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ABSTRACT 

Theta oscillation is the largest extracellular synchronous signal that can be 

recorded from the mammalian brain. It is known to influence information retention 

in the hippocampus, which plays a key role in declarative memory, recognition 

memory, working memory, and spatial memory. The theta oscillation field 

frequency is between 3 and 12 Hz and is present during exploratory behavior 

and sleep in rodents. Theta rhythm in the hippocampus is postulated to be 

produced by the rhythmical activity of pacemaking cells in the medial septum-

vertical limb of the diagonal band of Broca (MS-vDBB). Previous work in our 

laboratory demonstrated the existence of continuously oscillatory neurons 

(CONs), the pacemaking cells, and sporadically oscillatory neurons (SONs) in 

the MS-DB. CONs were found to fire rhythmical action potential bursts within the 

duration range of a theta wave. The frequency at which they fire correlates with 

the simultaneously recorded hippocampal theta rhythm. It is believed that inputs 

from CONs and other ascending neurons are necessary to recruit non-rhythmic 

neurons to fire along a theta oscillation pattern. Altogether, this initiates a 

propitious environment for hippocampal theta frequency, which becomes the 

foundation for memory formation important in neurodegenerative diseases such 

as Alzheimer’s disease (AD). The MS oscillatory mechanism is believed to lead 

and recruit theta rhythm generation in the hippocampus. However, the state-

dependent alterations of the septo-hippocampal connection and the possible 

imbalance leading to septal or hippocampal dominance are poorly understood. In 

our investigations, we report that our CON cell recording was immuno-reactive to 
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a GABAergic marker, supporting our hypothesis that MS GABAergic neurons are 

key cells in pacing hippocampal theta. Additionally, we report our findings for one 

SON cell and one NON-NC cell recorded in the MS.  
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CHAPTER 1 – INTRODUCTION  

Alzheimer’s disease (AD) is the most common senile dementia that affects about 

one in eight people over 65 years old (Kandel 2013). The first sign of the illness 

is failure to remember simple things and is followed by gradual memory deficits 

and progressive loss of cognitive abilities. These behavioral symptoms are 

attributed to much more complex physical alterations. The neurodegenerative 

alterations of cortical networks that take place affect specific regions of the brain 

such as the neocortex, entorhinal cortex (EC), and the hippocampus. The 

memory loss that accompanies AD is specifically due to alterations in the medial 

temporal cortex and the hippocampus, which are characterized by a thinning 

cortex, enlarged ventricles, amyloid beta (Aβ) plaques and fibrillary tangles 

(Morris 2003). In order to address the topics of learning and memory jeopardized 

in Alzheimer’s disease, studies have placed special importance on the 

hippocampus, hippocampal cells and their activity. Focus is also placed on the 

connections it makes and receives with other structures of the brain such as the 

medial septum (MS), the cortical networks affected due to the progression of the 

disease, and how this alters the patterns of synchronous activity of the cells 

involved. Our focus is centered on the connections between the MS and 

hippocampus, which forms the septo-hippocampal pathway. 

 

 

 



2 
 

Hippocampus 
 
The hippocampus is a structure in the medial temporal lobe of the brain, located 

on each side of the cerebral hemispheres. The hippocampus, along with 

structures such as the dentate gyrus and fimbria, form the hippocampal formation 

(Figure 2). The hippocampal formation, mammillary bodies, and fornix form part 

of the limbic system in the forebrain, which is crucial for memory formation and 

retrieval (Figure 1). The hippocampus makes connections with the EC and the 

MS. It has been associated with working memory, long term memory, episodic 

memory and spatial navigation. Damage to the hippocampus is known to affect 

the formation of episodic memory and semantic memory as well as cause 

pathologies such as epilepsy, anterograde amnesia, and the memory problems 

found in AD.  

 

Figure 1   
The limbic system is comprised of several structures (labeled above), and is located in the medial 
temporal lobe of the forebrain. The hippocampus, the mammillary bodies, and the fornix form 
connections with the MS. The septal region and the hippocampus share their connectivity through 
the fimbria-fornix system. This connection is jeopardized in AD, evident in patient learning, 
memory, and spatial navigation problems. 
http://thebrainlabs.com/brain.shtml 
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Structure of the Hippocampus 

The hippocampus is composed of several structures that are arranged in a 

peculiar seahorse shape. The structures begin with the dentate gyrus, the cornu 

Ammonis (CA) regions labeled 1-4, followed by the subiculum, and at the top 

layer of the CA regions is the alveus, which makes a connection with the fimbria-

fornix system (Figure 2). The hippocampal formation generally refers to the CA 

regions and the dentate gyrus, which are composed of pyramidal cells and 

granule cells respectively. Studies have focused on the different populations of 

neurons residing in these structures and the network connections that result in 

the electroencephalogram (EEG) patterns commonly produced. It has been 

established that GABAergic septohippocampal afferents disinhibit GABA-

hippocampal interneurons, affecting large numbers of principal cells through the 

dentate gyrus, CA3, and CA1 regions of hippocampal formation process (Freund 

and Antal 1988; Toth and Freund 1992; Toth, Borhegyi et al. 1993). The 

hippocampampal CA3 and CA1 regions, in turn, have been shown to project to 

the MS-DBB from GABAergic interneurons (Alonso and Kohler 1982; Toth, 

Borhegyi et al. 1993). Rhythmical slow activity has been confirmed to be 

generated in the CA1 region and dentate gyrus of the hippocampus (Bland and 

Whishaw 1976). It was also shown that the maximum discharge of hippocampal 

sharp wave activity that inhibited MS-DBB neurons was consistent with the 

maximum discharge of CA1 interneurons during theta activity (Dragoi, Carpi et al. 

