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ABSTRACT

Wang, Wenhui , “Detection Of Gravitational Wave Signals From NS-NS

Inspirals In Presence Of Non-Stationary Noise”, Master of Science Thesis,

University of Texas at Brownsville, Brownsville, TX, 2014

Gravitational Wave (GW) detection is an important and inspiring project.

Once detected, it will open a new window to understand the universe. The laser

interferometer GW detectors, specially LIGO, is the most sensitive detectors at the

moment, which can detect GW signal as weak as 10−21. Chirp signal generated by

neutron star binaries is a well modeled waveform. One goal of LIGO is to study chirp

signal detection. In this field, matched filtering is a widely used method. But since

LIGO noise is non-stationary, which will weaken the efficiency of general matched

filtering. In this work, a modified matched filtering is built to take non-stationary

into account.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION TO THE GRAVITATIONAL WAVES

In 1916, Albert Einstein published the General Theory of Relativity (GR),

which predicted the existence of Gravitational Waves (GWs) [1, 2, 3]. Based on GR,

the whole universe is a curved space described by a 4-dimensional space-time, which

is produced by mass. John Wheeler succinctly summarized GR puts as “Spacetime

tells matter how to move; matter tells spacetime how to curve.” Mass in (non-

spherical, nonuniform) motion is the source of perturbations or ripples of curved

spacetime. GWs are the propagating ripples, produced by accelerating mass and

emitted as gravitational radiation, traveling at the speed of light [4]. By solving

Einstein’s equation, we can get the gravitational waveforms for different sources.

But since there is no such thing yet as a general solution [4], we only consider the

simplest linearized vacuum Einstein Equation, where the metric is written

gαβ(x) = ηαβ + hαβ(x) (1)

where ηαβ=diag(−1, 1, 1, 1,), and hαβ(x) are small quantities called metric pertur-

bations [5, 4, 6].

Substituting this tom into the Einstein Equation, it turns out that hαβ(x)



satisfies the wave equation,

(− ∂2

∂t2
+ c2~O2)hαβ = 0 (2)

under Lorentz gauge conditions. For this kind of wave function, the solutions can

be expressed as

hαβ(x) = aαβ(x)eikµx
µ

(3)

where aαβ(x) is a symmetric 4 × 4 matrix of constant amplituedes, kµ = (−ω,~k)

and xµ = (t, ~x).

There are only two independent components of hαβ, the two polarization h+

and h×. (For details, please see [4, 6]). When GWs pass perpendicularly to a plane,

they will change the distance of two particles in the plane. One direction is stretched

while the perpendicular direction will be shortened. It can be shown by the effect

of GWs on a ring of particles as illustrated in Fig. 1. The change is distance

between particles is δl, and δl
l

is proportional to hαβ. For astronomical objects, the

amplitude of the wave stain arriving on Earth is of order or less than 10−21 [7] and

the maximum change of distance the ground-based interferometer can measure is

10−18m. Thus, it requires the ground-based interferometers to be kilometer scales

to detect the GWs of the distant astronomical sources.

From the above analysis, we see that GW signals are usually very weak. For

a typical solar mass binary system, the amplitude when it reaches to earth is 10−20,

so the strong and violent cosmic events caused by massive objects provide good

2



Figure 1: GWs effect on a ring of particles [5]

experiments.

Why is the detection of GWs so important? As far as we know, every time a

new band of Electromagnetic(EM) wave is available to detect, our understanding is

always expanded and a lot of new discoveries are made. But GW is not only a new

band, it is a totally new window to explore the universe. So we can expect what

a great promotion it will be for all the principles after it is detected. Compared

to EM waves, GWs are produced by the curved spacetime itself so it can reveal

a lot of properties of the curvature caused by the objects, which provide a direct

way to study objects like Black Holes, which is dark in EM bands. Besides, GWs

propagate in the spacetime with no distortion and no absorption. It can bring the

original information about the events. Another important thing is that GWs are

predicted by Einstein’s GR theory, so this is a direct way to check if GR works as

predicted [5, 8, 6].

Although not detected directly, there are some indirect evidences showing the

existence of GWs. In 1993, Joseph Taylor and Russell Hulse were awarded Nobel

3



Prize for their work to measure accurately the influence of gravitational waves on a

binary pulsar PSR1913 + 16, which is in good agreement with predictions [9, 10].

And in March 2014, the scientists from Harvard-Smith-Center announced they have

found the B-mode of Cosmic Microwave Background, which is the first direct image

of GWs [11].

1.2 HISTORY OF DETECTION

Since GWs can lead to a new epoch of our understanding, scientists have

been trying to detect them for about fifty years. The first detector, Weber’s bar,

is a cylinder of aluminum built by Joseph Weber (see Fig. 2). When there is

gravitational wave, the length of the cylinder will change, which will transfer to a

voltage to be read. But since Weber’s bar can only detect signals on order of 10−16,

much higher than the GWs signal expected at earth, although Weber claimed several

detections, no real detection was made at that time. But a global network of new

enhanced Weber’s bars are much more promising.

After Weber’s bar [12], his student Robert Forward constructed the first laser

interferometer detector. But since GWs are so weak, typically δl ∼ 10−18m, so to

achieve the sensitivity of the signal requires the arms of the detector to be kilometers

long based on δl/l ∼ 10−21, which requires collaborations. And to claim the detec-

tion of a signal, one needs coincidence of the same detection from different detectors.

Therefore, a network of detectors is important and necessary. At the moment, there

are six interferometer detectors in the world. The Laser Interferometer of Gravita-

tional Wave Observatory (LIGO) in US has three interferometers [13, 14, 15]. Two

4



Figure 2: Prof. Weber working on his antenna Source: http://www.

physics.umd.edu/GRE/GWdetect.htm

are in Hanford, one with 4km arms and the other one with 2km arms. The third one

is in Livingston, with 4km arms. Besides, there are VIRGO [16]. with 3km arms,

British-German collaboration GEO 600 [17, 18] having 600m arms and TAMA [19]

with 300m arms. Among all these detectors, the most sensitive detector is LIGO,

based on which we conduct our research.

1.3 INTERFEROMETERS

LIGO is a much more complicated, modified and advanced Michelson inter-

ferometer [13, 14, 15]. The laser is split into two equal light beams by the beam

splitter and reflected by the two mirrors at the end of the two arms. So we can get

the interference phase of the two light beams. If there comes a gravitational wave,

it will change the distances between the mirrors and the light sensing diode. To be

5
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more detailed, as we discussed above, one arm will be stretched while the other arm

will be squeezed. Thus, we can get different interference phase to claim a signal.

