x̄)
−1

x̄′Pz̄ ȳ (10)

= ( x̃′Pz x̃)
−1

x̃′Pz ỹ

where z̄ = PzMwz. To see this, note that when PzMw is independent of v and
E [v | z] = 0, we have E [v̄ | z̄] = 0 . Then, δi can be estimated by regressing
residuals, yit − x′itβ̂IV 2, for panel unit i on wit using the 2SLS method with zit
being the instruments.
We note that when x is endogenous and w is exogenous, we have β̂IV =

β̂IV 2. However, the estimates differ when w is endogenous. Moreover, when
x is exogenous and w is endogenous, we have β̂ = β̂IV although the effi ciency
estimates differ.

3 Monte Carlo Experiments

We conduct the Monte Carlo experiments with 1, 000 replications for two differ-
ent scenarios. The estimators that we consider are: CSSW, CSSWIV, CSSWIV2,
and WTIV. For each scenario, we assume:

yit = witδi + x1itβ1 + x2itβ2 + vit.

We summarize the data generating processes for Monte Carlo experiments be-
low:
Scenario 1 (Endogenous x2): (x1it, dit, wit)

′ ∼ N (µ,Σ), x2it = dit+ eit,
(eit, vit)

′ ∼ N (0,Ω), δi ∼ N
(
0, h2

)
, and (β1, β2) = (0.5, 0.5).

Scenario 2 (Endogenous w): (x1it, x2it, dit)
′ ∼ N (µ,Σ), wit = dit + eit,

(eit, vit)
′ ∼ N (0,Ω), δi ∼ N

(
0, h2

)
, and (β1, β2) = (0.5, 0.5).

We assume that µ = (1, 1, 0)
′, Σ =

 1 0.4 0.8
0.4 1 0.8
0.8 0.8 1

, and Ω =

[
0.25 0.2
0.2 0.25

]
so that correlation of eit and vit equals 0.8.

We present the results of Monte Carlo experiments in Table 1 and Table 2.4

As we mentioned earlier, when w is exogenous it does not matter which one of
4We also considered a scenario where all variables are exogenous. All estimators performed

well in this scenario.
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the instrumental variables estimators that we use. However, the results change
drastically when w is endogenous. CSSWIV2 and WTIV perform similarly in
terms of estimating effi ciency. However, WTIV outperforms CSSWIV2 in terms
of estimating β parameters. Finally, as expected, the estimators performs better
when the sample size increases.

Table 1-2 here
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