1999). 
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Figure 2 
Coronal view demonstrating the different structures of the hippocampus in addition to the areas 
surrounding the hippocampal formation in grey and white. The hippocampal formation is 
comprised of the hippocampus, dentate gyrus, and subiculum. The hippocampus is important for 
encoding events and places, affected in AD. 
http://spinwarp.ucsd.edu/NeuroWeb/Text/br-800epi.htm 
 

 

Neuron Activity in the Hippocampus 

Extracellular studies performed in the hippocampus have demonstrated different 

cellular discharge patterns that contribute to the generation of theta rhythm. 

Bland and Colom were among the researchers that described rhythmically 

bursting cells in the hippocampal formation. Their 1987 paper describes the two 

distinct populations of theta related cells they found. Theta-on cells were 

described as those that increase their firing rate with hippocampal theta wave 

activity. There are two subgroups: phasic theta-on and tonic theta-on cells. 

Phasic theta-on cells increase their firing patterns in a rhythmical and linear 

fashion in relation to theta rhythm and have a consistent phase relation to each 

wave. Tonic theta-on cells also increase their firing rate but do not show 
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rhythmicity or change in relation to theta; only constant discharges. They 

speculated that tonic theta-on cells signaled change from large irregular activity 

(LIA) to theta; phasic theta-on cells also signaled change from LIA to theta, along 

with shifts within the theta state. Conversely, theta-off cells are silent during theta 

activity, but fire during LIA. Subgroups within this type include phasic theta-off 

and tonic theta-off cells. Phasic theta-off cells do not fire during LIA, but begin to 

fire as theta slowly declines and are reciprocally related to phasic theta-on cells. 

Tonic-theta off cells only fire during LIA at a low constant rate and are 

reciprocally related to tonic theta-on cells. It was concluded that phasic theta-off 

cells signal the decline of theta frequency and change from theta to LIA, while 

tonic theta-off cells signal change from theta to LIA. In short, hippocampal phasic 

and tonic theta-on cell firing accompanies theta field activity, while hippocampal 

phasic and tonic theta-off cell firing accompanies LIA (Smythe, Cristie et al. 1991; 

Bland, Oddie et al. 1999). Their follow up research suggested that theta-on cells 

were projection cells and theta-off cells were inhibitiory interneurons (Bland and 

Colom 1993). Further, McNaughton postulated that phasic hippocampal activity 

in combination to similar frequency activity in other structures was necessary for 

effective cognitive processing (McNaughton, Ruan et al. 2006). 
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Figure 3 
As hippocampal theta wave emerges, theta-on cells begin to fire while tonic theta off 
become silent (Bland and Colom 1993).  

 

Theta Rhythm 

There are several brain waves such as alpha, beta, delta, theta, and gamma that 

are produced by the electrical communication between neurons. EEGs allow us 

to detect subcortical structures producing such activity. Hippocampal EEG 

activity is at the center of many learning and memory studies. Two activity 

patterns that this study is concerned with is LIA and theta rhythm in rodents. LIA 

is found in the frequency band ranging from 0.5 – 25.0 Hz and has been linked 

with slow wave sleep, waking immobility, resting and eating (Leung 1982). Theta 

rhythm is widely accepted as a sinusoidal waveform with frequencies ranging 

from 3 – 12 Hz. It is associated with rapid eye movement (REM) sleep, alert and 

active behavior, and strongly correlated to learning and memory.  

The hippocampal field activity’s importance lies in its oscillation and synchrony 

function within the central nervous system (CNS). Specifically, hippocampal theta 
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field activity has been discovered to be a crucial phenomenon in hippocampal 

synaptic plasticity and larger brain processes such as sensory motor behavior, 

registration and retrieval of information, and spatial navigation in rats (Bland and 

Whishaw 1976; Bland, Oddie et al. 1999; Klimesch 1999; McNaughton, Ruan et 

al. 2006). Hippocampal theta rhythm facilitates the production of neuron long-

term potentiation (LTP), a synaptic long lasting increase in effectiveness of 

synaptic transmission. LTP is an activity known to be one of the bases for 

learning and memory, neuron plasticity, and is related to cell synchronization 

(Kiss, Patel et al. 1990). Additionally, theta rhythm has been linked to declarative 

memory, recognition memory, working memory, and spatial memory in humans 

and has even been proposed to be a representative tag for short term memory 

processing (Klimesch 1999; Tesche and Karhu 2000; Vertes 2005). Theta rhythm 

frequency, as seen in rodents and other mammals, is mostly present in 

exploratory behavior and sleep. Further, two types of theta activities have been 

described in laboratory animals. Type 1 theta is correlated with voluntary motor 

activity and type 2 theta is correlated with motor activity in relation to processing 

sensory information (Colom, Ford et al. 1987). Rats that are anesthetized with 

urethane display only type 2 theta and the frequency lies at the lower end of the 

range.  

Hippocampal pyramidal and granular cells in the hippocampus were first 

discovered to fire in bursts correlated with theta waves while others did not fire at 

all, giving rise to the speculation that rhythmicity originated prior to this structure 
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(Petsche, Stumpf et al. 1962). Since then, theta rhythm has been a focal point in 

many rising theories attempting to explain its origin. 

