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Endogeneity in Panel Stochastic Frontier Models: 

An Application to the Japanese Cotton Spinning Industry 

Mustafa U. Karakaplana and Levent Kutlub 

 

Abstract 

We present a panel stochastic frontier model that handles the endogeneity problem. This 

model can treat the endogeneity of both frontier and inefficiency variables. We apply our method 

to examine the technical efficiency of Japanese cotton spinning industry. Our results indicate that 

market concentration is endogenous, and when its endogeneity is properly handled, it has a larger 

negative impact on the technical efficiency of cotton spinning plants. We find that the exogenous 

model substantially overestimates efficiency in concentrated markets. 
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1. Introduction 

Maximum likelihood estimation is probably the most widely used method in the stochastic 

frontier literature. However, if the model has endogeneity problem, then the traditional maximum 

likelihood estimation for stochastic frontier models (SFM) gives inconsistent parameter estimates. 

This necessitates a proper instrumental variable (IV) approach in order to deal with the endogeneity 

issue. A standard way to handle this problem is modeling the joint distribution of the left-hand-

side variable and endogenous variables; and then maximizing the corresponding log-likelihood. 

Due to the special nature of the error term in the SFMs, this is a relatively more difficult task 

compared to standard maximum likelihood models involving only two-sided error terms. 

In the panel data framework, Kutlu (2010) provides a maximum likelihood model that 

enables estimation of producer specific cost (or technical) efficiencies when some of the frontier 

regressors are correlated with the two-sided error term. Tran and Tsionas (2013) propose 

estimating the same model with GMM.1 Both of these studies assume that the one-sided error term 

(inefficiency component) is independent from two-sided error term. This assumption is not 

unlikely to be violated in practice. Karakaplan and Kutlu (2017a) solve the endogeneity problem 

for both cases in the cross-sectional data setting.2 Panel data can potentially give more reliable 

information about the efficiency. Hence, we provide a panel data model that can handle both types 

of endogeneity. 

In the empirical section, we examine the technical efficiency of Japanese cotton spinning 

industry.3 In particular, we examine the relationship between technical efficiency and market 

                                                 
1 Guan et al. (2009) is another GMM based estimator that is solving endogeneity of frontier variables. 

2 See also Amsler et al. (2016) for another cross sectional study. 

3 We programmed the estimator using Stata 13. The Stata ado files are available upon request. 
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concentration, and use our empirical model as an example to illustrate the dangers of ignoring 

endogeneity in stochastic frontier models. In our model, we find that market concentration has a 

negative effect on efficiency, which is in line with the quiet life hypothesis of Hicks (1935). The 

quiet life hypothesis argues that in concentrated markets, due to lack of competitive pressure, the 

managers are likely to show less effort, which in turn results in suboptimal profit or production 

levels. Due to lack of econometric tools, historically potential endogeneity of market concentration 

in stochastic frontier models is either ignored or tried to be handled by pseudo econometric 

techniques. We overcome this difficulty using our panel stochastic frontier model, and show that, 

as expected, market concentration is endogenous in the model, which undermines the estimates 

from a standard SFM. 

 

2. Panel Stochastic Frontier Model and Endogeneity Test 

Our stochastic frontier panel data model is given as follows: 

𝑦𝑖𝑡 = 𝑥y𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡 − s𝑢𝑖𝑡 

𝑥𝑖𝑡 = 𝑍𝑖𝑡𝛿 + 휀𝑖𝑡 

[ 
휀�̃�𝑡
𝑣𝑖𝑡
 ] ≡ [ 

Ω−1/2휀𝑖𝑡
𝑣𝑖𝑡

 ]  ~ 𝐍 ([ 
0
0
 ] , [ 

𝐼𝑝 𝜎𝑣𝜌

𝜎𝑣𝜌
′ 𝜎𝑣

2  ]) 

𝑢𝑖𝑡 = h(𝑥𝑢𝑖𝑡
′ 𝜑𝑢)𝑢𝑖

∗ 

𝑠 = {
  1 for production functions
−1 for cost functions             

 

(1) 

where 𝑦𝑖𝑡 is the logarithm of the output or cost of the 𝑖𝑡ℎ productive unit at time t; 𝑥y𝑖𝑡 is a vector 

of exogenous and endogenous variables; 𝑥𝑖𝑡 is a 𝑝 × 1 vector of all endogenous variables 