Figure 3: Diagram of LIGO

Fig. 4 shows the 4km interferometer in Hanford.

Figure 4: LIGO Hanford (LHO) Aerial 1

6



1.4 GRAVITATIONAL WAVE SOURCES

There are four main types sources of GWs. 1) Coalescing Compact Binary

Systems, such as Neutron Star(NS)-NS, Black Hole(BH)-NS, BH-BH. These events

emit strong and well-modeled GWs and are the central systems we focus on in this

paper. 2) Asymmetric Core Collapse Supernovae, which emits weak and unmodeled

bursts. 3) Spinning neutron stars, whose radiation waveform is monotonic but has

long duration. 4) Cosmic GWs stochastic background comes from the residue of the

Big Bang, with long duration [20, 21].

7



CHAPTER 2

LIGO DATA

2.1 HOW DATA IS ARCHIVED

Fig. 5 shows the process of data acquisition, data processing and template

based analysis [22]. The LIGO data is a collection of several thousand channels

sampled at a rate of 16384Hz. Upon acquisition, the raw data stream will be reduced

through three stages to extract the useful part of data. There are four data sets,

from Level 0 to Level 3. The raw data is Level 0, also named “Full IFO Data

Stream”, which is archived in FRAME format. In stage 1, only 10% of Level 0

data is kept to Level 1 for detector diagnostic study. In stage 2, the data is further

reduced to about 1% for more detailed science analysis. Level 2 data will contain

basic IFO stain data and data quality channels. The level 3 data is the “Whitened

GW Strain Data”. It contains the best estimated whitened GW stain, which is

free from instrumental artifacts as much as possible. It will include all the relevant

whitening coefficients, regression and calibration information from Level 2 data [23].

LIGO data is available from the DATA GRID on LIGO website (https://www.lsc-

group.phys.uwm.edu/lscdatagrid/resources/data/index.html).

2.2 LSC

As mentioned above, there has been no direct detection of GWs yet. Thus

it is inspiriting to make a detection. The LIGO Scientific Collaboration (LSC) is

a group of scientists seeking to make the first direct detection of GWs, and to use



Figure 5: The process of data acquisition, data processing and template
based analysis.

them to extend the field of astronomy. The LSC conducts research on and develops

technologies for gravitational-wave detection and also detectors. Founded in 1997,

the LSC now contains more than 900 scientists and 16 countries worldwide. It

carries out the science of LIGO observatories and the GEO600 detector. For more

detailed information about LSC, please see http://www.ligo.org/about.php.
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2.3 LIGO NOISE

Since GWs are so weak compared to the noises, a very important research

problem is how to remove the noises from the data. There are basically two classes of

noise: displacement noise and sensing noise [24]. Displacement noises cause motions

of the test masses or their mirrored surfaces. Sensing noises will limit the ability to

measure those motions, even without the test mass motion. The lowest frequency

noise of displacement noises is seismic noise. The seismic noise, transmitted to

the mirrors by housing and pendulums, dominates below 45Hz, a little bit larger

than designed. There is also the mechanical thermal noise, which causes arm length

changes through thermal excitation of the test mass pendulums (suspension thermal

noise) [25] and thermal acoustic waves that perturb the test mass mirror surface (test

mass thermal noise) [26]. Above about 200Hz, the dominant contribution is the

photon shot noise, combined with counting statistics of photons at the photodiode

[13, 5]. The above three noises are described in Fig. 6.

2.4 SENSITIVITY

The initial designed sensitivity of LIGO detectors were in the frequency band

40 − 7000Hz, and capable of detecting a GW strain amplitude to 10−21 [13]. The

typical sensitivity of the detectors during the S6 run is shown in Fig. 7.

10



Figure 6: Interferometer noise in science runs S1− S5. The black curve is
the design goal of LIGO [5].

Figure 7: The typical sensitivity of detectors during the S6 run [27].
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CHAPTER 3

REVIEW OF MATCHED FILTERING METHOD AND

APPLICATION

Matched filter is a filter whose impulse response is matched to the signal. It

is widely used in signal detection and the detection is to distinguish between the

hypotheses [5, 28, 29]

H0 : x[n] = w[n] n = 0, 1, . . . , N − 1 (1)

H1 : x[n] = s[n] + w[n] n = 0, 1, . . . , N − 1 (2)

where s[n] is signal and w[n] is white gaussian noise with σ2.

The probabilities under this hypotheses is

p(x;H0) =
1

(
√

2π)N |C|1/2
e−

1
2
〈x,x〉 (3)

p(x;H1) =
1

(
√

2π)N |C|1/2
e−

1
2
〈x−s,x−s〉 (4)

Following the Neyman-Pearson (NP) theory, the detector decides H1 if the

likelihood exceeds or the detection statistic of general Matched Filtering when the

noise is white and stationary exceeds a threshold, in Eq. 5 .

T (x) =
N−1∑
n=0

x[n]s[n] = 〈x, s〉 > γ′ (5)



where x[n] is the data time series and s[n] is the signal series. The output is also

known as inner product of data series x and signal vector s, written as 〈x, s〉.The

detector of Eq. 5 is referred to as a replica-correlator, as shown in Fig. 8 (a).

The detection statistic can also be interpreted in this way. If x[n] is the input

to a finite impulse response filter whose impulse is h[n], where h[n] is defined as

h[n] =


s[N − 1− n] n = 0, 1, ..., N − 1

0 otherwise

(6)

then the output of the filter at time n is

y[n] =
n∑
k=0

h[n− k]x[k], for n ≥ 0 (7)

so, replacing h[n− k] by s[k], the output of the filter becomes

y[N − 1] =
N−1∑
k=0

s[k]x[k] (8)

which is the inner product of signal and data as detection statistic requires. This is

called a matched filter. The detector is shown in Fig. 8 (b).

The matched filter gives the maximum signal-to-noise ratio (SNR) among all

possible linear filters in the ideal case of Gaussian-distributed noise, assuming that

the template corresponds exactly to the signal potentially in the data [30, 31].

13



Figure 8: (a) is the replica-correlator and (b) is the Matched filter [28]
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CHAPTER 4

SIMULATION AND RESULTS

The previous three chapters show that matched filtering is an optimal method

to detect signals when the noise is white and gaussian, and it is widely used in GW

detection for LIGO. But when the noise is non-stationary, its efficiency is reduced.

So for LIGO data, in which the noise is non-stationary as shown in Fig. 9, a

modified matched filtering method that includes time-varying noise is needed for

better detection.
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Figure 9: Variance of LIGO data from LHO S6 run ‘H1: LSC-DARM ERR’.
The the horizontal axis is time and the vertical axis is variance. Sampling
frequency is 2048 Hz.