The longstanding, widely accepted classic septal pacemaker hypothesis 

suggests that MS neurons precede hippocampal theta field activity and therefore 

serve as the pacemaker units. Because there are projections from the 

hippocampus back to the MS-DB, which originate mainly from GABAergic 

neurons in the st.oriens of CA1 and CA3, the classic septal pacemaker 

hypothesis was challenged by the hippocampal pacing theta hypothesis (Buzsaki 

2002). This hypothesis suggested an intrahippocampal theta genesis, which 

projects back to the MS-DBB, phase locking GABAergic neurons with 

hippocampal theta (Manseau, Goutagny et al. 2008). However, many studies 

point in the direction of the classic view and in studies where MS activity is 

abolished, results show a termination in hippocampal theta, not allowing much 

popularity to be gained by the latter (Green and Arduini 1954; Winson 1978; 

Vinogradova 1995). 

Theta rhythm has long been hypothesized to be a result of the communication 

that runs from the MS to the dentate gyrus, CA3, and CA1 of the hippocampus 

(Figure 4). Hippocampal theta frequency has been produced by stimulating the 

MS-vDBB and is directly correlated with the amount of electrical stimulation 

thereby concluding that there is a one-to-one relationship (Bland and Colom 

1993). 
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Hippocampal theta field activity

 

Figure 4 
Saggital view of brain illustrating the connectivity between structures formed by 3 neuron 
populations. The top EEG shows an expanded view of theta rhythm produced in the 
hippocampus. Speculations are that the preceding structure, the MS, produces rhythmicity via 
neurons that discharge in rhythmic bursts into the hippocampus. The lower part of the illustration 
shows an expanded view of a single MS-DBB neuron firing rhythmically. 
http://sites.sinauer.com/animalcommunication2e/chapter10.04.html 
 

The Medial Septum 

The medial septum is a medium of stimulations directed between the 

hippocampus and the diencephalon and mesencephalon (Petsche, Stumpf et al. 

1962). Investigations on this structure have shown that the connection from the 

medial septum to the hippocampus is crucial for the production of theta rhythm. 

Experiments performed on the medial septum such as lesions, local anesthesia, 

and high frequency electrical stimulations have proved to abolish hippocampal 
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theta rhythm completely (Petsche, Stumpf et al. 1962; Lee, Chrobak et al. 1994; 

McNaughton, Ruan et al. 2006). It has been widely accepted to conclude that 

MS-DBB cells work as the pacemakers of theta rhythm in the hippocampus 

because many lines of evidence have supported this idea for decades. 

Specifically, because studies had documented the continued activity of 

rhythmically bursting cells in the MS after theta activity in the hippocampal 

formation was disrupted, the septal pacemaker hypothesis for hippocampal theta 

generation was formed (Ford, Colom et al. 1989). Moreover, theta rhythm is 

flawed in aged rodents, further supporting the hypothesis that changes in the 

MS-DBB complex are taking place and affecting the learning and memory 

functions of the hippocampus (Colom 2006). However, the precise mechanism 

on how the MS-DBB paces hippocampal theta is still not completely understood.  

 

 

 



CHAPTER 2 – REVIEW OF THE LITERATURE  

Neurons of the Medial Septum 

Three neuronal populations compose the medial septum—cholinergic, 

glutamatergic, and GABAergic neurons (Simon, Poindessous-Jazat et al. 2006). 

Septo-hippocampal cholinergic neurons synapse with hippocampal principal cells 

and hippocampal interneurons. Studies have shown that age related loss and 

atrophy of cholinergic septal neurons contribute to alterations of rhythmic activity 

in the hippocampus (Rubio, Vega-Flores et al.). Further, neurons using the 

neurotransmitter acetylcholine are especially vulnerable in AD (Morris 2003). 

Currently, drugs that boost the amount of acetylcholine are used for treatment.  

Septo-hippocampal glutamatergic neurons are known to project to the CA1, CA3, 

and the dentate gyrus. Septo-hippocampal GABAergic neurons synapse only 

with hippocampal interneurons (Freund and Antal 1988). Medial septal 

cholinergic and GABAergic neurons that project to the hippocampus have been 

speculated to influence hippocampal theta genesis (Rubio, Vega-Flores et al.; 

Serafin, Williams et al. 1996). Experiments in septally deafferented rats have 

determined that there exists an important balance between septal cholinergic and 

GABAergic contribution for modulating theta field activity in the hippocampus 

(Bland and Colom 1993). One key characteristic of AD is the degeneration or 

dysfunction in septal cholinergic neurons (Henke and Lang 1983). 

Furthermore, non-cholinergic, presumed to be GABAergic neurons have shown 

the ability to discharge in rhythmic bursts of action potentials, implicating that 



12 
 

they may transmit rhythmic frequency to the hippocampus (Serafin, Williams et 

al. 1996). Since the development of the septal pacemaker hypothesis, these 

rhythmically bursting cells have been investigated in more detail. Studies have 

shown that voltage-gated sodium channels modulate synaptic activity, thus 

controlling cellular and network excitability (Wang 2002; Meisler and Kearney 

2005). Experiments eliminating GABAergic neurons in the MS showed a 

termination of theta oscillation in the hippocampus along with memory 

impairment (Varga, Hangya et al. 2008). Accordingly, it was discovered that MS 

GABAergic neurons disinhibit GABAergic interneurons in the hippocampus, 

making it a critical component in neural synchronization, which is greatly affected 

when there is a reduction in the number and complexity of GABAergic septo-

hippocampal axon terminals (Rubio, Vega-Flores et al.). 