(excluding 𝑦𝑖𝑡), 𝑍𝑖𝑡 = 𝐼𝑝⊗𝑧𝑖𝑡
′  where 𝑧𝑖𝑡 is a 𝑞 × 1 vector of all exogenous variables, 𝑣𝑖𝑡 and 휀𝑖𝑡 

are two-sided error terms, 𝑢𝑖𝑡 ≥ 0 is a one-sided error term capturing the inefficiency, ℎ𝑖𝑡 =
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h(𝑥𝑢𝑖𝑡
′ 𝜑𝑢) > 0, 𝑥u𝑖𝑡 is a vector of exogenous and endogenous variables excluding the constant, 

and 𝑢𝑖
∗ is a producer-specific random component independent from 𝑣𝑖𝑡 and 휀𝑖𝑡. Here, Ω is the 

variance-covariance matrix of 휀𝑖𝑡, 𝜎𝑣
2 is the variance of 𝑣𝑖𝑡, and 𝜌 is the vector representing 

correlation between 휀�̃�𝑡 and 𝑣𝑖𝑡. Hence, 𝑢𝑖𝑡 and 𝑣𝑖𝑡 can be correlated with 𝑥𝑖𝑡, yet 𝑢𝑖𝑡 and 𝑣𝑖𝑡 are 

conditionally independent given 𝑥𝑖𝑡 and 𝑧𝑖𝑡. Similarly, 𝑢𝑖𝑡 and 휀𝑖𝑡 are conditionally independent 

given 𝑥𝑖𝑡 and 𝑧𝑖𝑡. By a Cholesky decomposition of the variance-covariance matrix of (휀�̃�𝑡
′ , 𝑣𝑖𝑡)

′, 

we can represent (휀�̃�𝑡
′ , 𝑣𝑖𝑡)

′ as follows: 

[ 
휀�̃�𝑡
𝑣𝑖𝑡
 ] = [ 

𝐼𝑝 0

𝜎𝑣𝜌
′ 𝜎𝑣√1 − 𝜌′𝜌 

] [ 
휀�̃�𝑡
�̃�𝑖𝑡
 ] 

(2) 

where 휀�̃�𝑡 and �̃�𝑖𝑡 ~ 𝐍(0,1) are independent. The frontier equation can be written as: 

𝑦𝑖𝑡 = 𝑥y𝑖𝑡
′ 𝛽 + 𝜎𝑣𝜌

′휀�̃�𝑡 + 𝑤𝑖𝑡 − s𝑢𝑖𝑡 

= 𝑥y𝑖𝑡
′ 𝛽 + (𝑥𝑖𝑡 − 𝑍𝑖𝑡𝛿)′𝜂 + 𝑒𝑖𝑡 

(3) 

where 𝑒𝑖𝑡 = 𝑤𝑖𝑡 − s𝑢𝑖𝑡, 𝑤𝑖𝑡 = 𝜎𝑣√1 − 𝜌
′𝜌�̃�𝑖𝑡 = 𝜎𝑤�̃�𝑖𝑡, and 𝜂 = 𝜎𝑤Ω

−1/2 𝜌 √1 − 𝜌′𝜌⁄ . An 

important aspect of this setup is that 𝑒𝑖𝑡 is conditionally independent from the regressors given 𝑥𝑖𝑡 

and 𝑧𝑖𝑡. In Equation (3) the term (𝑥𝑖𝑡 − 𝑍𝑖𝑡𝛿)′𝜂 serves as a bias correction term. We assume that: 

𝑢𝑖
∗ ~ 𝐍+(μ, 𝜎𝑢

2) 

ℎ𝑖𝑡
2 = exp(𝑥u𝑖𝑡

′ 𝜑𝑢). 

(4) 

A vector of observations corresponding to the panel 𝑖 will be represented by a subscipt 𝑖. 