4.1 SIMULATION OF NON-STATIONARY NOISE

We observe that LIGO noise variance changes on a scale of few seconds. To

construct a data set with slowly variating noise, that is similar to variations seen

in LIGO noise, we built two standard deviation(variance) models with sinusoidal

variation, and each model has different amounts of peaks. The first model(Fig. 10)

shows a varying standard deviation(variance) set on a time scale of about 10seconds.

The second model(Fig. 11) has a relativistic faster and stationary variation.
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Figure 10: Non-stationary noise standard deviation vector generated by sine
function with 4 peaks and is composed of 4 segments with different values.
The the horizontal axis is time and the vertical axis is the magnitude of
standard deviation vector we are going to apply to white noise.

As shown in the above two figures, the standard deviation changes slowly

among every segments but between different segments, it fluctuates. In the fol-

lowing sections, we will make a comparative analysis of how a general matched

filter(GMF) responds to the non-stationary noise and how a modified matched fil-
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Figure 11: Non-stationary noise standard deviation vector generated by sine
function with 8 peaks. This standard deviation vector is combined with 8
segments. This one is much more stationary compared to the above 4 peaks
standard deviation vector.

ter(MMF) responds.

4.2 CHIRP SIGNAL

After preparing the non-stationary noise, we calculated the chirp signal with

certain parameters and waveforms. The response of an interferometric detector to

a GW signal emitted by an inspiral of a compact BNS system can be written as:

h(t;A, ta, ξ,Φ) = Aa(t− ta, ξ) cos[φ(t− ta, ξ) + Φ] (1)

here, A is related to the distance to the binaries, the orientation of the orbital plane

of the binary and the orientation of the detector [32]. Also, ta is the arrival time of

the chirp signal, ξ is the chirp time and φ is the phase of waveform. The expression

17



for A is

A = 1.92× 10−23
[
ξ

25.0

]−1 [
r

100Mpc

]−1 [
f

40Hz

]−2
(2)

The other part of the amplitude varying with time is

a(t, ξ) =

[
1− t

ξ

]−1/4
(3)

The phase of the waveform at given time t:

φ(t, ξ) = 2π

∫ t

0

f(t′, ξ)dt′ (4)

The instantaneous frequency is given by

f(t, ξ) = faa(t, ξ)3/2 (5)

where fa is the low frequency cutoff.

And chirp time ξ, which governs the rate of the increase of the instantaneous

frequency is given by

ξ = 34.54

[
M
M�

]−5/3 [
fa

40Hz

]−8/3
sec (6)

The chirp mass is

M = (µ3M2)1/5 (7)

The lower cutoff of the instantaneous frequency fa, dominated by ta, is to avoid

18



seismic noise. Usually, it is set to 40Hz. And the higher cutoff fc is set to 1000Hz

according to the detector’s sensitive frequency range as shown in Fig. 7.

In this work, we assume the masses of the binaries are both 1.4M�. The chirp

time for this BNS system is ξ = 24.8381seconds. The result is shown in Fig. 12.

(For the simulation, please see Appendix A).

0 5 10 15 20 25
−4

−3

−2

−1

0

1

2

3

4
x 10

−22

time(s)

Figure 12: Chirp signal generated by NS-NS system. (m1 = m2 = 1.4M�,
ξ = 24.8381seconds, r = 38Mpc and sampling frequency is 2048Hz). The
the horizontal axis is time in second and the vertical axis is strain of chirp
signal. The signal shown here is original without any normalization.

As mentioned in Sec. 1.1, GW signal is very weak compared to the LIGO

noise. In Fig. 13, it is obvious how weak the chirp signal is.
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Figure 13: White noise and injected chirp signal. The blue background is
white noise and the red small signal is the chirp signal with SNR= 1.

4.3 CONSTRUCTING DATA AND THE OUTPUT OF MATCHED

FILTERING METHOD

Following the idea of matched filter, for the chirp signal, we ca write signal as

the combination of two templates, as shown in Eq. 8

s[n] = Aan cos(φn + φ0)

= Aan (cosφn cosφ0 − sinφn sinφ0)

= αan cosφn − βan sinφn

= αq0,n − βqπ/2,n (8)

where αq0,n and βqπ/2,n are templates with SNR=1 and arrival time at 0 second.

The original phase of αq0,n is 0 and βqπ/2,n is π/2.

20



Undere NP theory, the detection statistic of chirp signal is Eq. 9 when the

arrival time and original phase are unknown.

T (x) = −1

2

(
〈x− s,x− s〉 − ||x||2

)
= 〈x, s〉 − 1

2
||x||2

= α〈x,q0〉+ β〈x,qπ/2〉 −
1

2

(
α2 + β2

)
(9)

To maximum α and β in Eq. 10,

∂Λ

∂α
=
∂Λ

∂β
= 0 (10)

we get Eq. 11

α = 〈x,q0〉 = A cosφ0

β = 〈x,qπ/2〉 = A sinφ0 (11)

Thus, the SNR of signal and phase are maximized with Eq. 12

A2 = α2 + β2

φ = arctan

(
β

α

)
(12)
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If we put Eq. 11 back to Eq. 9, we can find that

T (x) = 〈x,q0〉2 + 〈x,qπ/2〉2 −
1

2

(
〈x,q0〉2 + 〈x,qπ/2〉2

)
=

1

2

(
〈x,q0〉2 + 〈x,qπ/2〉2

)
=

1

2
A2 (13)

So, we use the output SNR as the detection statistic of matched filter, which

is
(
〈x,q0〉2 + 〈x,qπ/2〉2

)
.

With the above non-stationary noise sets generated by sinusoidal wave func-

tion, white noise and the waveform template, we constructed our data by injecting

the chirp signal into the noise as shown in Fig. 14. Then we passed this data to

general matched filter(MF) to see how different non-stationarity will affect the out-

put of matched filter. The results, which are the detection statistic, also known as

the outputs of matched filtering, are shown as the blue line in the following figures.

For general matched filtering, the PSD or FFT of the time series is calculated

for the whole time series . Thus, the non-stationarity buried in time-varying time

series is omitted. But when use the MMF method, the time series is cut into smaller

segments. This method calculates the spectrum of every small time series segment.

In this case, the non-stationarity is included by using time series segments with

assumption that the noise is quasi-stationary in each segment. [33]. The difference

of general matched filtering and modified matched filtering is shown in the following
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Figure 14: This figure represents the chirp signal injected into different non-
stationary sets. The the horizontal axis shows time and the the vertical axis
shows amplitude of noise and signal with SNR 1.The above and bottom
panel are built by using standard deviation vector in Fig. 10, the difference
is the above one the signal is injected from beginning and the bottom one
is at 10th second. The middle panel is using Fig. 11 and signal injected at
the beginning.

figures.