Bland and Colom studied cells in the MS and found that the majority were theta-

related and followed the same classification scheme as mentioned above for the 

hippocampal theta cells but discovered a group that were rhythmic during both 

theta and LIA (Ford, Colom et al. 1989). The same categories were applied and 

followed to describe MS theta-on and theta-off cells with subpopulations of 

phasic and tonic in each. A portion of the phasic cells reported continued to 

discharge in a rhythmic pattern during LIA activity. The cells were seen to retain 

their rhythmicity but had greater variability in interburst and intraburst intervals 

compared to theta state. Their studies found that MS tonic theta-on cells are 

involved in the control and synchrony of the hippocampal formation by tonically 

depolarizing hippocampal phasic theta-on cells (Colom, Ford et al. 1987). MS 
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phasic theta-on cells synchronize the membrane potential oscillations (MPOs) of 

hippocampal phasic theta on cells, as well as, synchronize the discharges of 

hippocampal tonic theta-on cells (Bland, Oddie et al. 1999). Therefore, theta 

rhythm is produced when the medial septum inhibits hippocampal theta-off cells 

while at the same time initiating MPOs that recruit and synchronize both 

hippocampal phasic and tonic theta-on cells (Bland, Oddie et al. 1999). Recently, 

it was demonstrated that “candidate pacemaker neurons” in the MS precede 

putative hippocampal interneuron activity in hippocampal field state (Hangya, 

Borhegyi et al. 2009). 

The majority of GABAergic septohippocampal neurons have been found to 

contain the calcium binding protein parvalbumin (PV; Figure 5) (Kiss, Magloczky 

et al. 1997; Simon, Poindessous-Jazat et al. 2006; Hangya, Borhegyi et al. 

2009). Dysfunction in PV cells contributes to abnormalities in oscillatory rhythms, 

network synchrony and has an effect on cognitive alterations (Verret, Mann et 

al.). Moreover, HCN channels, hypothesized to be the pacemaker channels, 

were thought to be expressed in the membranes of MS-DBB GABAergic neurons 

(Robinson and Siegelbaum 2003; Varga, Hangya et al. 2008). Vargas et al. 

(2008) conducted a study investigating the HCN-expressing cells in the 

septohippocampal pathway and confirmed them to be GABAergic, including the 

subpopulation of parvalbumin and GAD67. These results strengthened previous 

studies speculating that MS GABAergic neurons are the contributors in the 

production of theta rhythm oscillations in the hippocampus.  
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Previous work performed in our laboratory demonstrated the existence of 

continuously oscillatory neurons (CONs), speculated to be pacemaking cells, and 

sporadically oscillatory neurons (SONs) in the MS-DBB. CONs were found to fire 

rhythmical action potential bursts in the duration range of a theta wave. The 

frequency at which they fire correlates with theta rhythm recorded simultaneously 

in the hippocampus. It is believed that inputs from CONs and other ascending 

neurons are necessary to recruit non-rhythmic neurons into theta oscillation 

pattern. Altogether, this initiates a propitious environment for hippocampal theta 

frequencies, which becomes the foundation of memory formation important in 

neurodegenerative diseases such as AD. 

 

Figure 5 
Simon labeled a total of 90 MS-DBB neurons with neurobiotin and examined them by 
immunohistochemistry for GAD, PV, and Chat and identified the firing patterns of each (Simon, 
Poindessous-Jazat et al. 2006). 
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The Septohippocampal Pathway 

Studies on Alzheimer’s disease have centered on the effects that aging has on 

the firing rates of neurons of the septohippocampal pathway. Extracellular 

recordings have shown that rhythmically bursting neurons, the frequency at 

which they fire, and the amplitude are significantly lowered in aged rats (Apartis, 

Poindessous-Jazat et al. 2000). The changes in cognitive learning and memory 

in aged rats may be attributed to alterations in the MS-DBB and in the nucleus 

basalis (Colom 2006). 

Various brainstem inputs to the hippocampal system give rise to different EEG 

states and electrical stimulation has been shown to produce slow wave theta 

activity (Colom, Ford et al. 1987). The reticulari-spontisoralis nucleus (RPO) is a 

brainstem site that has been found to elicit hippocampal theta rhythm by affecting 

the membrane potential (Vm) levels of MS-DBB cells, which induce the rhythmic 

activity (Oddie, Bland et al. 1994; Barrenechea, Pedemonte et al. 1995). A study 

carried out by (Daitz and Powell 1954) demonstrated that the medial septum 

projects to the hippocampus via the fimbria, the most orally situated part of the 

hippocampus (Petsche, Stumpf et al. 1962; Stumpf, Petsche et al. 1962). 

Therefore, it can be assumed that the MS-DBB receives afferent inputs from the 

brainstem and then cholinergic and GABAergic projections ascend to the 

hippocampus (Freund and Antal 1988; Bland, Oddie et al. 1999). Additionally, 

stimulus to the hypothalamus has shown to increase cell discharge rate and 

theta frequency (Colom, Ford et al. 1987; Bland, Colom et al. 1990). Conversely, 

a transition from theta to LIA consists of the medial septum’s disinhibition of 
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hippocampal theta-off cells through the GABAergic septohippocampal pathway 

(Smythe, Cristie et al. 1991; Bland, Oddie et al. 1999). Hypothalamic cells effects 

axons that terminate in the MS-DBB, which have been reported to be cholinergic 

or parvalbumin-containing GABAergic, within the septohippocampal pathway 

(Bland, Colom et al. 1990; Smythe, Cristie et al. 1991; Kiss, Magloczky et al. 

1997). Other medial septal neurons have been found to be immuno-positive for 

Calretinin (CR). The functionality of these MS-DBB neurons is not clearly 

understood to date. In the septohippocampal pathway (Figure 6), GABA 

connections have been suggested to influence NMDA mediated functions, which 

if disturbed can result in pathological excitability in the hippocampal formation 

(Freund and Antal 1988).  