For example, ℎ𝑖. = (ℎ𝑖1, ℎ𝑖2, … , ℎ𝑖𝑇𝑖)′ is a 𝑇𝑖 × 1 vector where 𝑇𝑖 is the number of time periods for 

panel 𝑖. The log-likelihood function of panel 𝑖 is given by: 

ln𝐿𝑖 = ln𝐿𝑖,𝑦|𝑥 + ln𝐿𝑖,𝑥 (5) 
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where 

ln𝐿𝑖,𝑦|𝑥 = −
1

2
(𝑇𝑖 ln(2𝜋𝜎𝑤

2) +
𝑒𝑖.
′𝑒𝑖.
𝜎𝑤2

+ (
µ2

𝜎𝑢2
−
μi∗
2

𝜎𝑖∗
2)) + ln(

𝜎𝑖∗Φ(
μi∗
𝜎𝑖∗
)

𝜎𝑢Φ(
μ
σ𝑢
)
) 

ln𝐿𝑖,𝑥 = −
1

2
∑ (ln(|2𝜋Ω|) + 휀𝑖𝑡

′  Ω−1휀𝑖𝑡)
𝑇𝑖

𝑡=1
 

𝜇𝑖∗ =
𝜎𝑤
2µ − 𝑠𝜎𝑢

2𝑒𝑖.
′ℎ𝑖.

𝜎𝑢2ℎ𝑖.
′ ℎ𝑖. + 𝜎𝑤2

 

𝜎𝑖∗
2 =

𝜎𝑢
2𝜎𝑤

2

𝜎𝑢2ℎ𝑖.
′ ℎ𝑖. + 𝜎𝑤2

 

𝑒𝑖𝑡 = 𝑦𝑖𝑡 − 𝑥1𝑖𝑡
′ 𝛽 − ε𝑖𝑡

′ 𝜂 

휀𝑖𝑡 = 𝑥𝑖𝑡 − 𝑍𝑖𝑡𝛿 

where Φ denotes the standard normal CDF. We predict the efficiency, 𝐸𝐹𝐹𝑖𝑡 = exp(−𝑢𝑖𝑡), by: 

exp(−E[𝑢𝑖𝑡|𝑒𝑖]) = exp

(

 −ℎ𝑖𝑡 (𝜇𝑖∗ +
𝜎𝑖∗𝜙 (

μi∗
𝜎𝑖∗
)

Φ (
μi∗
𝜎𝑖∗
)
)

)

  

(6) 

where 𝜙 denotes the standard normal PDF. 

Note that unlike the standard control function methods where estimations are done in two-

stages, our model estimates the parameters in a single stage. Compared to two-stage methods, our 

model has the advantage that it is statistically more efficient and does not require a bootstrap 

procedure to correct standard errors. 

It is possible to test endogeneity relying on similar ideas with the standard Durbin-Wu-

Hausman test for endogeneity. This is done by testing joint significance of the components of 𝜂 

term. If 𝜂 is jointly significant, this would indicate that there is endogeneity in our model. If 𝜂 is 

not jointly significant, then the correction term is not necessary and efficiency can be estimated by 
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traditional SFMs. 

 

3. Application to the Japanese Cotton Spinning Industry 

3.1. Data 

Our main panel dataset is borrowed from Braguinsky et al. (2015). The dataset consists of 

annual plant-level cotton yarn production records of 134 plants over 1896-1920 gathered by 

Japanese prefectural governments.4 Note that the dataset is historical, and over a century, Japan 

changes tremendously and becomes one of the leading industrialized countries in the world. 

However, besides its historical importance, the advantage of using this dataset is that it has 

excellent details to illustrate consequences of ignoring endogeneity of concentration measures in 

a stochastic frontier model. Also, we supplement this dataset with original data that we collect 

from the Geospatial Information Authority of Japan. Hence, our analysis is enriched with new 

data. We consider a production technology with one output and three inputs. The output is the 

quality-adjusted amount of cotton yarns produced (Y). The inputs are: gender-adjusted labor (L), 

number of installed spindles as capital (K), and materials (M). We also integrate the age of plants 

(AGE) in the model. 

 

3.2. Empirical Model and Results 

In order to examine the relationship between the technical efficiency of plants and market 

competitiveness, we construct a year and prefecture specific Herfindahl-Hirschman Index (HHI) 

of market concentration. We expect that competition improves technical efficiency of the plants. 