The result for standard deviation vector set 1, which has 4 segments, is shown

in Fig. 15 and for 8 segments shown in Fig. 16. For this two data models, the chirp

signal is injected at 0 second. For the non-stationary noise with 8 peaks, which

changes slowly between peaks, it will not cause a big effect to inject the signal at

any time. But for non-stationary noise built with 4 peaks standard deviation vector,

since the variance changes more from peak to peak, the output will be different

when signal is injected at different time. Thus, besides injecting chirp signal at the

beginning, we also built data model with chirp signal injected at 10th second, which
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lies between peak 2 and peak three of standard deviation vector 1. The output is

shown in Fig. 17.
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Figure 15: This figure represents the results of detection by the modified
matched filter(MMF) with the variance vector divided into 4 segments,
when the noise is non-stationary. The the horizontal axis shows the SNR of
injected signal and the the vertical axis shows the MF/MMF output SNR.
This noise model in this study is shown in Fig. 10 and Fig. 14 above
panel. The blue curve represents the output of the search using a standard
matched filter(MF). The other curves represent the same when a MMF is
used. The different colors show results for different segmentation of the
data. It is clear from the figure that the MMF has a significantly better
performance than a regular MF. In this study(slow non-stationary), the
different segmentations didn’t differ from each other in the output.

From these three figures, we can see that if the noise is very close to stationary,

then both general matched filter and matched filter with segments will work. But

if the noise is non-stationary, as shown in Fig. 10, when the arrival time of signal

is different, the output of matched filter will be different. For Fig. 15, the arrival

time of chirp signal is 0 second, which means the signal residents in the stationary
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Figure 16: This figure represents the results of detection by the MMF with
the variance vector divided into 8 segments. The the horizontal axis shows
the SNR of injected signal and the the vertical axis shows the MF/MMF
output SNR. This noise model in this study is shown in Fig. 11 and the chirp
signal is injected from the beginning in Fig. 14 middle panel. The blue curve
represents the output of the search using a standard matched filter(MF).
The other curves represent the same when a MMF is used. The different
colors show results for different segmentation of the data. The results show
that for low SNRs, the general MF has a lightly better performance. More
notably, the results of MMF with 4 segments of the data vector, shows the
worst performance. The reason for the latter is that, by using MMF, we
assumed that each data segment is quasi-stationary. However, because of
the nature of the noise(variance vector has 8 segments), this condition is
violated when we use 4 segments. Below SNR 6, the MF perform slightly
better because the standard deviation of the noise varies only by a small
range(¡10%), when the signal is present. For this reason, all the curves are
close to each other.

part of whole noise. So when we chop data and templates into segments, the output

SNR of matched filter enhance compared to general matched filter. And for Fig. 17,

since the signal lays in the fluctuating part of the noise, the output SNR of modified

matched filter is still much better than general matched filter but not as good as
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Figure 17: This figure represents the results of detection by the modified
matched filter(MMF) with the variance vector divided into 4 segments,
when the noise is non-stationary. The the horizontal axis shows the SNR of
injected signal and the the vertical axis shows the MF/MMF output SNR.
This noise model in this study is shown in Fig. 10 and the chirp signal is
injected from 10th second, where the noise varies more than other parts in
Fig. 14 bottom panel. The blue curve represents the output of the search
using a standard MF. The other curves represent the same when a MMF
is used. The different colors show results for different segmentation of the
data. Compared with Fig. 15, we can see that here the MMF also has a
significantly better performance than a regular MF but the detections are
lower than in Fig. 15 since the noise varies more where signal represents.

Fig. 16.

So from the above analysis, we can see that when the signal is located in noise

close to stationary, general matched filter can work very well. But if the whole noise

is fluctuating, then the detection statistic of general matched filtering is not as good

as chopping the data into segments. When the signal is in the stationary part of

noise, we drop the non-stationary part of noise, which makes the detection statistic
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better.

One important thing we must mention is that when we use the modifica-

tion of matched filter, where we cut data and signal into different segments, we

do re-normalization to the output SNR of matched filter. First, we got the re-

normalization factors based on the outputs SNR of white noise, which should be

scaled to the inputs SNR. With the re-normalization factors, we divided the out-

puts SNR of the two non-stationary data sets by it, so they are also scaled to input

SNRs. The reason why we do this is that when we use general matched filter, the

output is the inner product of data x and template. But when we cut the data into

segments, we are missing the cross terms, such as inner product of x1 and template2,

and we only use the terms as inner product of x1 and template1 and so on.

For example, if we cut the data and template into two segments, as shown in

Eq. 14

<x, s> = <x1, s1> + <x1, s2> + <x2, s1> + <x2, s2> (14)

If we only take <x1,s1> and <x2,s2> into account, we are missing <x1,s2>

and <x2,s1> terms and the output SNR will not be general output SNR of matched

filtering. Thus, we have to renormalize the output and the renormalization constant

is defined as the output of white noise divided by the input SNR.

To have an idea about how this method works on LIGO noise, we built a noise

set with real LIGO data from ′DARM′ and combined with some gaussian modulated

sinusoidal pulses. The noise and normalized chirp signal is plotted in Fig. 18

Compared with the above three data sets, we expect the output of matched
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Figure 18: This figure represents injection of a chirp signal with SNR 1 in
real LIGO data from the sixth science run(S6). The the horizontal axis is
time in seconds and the vertical axis represents the amplitude in arbitrary
units. The top panel show the chirp signal that lasts in 24.8381 seconds, the
middle and bottom panel show the S6 noise that has been made more non-
stationary by a series of gaussian-modulated sinusoidal pulse that mimic
glitches seen in real LIGO data.

filter will be like in Fig. 15, where signal is presented when the noise is locally

stationary. Our result is shown in Fig. 19(See Appendix B.).

As we expected, the output SNR of matched filter when chopping data and

template into segments is better than general matched filter. Here, we did another

re-normalization to scale the output SNR according to the output SNR of general

matched filter.

In Fig. 15 and Fig. 17, we compared the outputs when arrival time of signal

is different. We also repeat it here. We moved the pulse to the beginning, so that

the signal is almost present at non-stationary part, shown in Fig. 20. And Fig. 21
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Figure 19: This figure represents the results of detection by the MF/MMF
of pulses injected LIGO noise and chirp signal as shown in Fig. 18. The the
horizontal axis shows the SNR of injected signal and the the vertical axis
shows the MF/MMF output SNR. The blue curve represents the output of
the search using a standard matched filter(MF). The other curves represent
the same when a MMF is used. The different colors show results for different
segmentation of the data. In this condition, the general definition of SNR
doesn’t hold, thus the output SNR is different from the general SNR shown
in the above figures. But it is clear from the figure that the MMF still has
a significantly better performance than a regular MF. The reason for this
is that when we use MMF and chop data into smaller segments, the effect
of non-stationary is reduced.

is the output.