In summary, the synchronized signaling pathway travels from the ascending 

brainstem to the medial septum, which recruit and initiate phasic theta-on cell 

MPOs, which then recruit phasic theta-on cell MPOs in the hippocampus 

(Smythe, Cristie et al. 1991; Konopacki, Bland et al. 1992; Bland, Konopacki et 

al. 1995; Bland, Oddie et al. 1999).  The hippocampus then projects back to the 

medial septum in a feedback connection discovered to have a GABA transmitter 

(Toth, Borhegyi et al. 1993). 
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Septo-hippocampal pathway 

 

Figure 6 
a) Coronal slice containing the hippocampal formation. Shown over the structure is a model of the 
neuron populations projecting to the hippocampus from their perspective locations. b) An 
overview of the connections between the brainstem, hypothalamus, and septal complex, forming 
the septo-hippocampal pathway. 
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Figure 7 
A hypothetical model proposed by Colom (2005) of the MS circuits including the three main 
neuronal populations and the connections they form with other structures. Solid lines indicate 
septal neurons and dashed lines indicate hippocampal neurons.  
 

Genetic mutations can be a contributing factor to early onset Alzheimer’s 

disease. However, the most common type is late onset AD. How can we address 

a disease in which the major risk factor is age? Genetic research and the use of 

MRI’s to view structural changes have provided methods of early diagnosis, but a 

deeper understanding of cellular and structural relationships is important for 

finding better treatments. This study focuses on the cellular mechanisms of the 

MS cells previously recorded in our lab thought to underlie the genesis of 

hippocampal theta rhythm implicated in learning and memory.
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Limitations 

Extensive research applicable to humans has been performed using rodents for 

investigations on learning and memory and even using transgenic animals to 

mimic pathologies such as those seen in Alzheimer’s disease. However, human 

epileptic patients with neural implants provide us with the best type of data to 

cross reference laboratory findings concerning brain activity. These studies have 

demonstrated a similar activity related to memory and navigation that resembles 

theta oscillations seen in rodents but at 1-4 Hz, a much slower range (Jacobs 

2014).  In spatial and temporal memory tasks, hippocampal oscillations ranged at 

2-8 Hz (Jacobs 2014). Inevitably, a limitation in reporting our discoveries is the 

application of cellular activity at distinct frequencies that may vary across 

species. Moreover, our chances of encountering a CON cell in this study were 

about (8%), limiting the amount of cells we are able to report at this time. 

Additionally, our immunohistochemistry proved to have a limitation regarding how 

many GABAergic markers we could test at a time. Therefore, this study only 

investigated either calbindin (CB), GAD67, or parvalbumin (PV) positive neurons.  
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PURPOSE OF STUDY 

This study aimed to confirm the electrophysiological nature and morphology of 

previously discovered continuously oscillating neuron (CON) cells in our 

laboratory. CONs are described as those that show rhythmical firing in the 

presence and absence of hippocampal theta activity. Our approach to investigate 

the firing properties was accomplished by using a juxtacellular recording labeling 

technique. In order to investigate morphological characteristics of the recorded 

cells, we used various primary antibodies to identify GABAergic neurons, detailed 

in our report. Lastly, we used a computerized tracing technique for visualizing the 

morphology of the immuno-reactive cells.  
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HYPOTHESIS 

Our hypothesis predicts that the medial septum (MS) provides rhythmicity to the 

hippocampus, through the rhythmical burst discharges of continuously oscillating 

neurons (CONs) expressing GABA neurotransmission.  



CHAPTER 3 – MATERIALS AND METHODS  

Animals 

A total of 20 adult male Sprague Dawley rats, weighing between 250–350g, were 

used for the purpose of this project. The animals were housed and maintained on 

a 12h-12h light-dark cycle and provided with food and water ad libitum. The 

animal protocols used for this study are in compliance with the National Institutes 

of Health Guide for the Care and Use of Laboratory Animals and approved by the 

Institutional Animal Care and Use Committee of UTB to minimize pain and 

suffering while reducing the number of animals used.  

Anesthetic Procedure 

Animals were initially anesthetized using Isoflurane (The Butler Company, 

Dublin, OH) in a chamber and then transferred to a surgical setting where 

anesthesia was continued using a Matrix VIP 3000 Isoflurane Vaporizer 

(MidMark Co., Versailles, OH), while surgically placing an external cannula 

through the jugular vein. Cannulation allows direct administration of Urethane 

anesthesia (Sigma-Aldrich Co., St. Louis, MO) for immediate control of 

anesthetic level, which allows us to obtain an optimal hippocampal theta state. 

Once the jugular cannula was secured, Isoflurane was gradually discontinued 

and 0.5 g/ml of Urethane was progressively administered in order to maintain the 

level of anesthesia for the remainder of the surgical and experimental 

procedures.  
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Electrophysiology 

Rats were placed in a stereotaxic instrument (David Kopf Instruments, Tujunga, 

CA) with Bregma and lambda leveled horizontally. A self-regulating heating pad 

(Fine Science Tools Inc., Foster City, CA) was used to maintain a stable body 

temperature of 37°C. Trephine holes were drilled above the hippocampi using the 

following coordinates for the CA1 region: 3.8 mm posterior to Bregma, 0.2 mm 

lateral to the midline, and 2 mm ventral to the dural surface. An additional hole 

was drilled posterior to one hippocampus to place an uninsulated silver wire in 

the cortex to serve as an indifferent electrode. A tungsten electrode (0.1 MΩ 

resistance) was used to record the electroencephalogram (EEG) activity of the 

CA1 region of one hippocampus at a time. Electrodes were inserted at the 

coordinates listed above using a micro-positioner (David KOPF Instruments, 

Tujunga, CA). The electrodes were then left in place for 5-10 minutes to 

normalize EEG activity and then bound in position using dental cement (A-M 

Systems, Inc., Sequim, WA). 