Since HHI is potentially endogenous, as an instrumental variable, we create and use a count of 

                                                 
4 For more details about the dataset, see Braguinsky et al. (2015). 
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mountains by prefectures that are higher than the average height of all Japanese mountains (1,698 

meters or 5,571 feet).5 Researchers such as Hoxby (2000) use similar topographical measures 

effectively as instrumental variables. In our case, the F-statistic of our topographical measure in 

the prediction equation of HHI is 632.23 which is substantially greater than 10 and passes the rule-

of-thumb test for not being a weak IV. In order to check the sensitivity of our regression results to 

the selection of the IV, we also try using a count of all mountains by prefectures as an IV. 

We estimate a translog production function with three inputs: L, K, and M. In the 

estimations, all inputs are demeaned. The estimation results are presented in Table 1. Model EX 

represents the model that ignores endogeneity, and Model EN represents the model that uses our 

methodology to handle endogeneity. Evaluated at the mean values of variables, we cannot reject 

that the production function has constant returns to scale at any conventional level. The 𝜂 

endogeneity test indicates that HHI is endogenous. We find that HHI has a positive and significant 

effect on inefficiency, which agrees with quiet life hypothesis, and this effect is larger when its 

endogeneity is handled. This finding supports some other studies from the literature such as 

Karakaplan and Kutlu (2017b), which shows that HHI is an endogenous inefficiency variable. The 

point estimates for mean and median efficiencies of cotton spinning plants under Model EN are 

somewhat less than their mean and median efficiencies under Model EX. The first moment of 

efficiency distribution may provide a useful comparison between different efficiency measures, 

but having similar mean efficiency scores does not necessarily imply that the efficiency estimates 

from different estimators are similar. Hence, we compare the distribution of efficiency estimates 

from Model EX and Model EN using a test for equality of distribution. In particular, a 

                                                 
5 This measure is based on raw data collected from the website of Geospatial Information Authority of Japan at 

http://www.gsi.go.jp/ 

http://www.gsi.go.jp/
http://www.gsi.go.jp/
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Kolmogorov-Smirnov test shows that the distributions of technical efficiencies in Model EX and 

Model EN are significantly different at 0.01% level. Finally, we find that using a count of all 

mountains by prefectures as an IV generates quantitatively similar outcomes to the results in 

Table 1. 

 

[Table-1] 

 

To give some examples, Osaka Prefecture has the most competitive cotton spinning 

industry in the data with an average HHI of 0.075. We find that the average efficiency of the plants 

in Osaka Prefecture is about 3 percentage points less in Model EX than that in Model EN. Shizuoka 

Prefecture, on the other hand, has the most concentrated cotton spinning industry in the data with 

an average HHI if 0.938. Our results show that the average efficiency of the plants in Shizuoka 

Prefecture is 5 percentage points more in Model EX than that in Model EN. 

Kinugawa (1964) reports examples of inefficient cotton spinning plants from the 1890s 

era. One particular example, which is also narrated in Braguinsky et al. (2015), is Onagigawa 

Menpu cotton spinning plant in Tokyo, where workers smoked, used portable charcoal heaters in 

the plant, cooked and ate on the floor, and gambled in the inventory room, while raw cotton and 

other flammables were all over the place, and managerial staff were out fishing. The cotton 

spinning industry in Tokyo Prefecture was relatively concentrated (HHI = 0.430) during that 

period, and the company’s efficiency in 1898 is 73% according to Model EN while it is 77% in 

Model EX. Similarly, Kyushu cotton plant in Kumamoto Prefecture (HHI = 1) is 63% efficient in 

Model EN while it is 83% in Model EX. 

Figure 1 plots the linear relationship between HHI and the efficiencies in Model EX and 
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Model EN. That is, in the figure, predicted efficiency values from the sample are regressed on the 

constant and HHI. Both lines are downward sloping indicating that higher market concentration 

leads to higher inefficiency. The difference between predicted efficiencies of Model EX and Model 

EN is increasing over HHI and positive in relatively concentrated markets (HHI > 0.2). This 

difference reaches to 14 percentage points at HHI = 1. Hence, plants in relatively more 

concentrated markets would appear to be substantially more efficient in Model EX than they are 

according to Model EN. This result has serious policy implications as in general, the most central 

firms for policy-makers are exactly those with higher market power. The efficiency estimates for 

these firms are even more contaminated/biased in our data if the endogeneity is not handled. While 

being cautious not to overly extrapolate our results, we also note that our findings may signal 

potential dangers of ignoring endogeneity in other sectors and frameworks. 