Here, we see that, if the data is segmented into a smaller numbers of segments,

the detection statistic is poor. This is because the nature of the non-stationary

present in the data does not support the main assumption that each segment is

quasi-stationary. However, as seen in the Fig. 21, if we chop the data into a

larger number of segments(like 32 and 64 segments in our simulation), the above

assumption is satisfied. Thus the detection statistic is also significantly improved.
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Figure 20: This figure represents injection of a chirp signal with SNR 1 in
real LIGO data from the sixth science run(S6). The the horizontal axis is
time in seconds and the vertical axis represents the amplitude in arbitrary
units. The top panel show the chirp signal that lasts in 24.8381 seconds, the
middle and bottom panel show the S6 noise that has been made more non-
stationary by a series of gaussian-modulated sinusoidal pulse that mimic
glitches seen in real LIGO data. Compared with Fig. 18, the signal lies in
the non-stationary part of noise.

From the above results, we can see that if chop data and template into seg-

ments, the output of matched filter is better than general matched filter. But, if

the signal is present at stationary part of noise, the result will be better because in

this way, the non-stationary is taken into account for the segment it relies and will

have less affect on the output.
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Figure 21: This figure represents the results of detection by the MF/MMF
of pulses injected LIGO noise and chirp signal as shown in Fig. 20. The the
horizontal axis shows the SNR of injected signal and the the vertical axis
shows the MF/MMF output SNR. The blue curve represents the output of
the search using a standard matched filter(MF). The other curves represent
the same when a MMF is used. The different colors show results for different
segmentation of the data. The difference of this data model in Fig. 20 and
Fig. 18 is that here the signal lies in the non-stationary port of noise, but
this difference causes a big decrease in detection. Here if the data is chopped
into a small numbers of segments, the detection statistic is poor because
the nature of the non-stationary present in the data does not support the
main assumption that each segment is quasi-stationary. However, if chop
the data into a larger number of segments, the above assumption is satisfied.
Thus the detection statistic is also significantly improved.
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CHAPTER 5

CONCLUSION

In this work, we studied the detection of chirp signals generated by BNS

systems using matched filtering method. Matched filtering is a method widely used

and sufficient for detection when the detector noise is gaussian and stationary. But if

noise is non-stationary, its efficiency decreases. Since GWs are very weak compared

with noise, a more robust detection method is needed, even if the noise if non-

stationary. Thus, we worked out a modified matched filter to include the time-

varying nature of the detector noise.

Before we go to real LIGO data, we first constructed a set of simulated data

based on LIGO detector outputs. Firstly, since LIGO noise is non-stationary, we

used sinusoidal wave function to simulate different non-stationary noise samples. To

compare the efficiency of detection, we also used white gaussian stationary noise.

After this, we simulated our chirp signal waveform template based on a binary

neutron star system with equal mass 1.4 M�. Then we built our data by injecting

the chirp signal into our non-stationary noise sets and also white gaussian noise.

In order to see how general matched filtering responds to both non-stationary noise

and stationary gaussian noise, we studied the detection statistics,which is the output

SNR of matched filter for all data sets. It was found that the efficiency of general

matched filtering was weakened when noise became non-stationary, as expected.

The most important part of this research is to study the effects of non-



stationarity noise and how to make the detection more efficient in the presence

of non-stationary noise. Keeping in mind that the LIGO noise spectrum changes

with time, the calculation of the power spectrum based on the full data segment

under investigation is not a true estimate. Since a power spectral estimate plays a

direct role in calculation of the matched filter detection efficiency, it is of utmost

importance that the changing spectral density is taken into account. We achieve this

by constructing a modified matched filter where we chop the data into small quasi-

stationary segments and estimate the spectral density. By doing this, we included

the non-stationarity of the noise for matched filtering analysis. We then compared

the detection of general and modified matched filtering as shown in Fig. 19. As we

can see, the modified matched filtering has a significantly better performance.

Our work is original research to study how to modify matched filtering to

work more robustly with non-stationary noise. Our immediate goal is to implement

this new algorithm on LIGO science data to investigate if the performance shows

significant improvement. This will be particularly important in case of Advanced

LIGO (aLIGO) where the NS-NS binary signals are expected to stay in the LIGO

band for several minutes and thus, we can not afford to miss detecting it, even if

the noise becomes non-stationary.
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APPENDIX A

CHIRP SIGNAL

% chirp signal,Physical Review Volume 54, Number 12
clear all
clc
m1=1.4; % mass of one of the binaries,base Msun
m2=1.4;
fa=40; % low frequency
fc=1000; % stop frequency
fs=2048; % sampling frequency
ta=0; % arrival time of the signal
r=38; % distance of binaries
PHI=0; % initial phase

M=(((m1*m2)/(m1+m2))ˆ3*(m1+m2)ˆ2)ˆ(1/5); % mass funtion
chirptime=34.54*(M)ˆ(-5/3)*(fa/40)ˆ(-8/3); % chirp time
A=1.92*10ˆ(-23)*(chirptime/25)ˆ(-1)*(r/100)ˆ(-1)*(fa/40)ˆ(-2);
% part of amplitude r base 100Mpc fa base 40Hz
tc=(1-(fa/fc)ˆ(8/3))*chirptime; % time when frequency is 1000Hz
tchirp=0:1/fs:tc; % time vector of the signal
a=(1-tchirp/chirptime).ˆ(-1/4); % part of amplitude
phi=((8*chirptime*fa)/5-(8*chirptime*fa*(1 - tchirp/chirptime).ˆ(5/8))/5);
% phase changing with time
h0=a.*cos(phi); % initial phase PHI=0
h2=a.*cos(phi+pi/2); % initial phase PHI=PI/2
h=A*h0*cos(PHI)+A*h2*sin(PHI); % wave form
figure
plot(tchirp,h)
title('Chirp Signal')
xlabel('time(s)')
ylabel('strain of chirp signal')
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APPENDIX B

OUTPUT OF MATCHED FILTER FOR LIGO AND GAUSSIANSINE
DATA

% chirp signal,Physical Review Volume 54, Number 12
% Code for 8,16,32,64 Segments for three different sets of noise with SNR 5
% to 10
% rdata: normalized clean data of 1H DARM
% gausinpl: gaussine pulse

clear all
clc

%%

T=60; % data length 60s
fs=2048; % sampling frequency
Ns=T*fs;
deltaT=1/fs;
deltaF=1/T;
Tvector=(0:Ns-1)/fs;