A small window was drilled above the medial septum using the following 

coordinates: 0.5 mm anterior to Bregma, 0.5 mm lateral to the superior sagittal 

sinus, and 5.2–7.2 mm ventrally. The dural matter was removed and the sinus 

was often cauterized for direct accessibility to the midline of the medial septal 

structure. Cells in the medial septum were recorded using glass microelectrodes 

constructed from 1.5 mm thin wall glass capillaries (World Precision Instruments, 

Inc., Sarasota, FL) and shaped using a Vertical Pipette Puller Model 720 (David 

KOPF Instruments, Tujunga, CA) with a tip resistance of 15–30 MΩ. Glass 
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electrodes were filled with 0.5 M sodium acetate and 5% Neurobiotin (Vector 

Laboratories, Inc., Burlingame, CA) before use and lowered to the medial septum 

coordinates using the micro-positioner mentioned above. A trephine hole was 

drilled above the medial septum window to place an uninsulated silver wire for 

grounding purposes. 

Data Acquisition 

All electrophysiological data was acquired using Spike 2 (Cambridge Electronic 

Design, Cambridge, England), which displayed, digitized, and recorded both cell 

firings in the medial septum and EEG activity simultaneously for off-line analysis. 

Medial septum cell firings were monitored by using a speaker (A-M Systems, 

Inc., Sequim, WA) and recordings were amplified and filtered (low-pass at 300 

Hz) using a Cyber Amp 320 (Axon Instruments, Union City, CA). The EEG signal 

was amplified and filtered using a Microelectrode AC Amplifier Model 1800 (A-M 

Systems Inc., Carlsborg, WA). 

Cells in the MS-DBB were monitored for approximately 5 minutes preceding 

recording of firing patterns during four hippocampal field conditions: (1) LIA only 

(baseline control), (2) transitioning from LIA to theta, (3) theta only (experimental 

condition), and (4) transitioning from theta to LIA. In the instances where theta 

was not spontaneously produced, a tail pinch was performed for 30 second 

intervals to induce activity. Recordings averaged 355 seconds in duration. 

Following the recording of a rhythmically behaving cell, a current injection was 

applied for cell labeling using the juxtacellular technique described by (Pinault 



25 
 

1996). The labeled cell was monitored using the Spike 2 display for 5-10 minutes 

succeeding the current injection to ensure cell survival.  

Data Analysis 

Analyses of cell recordings were performed using Clampfit 9.2 software 

(Molecular Devices, LLC., Sunnyvale, CA) to determine theta phase preference, 

burst frequency (Hz), interspike interval (ISI), and amplitude (mV). Cell firing 

patterns and hippocampal activity were individually examined by autocorrelation 

analysis. Correlations between cell behavior and hippocampal activity was 

determined using cross-correlograms. 

LIA was defined as a large amplitude irregular activity with a frequency band 

ranging from 0.5 – 25.0 Hz as described by (Leung 1982). Hippocampal theta 

activity was defined as a sinusoidal waveform with a frequency ranging from 3 – 

12 Hz. Firing rates were examined against both hippocampal activities to 

evaluate the electrophysiological properties of each cell. Neurons were then 

classified according to their rhythmical firing, or lack thereof, and its correlation, if 

any, with the simultaneously ongoing hippocampal activity, specifically, with 

hippocampal theta. The classification is as follows: 

1. Continuously oscillating neurons (CON): Neurons which fired rhythmic 

bursts of action potentials in the presence or absence of hippocampal 

theta and were highly correlated with theta rhythm. 
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2. Sporadically oscillating neurons (SON): Neurons which fired rhythmic 

bursts of action potentials only in the presence of hippocampal theta and 

were highly correlated with theta rhythm.  

3. Non-oscillating neurons correlated to theta rhythm (NON-C): Neurons 

which fired arrhythmically but were correlated with hippocampal theta 

rhythm.  

4. Non-oscillating neurons non-correlated to theta rhythm (NON-NC): 

Neurons which fired arrhythmically and did not correlate with hippocampal 

theta rhythm.  

Statistical analyses were performed using OriginPro 8.5.1 (Origin Lab. Corp., 

Northampton, MA) and Microsoft Excel (Microsoft Windows Vista, 32-bit 

Operating System). A Kruskal-Wallis one-way analysis of variance was used to 

determine electrophysiological differences among neurons. Significant 

differences were set at p< 0.05.  

Histological Analysis 

After successfully recording and labeling MS cells with neurobiotin, animals were 

perfused transcardially. A perfusion wash was first administered using phosphate 

buffered saline (PBS: 0.1M, pH=7.4), followed by a fixative containing 4% 

paraformaldehyde prepared in 0.1 M PBS. The brain was extracted and 

incubated in the 4% paraformaldehyde fixative overnight and then transferred 

into a 30% sucrose solution for dehydration over a 3 day period. Brains were 

then placed in frozen section medium (Richard-Allan Scientific Neg-50, Thermo 
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Fisher Scientific, Inc., Waltham, MA) to cut coronal serial sections 40 μm thick 

using a vibratome (Microm HM 550, Thermo Fisher Scientific, Inc., Waltham, 

MA). Once slices containing the medial septum were collected, three tissue 

washes, each lasting 10 minutes, were performed using 0.1 M PBS. We then 

incubated the tissue in 0.3% H2O2 prepared in PBS for 1 hour followed by a 

washing process. Brain tissues were then incubated in 5%NDS-1%BSA-

0.1%PBS-Tween for a 1 hour blocking process to improve antibody penetration. 