 

[Figure-1] 

 

4. Conclusion 

We presented a maximum likelihood based panel stochastic frontier model that can handle 

and test the endogeneity problem in stochastic frontier estimation. This method allows for 

endogeneity of both frontier and efficiency variables. One of the advantages of this method is that 

it is a single stage method. Hence, unlike two-stage methods, our method doesn’t need a bootstrap 

correction for the standard errors. Moreover, only one prediction equation, i.e., instrument, is 

needed for an endogenous variable and its functions. This is particularly useful in translog settings 

where an endogenous variable and its cross products are involved in estimation. 

We applied our panel stochastic frontier model to Japanese cotton spinning industry and 
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estimated the firms’ technical efficiencies. The distribution of efficiency is assumed to be a 

function of market concentration measured by HHI. We considered two models: The first model 

assumes that the market concentration is exogenous, and the second model assumes that the market 

concentration is endogenous. Our test results indicated that the market concentration is 

endogenously determined with production, and thus endogeneity should be handled or otherwise 

the parameter efficiency estimates would be inconsistent. The average of efficiency estimates from 

these models are 76.80% and 75.25%, which are close. However, a closer look into the efficiency 

estimates indicated that in concentrated markets the efficiency values may differ substantially. 

Since concentrated markets take more attention by policy-makers due to market power 

considerations, our result is particularly important. We consider this outcome as a warning for 

those models that ignore endogeneity in stochastic frontier models.  
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Table 1. Estimation Results 

Dependent variable: ln(Y) Model EX Model EN 

Constant 13.098*** (0.035) 13.125*** (0.036) 

ln(L) 0.091** (0.032) 0.081* (0.034) 

ln(K) 0.304*** (0.038) 0.282*** (0.040) 

ln(M) 0.625*** (0.031) 0.627*** (0.032) 

0.5 × ln(L)2  -0.089* (0.042) -0.092* (0.045) 

0.5 × ln(K)2  0.447*** (0.059) 0.456*** (0.061) 

0.5 × ln(M)2  0.279*** (0.026) 0.260*** (0.028) 

ln(L) × ln(K)  0.059 (0.039) 0.052 (0.041) 

ln(L) × ln(M)  0.027 (0.031) 0.054 (0.034) 

ln(K) × ln(M)  -0.413*** (0.037) -0.429*** (0.039) 

t 0.013*** (0.003) 0.014*** (0.003) 

t2 -0.001** (0.000) -0.001*** (0.000) 

ln(L) × t -0.002 (0.002) -0.001 (0.002) 

ln(K) × t 0.007*** (0.002) 0.008*** (0.002) 

ln(M) × t -0.003* (0.001) -0.004* (0.002) 

ln(AGE) 0.016 (0.011) 0.015 (0.011) 

Dependent variable: ln(𝜎𝑢
2)     

Constant -2.850*** (0.277) 
-

3.053*** 
(0.252) 

HHI 2.197*** (0.363) 2.918*** (0.306) 

Dependent variable: ln(𝜎𝑣
2)     

Constant -3.497*** (0.033)   

Dependent variable: ln(𝜎𝑤
2)     

Constant   
-

3.514*** 
(0.033) 

𝜂    0.360*** (0.074) 

𝜂 endogeneity test (𝜒2 = 23.7)  𝑃 > 𝜒2 = 0.000 

Observations 2,049 2,049 

Log Likelihood 496.08 716.80 

Mean Technical Efficiency 0.7680 0.7525 

Median Technical Efficiency 0.7501 0.7476 

Notes: Standard errors are in parentheses. Asterisks indicate significance at the 0.1% (***), 

1% (**) and 5% (*) levels. All inputs are demeaned. 
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Figure 1. Linear Relationship between HHI and Efficiencies in Model EX and Model EN 
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Notes: The lines represent the regression results of predicted efficiency values from Model EX 

and Model EN regressed on the constant and HHI. 
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