%% Parameters of Binaries

m1=1.4; % mass of one of the binaries,base Msun
m2=1.4;
r=38; % distance of binaries, based on 100 Mpc

%% Initials of templates

fa=40; % low cutoff frequency
fc=1000; % high cutoff frequency
ta=0; % arrival time of the signal
PHI0=0;
phi0=0;
phi2=pi/2;
tah=0; % time of arrival for template

%% chirp signal

M=(((m1*m2)/(m1+m2))ˆ3*(m1+m2)ˆ2)ˆ(1/5); % mass funtion
chirptime=34.54*(M)ˆ(-5/3)*(fa/40)ˆ(-8/3); % chirp time
tc=(1-(fa/fc)ˆ(8/3))*chirptime; % time at 1000Hz
A=1.92*10ˆ(-23)*(chirptime/25)ˆ(-1)*(r/100)ˆ(-1)*(fa/40)ˆ(-2);
% part of amplitude r base 100Mpc fa base 40Hz,related to detection
% statistic
tchirp=0:deltaT:tc; % time vector of the chirp
a=(1-tchirp/chirptime).ˆ(-1/4); % part of amplitude
phi=2*pi*(8/5)*chirptime*fa*(1-(1 - tchirp/chirptime).ˆ(5/8)); % phase
h01=A*a.*cos(phi); % PHI=0 template
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h0=[h01 zeros(1,Ns-length(h01))]; % original phase is 0 template

h901=A*a.*cos(phi+pi/2); % original phase=PI/2
h90=[h901 zeros(1,Ns-length(h901))];
chirpS=[h01 zeros(1,Ns-length(h01))];
%% FFT frequency

% Frequency of FFT for whole data
Nfreq=(0:(Ns/2))/T;
% interpolate frequency for positive frequencies
NfreqInverse=fliplr(Nfreq); % inverse of interpolate frequency
NfreqV=[Nfreq NfreqInverse(2:Ns/2+1)]; % interpolate frequency

% Frequency Vector of FFT of Segment

Len seg1=Ns/4;
Nfreqs1=(0:Len seg1/2)*fs/Len seg1;
NfreqsInverse1=fliplr(Nfreqs1); % inverse of interpolate frequency
NfreqsV1=[Nfreqs1 NfreqsInverse1(2:Len seg1/2+1)]; % interpolate frequency

Len seg2=Ns/8;
Nfreqs2=(0:Len seg2/2)*fs/Len seg2;
NfreqsInverse2=fliplr(Nfreqs2); % inverse of interpolate frequency
NfreqsV2=[Nfreqs2 NfreqsInverse2(2:Len seg2/2+1)]; % interpolate frequency

Len seg3=Ns/16;
Nfreqs3=(0:Len seg3/2)*fs/Len seg3;
NfreqsInverse3=fliplr(Nfreqs3); % inverse of interpolate frequency
NfreqsV3=[Nfreqs3 NfreqsInverse3(2:Len seg3/2+1)]; % interpolate frequency

Len seg4=Ns/32;
Nfreqs4=(0:Len seg4/2)*fs/Len seg4;
NfreqsInverse4=fliplr(Nfreqs4); % inverse of interpolate frequency
NfreqsV4=[Nfreqs4 NfreqsInverse2(2:Len seg4/2+1)]; % interpolate frequency

Len seg5=Ns/64;
Nfreqs5=(0:Len seg5/2)*fs/Len seg5;
NfreqsInverse5=fliplr(Nfreqs5);
% inverse of interpolate frequency
NfreqsV5=[Nfreqs5 NfreqsInverse5(2:Len seg5/2+1)];
% interpolate frequency
%% LIGO data
ligo noise=load('rdatam.txt');
ligo noise=(ligo noise-mean(ligo noise))/std(ligo noise);
%% Gaussian Modulated Sinusoidal Pulse
tg = gauspuls('cutoff',50e1,0.6,[],-1000); % Initial gausine pulse
gausin vector = -tg : 1e-6 : tg; % time vector
[gausinpl,ps injection]=GaussianSineUniform(gausin vector,Ns,fs);
gausinpl=[gausinpl(1,10*fs+1:Ns) zeros(1,10*fs)];
%% Combined noise with Ligo noise and gaussine pulse
nonstat noise 1=ligo noise+gausinpl;
%% Matched Filtering
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for i=1:10000

wn=randn(1,Ns);
wn=(wn-mean(wn))/std(wn);

[P wn,F wn]=pwelch(wn,fs/4,[],fs/4,fs); % get PSD of noise using pwelch
P wn=P wn*fs/2; % fs/2 is scalar factor
Npsd=interp1(F wn,P wn,NfreqV); % noise psd after interpolation
Npsd=Npsd(1,1:end-1);

% Normlize Constant and Normlization of Signal
NormConst=sqrt(Ns)/sqrt(sum(fft(h0).*conj(fft(h0))./Npsd));
h0N=h0*NormConst;
h90N=h90*NormConst;
S chirp=chirpS*NormConst;

fft S=fft(S chirp); % chirp signal template injected into noise

%nonstat noise 1=sigmaV 1.*wn; % nonstatnoise set
[P n1,F n1]=pwelch(nonstat noise 1,fs/4,[],fs/4,fs);
% get PSD of noise using pwelch
P n1=P n1*fs/2; % fs/2 is scalar factor
Npsd n1=interp1(F n1,P n1,NfreqV); % noise psd after interpolation
Npsd n1=Npsd n1(1,1:end-1);

for SNR=5:10
x wn=wn+S chirp*SNR;
xn1=nonstat noise 1+S chirp*SNR; % data set
InPr0n 1=ifft(fft(xn1).*conj(fft(h0N))./Npsd n1);
InPr90n 1=ifft(fft(xn1).*conj(fft(h90N))./Npsd n1);
lamdaAG 1=sqrt((abs(InPr0n 1)).ˆ2+(abs(InPr90n 1).ˆ2));
detanG 1(SNR-4,i)=max(lamdaAG 1);
% output of Matched Filtering
l=1;
% Output of Matched Filtering Using Segments
for lv=0:Len seg1:Ns-Len seg1

fft h0N 4=fft(h0N(1,lv+1:lv+Len seg1));
fft h90N 4=fft(h90N(1,lv+1:lv+Len seg1));

[P wn 4,F wn 4]=pwelch(wn(1,lv+1:lv+Len seg1),fs/4,[],fs/4,fs);
P wn 4=P wn 4*fs/2;
Npsd 4=interp1(F wn 4,P wn 4,NfreqsV1);
Npsd 4=Npsd 4(1,1:end-1);