Next, tissue was incubated overnight in streptavidin-conjugated Alexa 568 

(diluted in 1.25%NDS-0.25%BSA-0.025%Tween at 1:200) in a dark environment 

at room temperature. The washing process was repeated and slices were 

mounted on a slide using chemical permount mounting medium (Thermo Fisher 

Scientific, Inc., Waltham, MA) to be viewed under fluorescent microscopy in order 

to locate the Neurobiotin labeled neuron. 

After acquiring the section with the neurobiotin labeled cell, the anatomical 

position was confirmed and the former and subsequent sections were collected 

for further preparation. The blocking process, detailed above, was repeated and  

followed by incubation in primary antibodies, calbindin 28 (CB) and GAD67 

(rabbit anti-calbindin28, rabbit anti-GAD67, diluted in 1.25%NDS-0.25%BSA-

0.025%Tween at 1:250), over a 3 day period. Sections were once again washed 

and incubated in the secondary antibody, Alexa488 conjugated goat (anti-rabbit 

diluted in 1.25%NDS-0.25%BSA-0.025% Tween at 1:200), for 2 hours at room 

temperature. A subsequent wash was performed and sections were mounted on 

a slide for colocalization analysis using fluorescent microscopy.  
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Next, sections were treated overnight with Vectastain ABC Kit (diluted in 

1.25%NDS-0.25%BSA-0.025%Tween; Vector Laboratories Inc., Burlingame, 

CA). Sections were then stained using DAB Substrate Kit for Peroxidase (SK-

4100; Vector Laboratories, Inc., Burlingame, CA) for 10 minutes and placed on a 

slide to dry overnight. A serial dehydration process was performed using 70%, 

90%, 100% ethanol and two successive submersions in xylene, coverslipped and 

allowed to dry overnight.  

Cell Reconstruction 

The DAB results were then viewed under a microscope using Neurolucida 

software (MicroBrightField, Inc., Williston, VT) for sectional mapping and neuron 

tracing. A branched analysis was performed using Neurolucida Explorer, to 

describe the anatomical properties detailed by tracing (Table 1).  

 

 

 

 

 

 

 

 

 



 

CHAPTER 4 – RESULTS AND DISCUSSION 

Studies on the medial septum have reported that this structure is of great 

importance in hippocampal theta generation. Medial septal neurons send 

cholinergic, GABAergic and glutamatergic projections to the hippocampus 

(Figure 7) (Colom 2006). The hippocampus also sends projections back to the 

medial and lateral septal structures, in which a small portion appears to be 

GABAergic (Toth, Borhegyi et al. 1993). The mutual connection between the 

septum and the hippocampus has been shown to be mediated by the MS-DBB, 

which has been referred to as the pacemaker structure in providing a rhythmic 

drive to the hippocampus (Dragoi, Carpi et al. 1999; Apartis, Poindessous-Jazat 

et al. 2000; Wang 2002). The medial septum rhythmically bursting neurons that 

are theta-related have been found to be GABAergic (Figure 5)   (Simon, 

Poindessous-Jazat et al. 2006). MS GABAergic neurons are known to connect to 

GABAergic interneurons in the hippocampus, exerting excitibitly control on 

pyramidal cells, and thus producing hippocampal theta rhythm (Garcia-

Hernandez, Bland et al.). This was settled by testing immunoreactivity of the 

calcium binding protein, calbindin, present in the medial septum (Kiss, Magloczky 

et al. 1997; Simon, Poindessous-Jazat et al. 2006). Similarly, the hippocampal 

neurons that project to the medial septum have also been found to contain 

calbindin (Toth and Freund 1992; Toth, Borhegyi et al. 1993).  
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Figure 8 
Uppermost part of illustration shows theta and LIA field activity as recorded in our laboratory. The 
firing patterns of one neuron are shown under each EEG condition. A) Shows the activity of one 
neuron classified as SON. Under is the AC of the action potentials of the cell and the CC between 
the cell activity and the EEG. B) Shows the activity of one neuron described as CON. The 
histograms that follow show the AC of the AP, which do not show a drastic change under each 
field activity condition. The CC of the CON activity against the EEG, continues to show rhythmic 
patterns.  
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Electrophysiology  
 
Seventy nine neurons were recorded. Seventeen of those neurons (21.52%) 

presented rhythmic bursts of action potentials. Out of those 17 neurons, 10 

(12.65%) displayed rhythmic bursts only during the occurrence of hippocampal 

theta rhythm (SON) (Figure 8A). The remaining 7 neurons  (8.86%), presented 

continuous rhythmic oscillations during the entire recording period regardless of 

the EEG activity (CON) (Figure 8B). Sixty two neurons (78.5%) fired action 

potentials in non-rhythmic patterns. Only 4 (5%) of those neurons fired action 

potentials that were correlated to hippocampal theta rhythm (NON-C). 

Rhythmical MS-DBB neurons  

CON and SON cells (n = 7 and 10, respectively) displayed high firing frequencies 

during theta oscillations (16.9±3.4 Hz and 19.06±3.9 Hz, respectively). During 

LIA, firing frequencies were slightly, but not significantly reduced (15.1±3.45 Hz 

and 13.65±3.4 Hz, respectively). Firing frequencies were not statistically different 

between CON and SON cells (Kruskal-Wallis ANOVA, P=0.084). In addition, 

firing phases could not separate CONs from SONs. Both types of cells fired in 

particular phases of theta wave, demonstrating an average firing phase of 

120.34±10.6 degrees for CONs and 156±15.6 degrees for SONs in relation to 

theta (Figure 9) (one-way ANOVA, F=2.94, P=0.106). 
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Figure 9 
MS-DBB neurons fire at a particular phase of theta when simultaneously recorded with 
hippocampal theta activity.  
 