[P n1 4,F n1 4]=pwelch(nonstat noise 1(1,lv+1:lv+Len seg1),...
fs/4,[],fs/4,fs);

P n1 4=P n1 4*fs/2;
Npsd n1 4=interp1(F n1 4,P n1 4,NfreqsV1);
Npsd n1 4=Npsd n1 4(1,1:end-1);

fft wn=fft(x wn(1,lv+1:lv+Len seg1));
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InPr0n 4=ifft(fft wn.*conj(fft h0N 4)./Npsd 4);
InPr90n 4=ifft(fft wn.*conj(fft h90N 4)./Npsd 4);
lamdaAM wn=sqrt((abs(InPr0n 4)).ˆ2+(abs(InPr90n 4)).ˆ2);
detansM wn(l)=max(lamdaAM wn);

fft x1=fft(xn1(1,lv+1:lv+Len seg1));
InPr0n x1=ifft(fft x1.*conj(fft h0N 4)./Npsd n1 4);
InPr90n x1=ifft(fft x1.*conj(fft h90N 4)./Npsd n1 4);
lamdaAM x1=sqrt((abs(InPr0n x1)).ˆ2+(abs(InPr90n x1)).ˆ2);
detansM x1(l)=max(lamdaAM x1);
l=l+1;

end
D wn 4(SNR-4,i)=sum(detansM wn);
detanM x1 4(SNR-4,i)=sum(detansM x1);
clear fft wn InPr0n 4 InPr90n 4 lamdaAM wn detansM wn...

fft x1 InPr0n x1 InPr90n x1 lamdaAM x1 detansM x1

l=1;
for lv=0:Len seg2:Ns-Len seg2

fft h0N 8=fft(h0N(1,lv+1:lv+Len seg2));
fft h90N 8=fft(h90N(1,lv+1:lv+Len seg2));

[P wn 8,F wn 8]=pwelch(wn(1,lv+1:lv+Len seg2),fs/4,[],fs/4,fs);
P wn 8=P wn 8*fs/2;
Npsd 8=interp1(F wn 8,P wn 8,NfreqsV2);
Npsd 8=Npsd 8(1,1:end-1);

[P n1 8,F n1 8]=pwelch(nonstat noise 1(1,lv+1:lv+Len seg2),...
fs/4,[],fs/4,fs);

P n1 8=P n1 8*fs/2;
Npsd n1 8=interp1(F n1 8,P n1 8,NfreqsV2);
Npsd n1 8=Npsd n1 8(1,1:end-1);

fft wn=fft(x wn(1,lv+1:lv+Len seg2));
InPr0n 8=ifft(fft wn.*conj(fft h0N 8)./Npsd 8);
InPr90n 8=ifft(fft wn.*conj(fft h90N 8)./Npsd 8);
lamdaAM wn=sqrt((abs(InPr0n 8)).ˆ2+(abs(InPr90n 8)).ˆ2);

detansM wn(l)=max(lamdaAM wn);

fft x1=fft(xn1(1,lv+1:lv+Len seg2));
InPr0n x1=ifft(fft x1.*conj(fft h0N 8)./Npsd n1 8);
InPr90n x1=ifft(fft x1.*conj(fft h90N 8)./Npsd n1 8);
lamdaAM x1=sqrt((abs(InPr0n x1)).ˆ2+(abs(InPr90n x1)).ˆ2);
detansM x1(l)=max(lamdaAM x1);

l=l+1;
end
D wn 8(SNR-4,i)=sum(detansM wn);
detanM x1 8(SNR-4,i)=sum(detansM x1);
clear fft wn InPr0n 8 InPr90n 8 lamdaAM wn detansM wn...
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fft x1 InPr0n x1 InPr90n x1 lamdaAM x1 detansM x1
l=1;
for lv=0:Len seg3:Ns-Len seg3

fft h0N 16=fft(h0N(1,lv+1:lv+Len seg3));
fft h90N 16=fft(h90N(1,lv+1:lv+Len seg3));

[P wn 16,F wn 16]=pwelch(wn(1,lv+1:lv+Len seg3),fs/4,[],...
fs/4,fs);

P wn 16=P wn 16*fs/2;
Npsd 16=interp1(F wn 16,P wn 16,Nfreqs3);
Npsd 16=[Npsd 16 Npsd 16(1,end-1:-1:2)];

[P n1 16,F n1 16]=pwelch(nonstat noise 1(1,lv+1:lv+Len seg3),...
fs/4,[],fs/4,fs);

P n1 16=P n1 16*fs/2;
Npsd n1 16=interp1(F n1 16,P n1 16,Nfreqs3);
Npsd n1 16=[Npsd n1 16 Npsd n1 16(1,end-1:-1:2)];

fft wn=fft(x wn(1,lv+1:lv+Len seg3));
InPr0n 16=ifft(fft wn.*conj(fft h0N 16)./Npsd 16);
InPr90n 16=ifft(fft wn.*conj(fft h90N 16)./Npsd 16);
lamdaAM wn=sqrt((abs(InPr0n 16)).ˆ2+(abs(InPr90n 16)).ˆ2);

detansM wn(l)=max(lamdaAM wn);

fft x1=fft(xn1(1,lv+1:lv+Len seg3));
InPr0n x1=ifft(fft x1.*conj(fft h0N 16)./Npsd n1 16);
InPr90n x1=ifft(fft x1.*conj(fft h90N 16)./Npsd n1 16);
lamdaAM x1=sqrt((abs(InPr0n x1)).ˆ2+(abs(InPr90n x1)).ˆ2);
detansM x1(l)=max(lamdaAM x1);

l=l+1;
end
D wn 16(SNR-4,i)=sum(detansM wn);
detanM x1 16(SNR-4,i)=sum(detansM x1);

clear fft wn InPr0n 16 InPr90n 16 lamdaAM wn detansM wn...
fft x1 InPr0n x1 InPr90n x1 lamdaAM x1 detansM x1

l=1;
for lv=0:Len seg4:Ns-Len seg4

fft h0N 32=fft(h0N(1,lv+1:lv+Len seg4));
fft h90N 32=fft(h90N(1,lv+1:lv+Len seg4));

[P wn 32,F wn 32]=pwelch(wn(1,lv+1:lv+Len seg4),fs/4,[],fs/4,fs);
P wn 32=P wn 32*fs/2;
Npsd 32=interp1(F wn 32,P wn 32,Nfreqs4);
Npsd 32=[Npsd 32 Npsd 32(1,end-1:-1:2)];

[P n1 32,F n1 32]=pwelch(nonstat noise 1(1,lv+1:lv+Len seg4),...
fs/4,[],fs/4,fs);

P n1 32=P n1 32*fs/2;
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Npsd n1 32=interp1(F n1 32,P n1 32,Nfreqs4);
Npsd n1 32=[Npsd n1 32 Npsd n1 32(1,end-1:-1:2)];

fft wn=fft(x wn(1,lv+1:lv+Len seg4));
InPr0n 32=ifft(fft wn.*conj(fft h0N 32)./Npsd 32);
InPr90n 32=ifft(fft wn.*conj(fft h90N 32)./Npsd 32);
lamdaAM wn=sqrt((abs(InPr0n 32)).ˆ2+(abs(InPr90n 32)).ˆ2);

detansM wn(l)=max(lamdaAM wn);

fft x1=fft(xn1(1,lv+1:lv+Len seg4));
InPr0n x1=ifft(fft x1.*conj(fft h0N 32)./Npsd n1 32);
InPr90n x1=ifft(fft x1.*conj(fft h90N 32)./Npsd n1 32);
lamdaAM x1=sqrt((abs(InPr0n x1)).ˆ2+(abs(InPr90n x1)).ˆ2);
detansM x1(l)=max(lamdaAM x1);

l=l+1;
end
D wn 32(SNR-4,i)=sum(detansM wn);
detanM x1 32(SNR-4,i)=sum(detansM x1);
clear fft wn InPr0n 32 InPr90n 32 lamdaAM wn detansM wn...

fft x1 InPr0n x1 InPr90n x1 lamdaAM x1 detansM x1
l=1;
for lv=0:Len seg5:Ns-Len seg5

fft h0N 64=fft(h0N(1,lv+1:lv+Len seg5));
fft h90N 64=fft(h90N(1,lv+1:lv+Len seg5));

[P wn 64,F wn 64]=pwelch(wn(1,lv+1:lv+Len seg5),fs/4,[],fs/4,fs);
P wn 64=P wn 64*fs/2;
Npsd 64=interp1(F wn 64,P wn 64,Nfreqs5);
Npsd 64=[Npsd 64 Npsd 64(1,end-1:-1:2)];

[P n1 64,F n1 64]=pwelch(nonstat noise 1(1,lv+1:lv+Len seg5),...
fs/4,[],fs/4,fs);

P n1 64=P n1 64*fs/2;
Npsd n1 64=interp1(F n1 64,P n1 64,Nfreqs5);
Npsd n1 64=[Npsd n1 64 Npsd n1 64(1,end-1:-1:2)];

fft wn=fft(x wn(1,lv+1:lv+Len seg5));
InPr0n 64=ifft(fft wn.*conj(fft h0N 64)./Npsd 64);
InPr90n 64=ifft(fft wn.*conj(fft h90N 64)./Npsd 64);
lamdaAM wn=sqrt((abs(InPr0n 64)).ˆ2+(abs(InPr90n 64)).ˆ2);

detansM wn(l)=max(lamdaAM wn);

fft x1=fft(xn1(1,lv+1:lv+Len seg5));
InPr0n x1=ifft(fft x1.*conj(fft h0N 64)./Npsd n1 64);
InPr90n x1=ifft(fft x1.*conj(fft h90N 64)./Npsd n1 64);
lamdaAM x1=sqrt((abs(InPr0n x1)).ˆ2+(abs(InPr90n x1)).ˆ2);
detansM x1(l)=max(lamdaAM x1);

l=l+1;
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end
D wn 64(SNR-4,i)=sum(detansM wn);
detanM x1 64(SNR-4,i)=sum(detansM x1);
clear fft wn InPr0n 4 InPr90n 4 lamdaAM wn detansM wn...

fft x1 InPr0n x1 InPr90n x1 lamdaAM x1 detansM x1

end

end

mean detanG LIGO=[mean(detanG 1(1,:)) mean(detanG 1(2,:))...
mean(detanG 1(3,:)) mean(detanG 1(4,:))...
mean(detanG 1(5,:)) mean(detanG 1(6,:))]

mean wn LIGO 4=[mean(D wn 4(1,:)) mean(D wn 4(2,:)) mean(D wn 4(3,:))...
mean(D wn 4(4,:)) mean(D wn 4(5,:)) mean(D wn 4(6,:))]

mean wn LIGO 8=[mean(D wn 8(1,:)) mean(D wn 8(2,:)) mean(D wn 8(3,:))...
mean(D wn 8(4,:)) mean(D wn 8(5,:)) mean(D wn 8(6,:))]

mean wn LIGO 16=[mean(D wn 16(1,:)) mean(D wn 16(2,:)) mean(D wn 16(3,:))...
mean(D wn 16(4,:)) mean(D wn 16(5,:)) mean(D wn 16(6,:))]

mean wn LIGO 32=[mean(D wn 32(1,:)) mean(D wn 32(2,:)) mean(D wn 32(3,:))...
mean(D wn 32(4,:)) mean(D wn 32(5,:)) mean(D wn 32(6,:))]

mean wn LIGO 64=[mean(D wn 64(1,:)) mean(D wn 64(2,:)) mean(D wn 64(3,:))...
mean(D wn 64(4,:)) mean(D wn 64(5,:)) mean(D wn 64(6,:))]

mean xLIGO 4=[mean(detanM x1 4(1,:)) mean(detanM x1 4(2,:))...
mean(detanM x1 4(3,:)) mean(detanM x1 4(4,:)) mean(detanM x1 4(5,:))...
mean(detanM x1 4(6,:))]

mean xLIGO 8=[mean(detanM x1 8(1,:)) mean(detanM x1 8(2,:))...
mean(detanM x1 8(3,:)) mean(detanM x1 8(4,:)) mean(detanM x1 8(5,:))...
mean(detanM x1 8(6,:))]

mean xLIGO 16=[mean(detanM x1 16(1,:)) mean(detanM x1 16(2,:))...
mean(detanM x1 16(3,:)) mean(detanM x1 16(4,:))...
mean(detanM x1 16(5,:)) mean(detanM x1 16(6,:))]

mean xLIGO 32=[mean(detanM x1 32(1,:)) mean(detanM x1 32(2,:))...
mean(detanM x1 32(3,:)) mean(detanM x1 32(4,:))...
mean(detanM x1 32(5,:)) mean(detanM x1 32(6,:))]

mean xLIGO 64=[mean(detanM x1 64(1,:)) mean(detanM x1 64(2,:))...
mean(detanM x1 64(3,:)) mean(detanM x1 64(4,:))...
mean(detanM x1 64(5,:)) mean(detanM x1 64(6,:))]
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