However, the burst firing frequencies of CON and SON cells were different during 

the occurrence of the hippocampal theta rhythm. CON cells fired bursts of action 

potentials at higher frequencies than SON cells (63.8±8.5 Hz and 39.05±4.3 Hz, 

respectively; one-way ANOVA, F=8.03 and P=0.012) (Figure 10). Moreover, 

CON’s average burst duration was shorter than SON (78.9±12 ms and 

132.78±17 ms, respectively; one-way ANOVA, F=5.45, P=0.033). Thus, during 

theta rhythm CON cells showed shorter ISI (23.6±3 ms), when compared to SON 

cells (43.63±5 ms; one-way ANOVA, F=38.79, P=0.00156). During LIA, only 

CON cells continued displaying rhythmic bursts.  
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Figure 10 
Rhythmical neurons in the MS-vDBB, labeled CON and SON, influence hippocampal theta 
activity through their burst firing frequency.  
  
 
Non-rhythmical MS-DBB neurons  

The average firing frequency of NON-C cells observed during theta was 9.25±4.6 

Hz and 4.82±1.6 Hz during LIA. Two out of four neurons (50%) were considered 

slow firing neurons (i.e. firing frequencies <12 Hz) (Colom 2006). The remaining 

two were considered fast firing neurons (i.e. firing frequencies >12 Hz) (Colom, 

2006). The theta phase in which they fired was 119.4±14.9 degrees and do not 

statistically differ from the rhythmical neurons (p>0.05). The remaining 58 

neurons displayed non-rhythmical firing patterns that were non-correlated to 

theta (NON-NC). The average firing frequency of a NON-NC cell was 17.36±2.4 

Hz during theta and 15.68±2.7 during LIA. Twenty five of those neurons (42%) 
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were considered slow firing neurons and the remaining 33 neurons were 

considered fast firing neurons (Figure 11). 

 

Figure 11 
The graph represents the different firing frequencies of the four classified neurons in the MS-
DBB. CONs and SONs display high firing frequencies with theta oscillations. The firing 
frequencies of a NON-C cell significantly change with the presence of theta activity. The average 
firing of a NON-NC cell change only slightly with theta rhythm. 
 

CON 
 
Out of our recorded cells, we selected a total of eleven cells to further analyze for 

rhythmical patterns. Five out of the eleven cells were considered potentially 

rhythmical and continued with immunohistochemistry. One of the five cells 
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proved to have CON characteristics, as reported in our preliminary data.  It 

showed an increase in firing frequency by 31.9% (X2 = 13.00295, df: 1, 

p<0.00001), when stimulated by a tail pinch to produce theta rhythm (Figure 

12A). A Kruskal-Wallis ANOVA (LIA= 11 and theta = 18; Table 2) demonstrates a 

significant difference in the duration of bursts, a 23.45% change when compared 

to the LIA state (X2 = 5.50056 DF=1, p< 0.01901). The rhythmical pattern, as 

demonstrated by the auto-correlation (AC) and cross-correlation (CC) 

histograms, show no significant changes in action potentials (X2 = 0.33506, df: 1, 

p=0.56269).  

Following juxtacellular recordings, we utilized GABAergic markers to test for 

immuno-reactivity. We chose CB, GAD 67, and PV to test our hypothesis that 

CON is of GABAergic nature, in line with research suggesting this characteristic 

of pacemaker MS cells. Our results show CB immunoreactivity overlayed with 

our recorded neuron (Figure 12B), which presented high rhythmic firing patterns 

after the tail pinch stimulation (Figure 12A). This confirms that GABAergic 

neurons are related to theta rhythm generation in the hippocampus. A CC 

analysis shows that our recorded neuron, classified a CON, had a firing rate 

correlated to the concurrent hippocampal activity,  shown in the rhythmic bursts 

of action potentials that are present under both LIA and theta conditions (Figure 

12). However, it is clearly more pronounced under the hippocampal theta state. 
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Figure 12 
Squared sections of a juxta-cellular recording (blue) in the MS with simultaneous hippocampal 
EEG activity (red) were analyzed during LIA and theta (tail pinch) conditions. Auto AC and CC 
histograms show the activity of one CON labeled neuron (A). The immuno-reactivity for the 
recorded cell B-a (Streptavidin red) and Calbindin B-b (FITC green) overlapped in B-c. 
Immunohistochemistry illustrating the recorded cell in the MS-vDBB (B-d). Square is amplified to 
40x (B-d1). Contour map and neuron tracing is shown in B-e and B-e1, respectively.  

 

Another important characteristic about CON cells is their tendency to fire in a 

consistent manner in alignment to a particular degree of theta wave. Results for 

our CON cell recording demonstrate a tendency to fire at a phase of 202° on 
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theta wave (Figure 13). A prevalent theta wave phase suggests synchrony, in 

which the cell bursts play a role in sending oscillatory cues at a specific moment 

to the hippocampus to generating theta rhythm.  
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Figure 13 
Circular distribution showing phases, in degrees, of hippocampal theta wave and the average 
MS-vDBB rhythmical burst firing prevalent at each value. In red are the average firing action 
potentials of the labeled CON cell.  
 

SON 
 
Our second recorded neuron fit the classification characteristics for SON. This 

neuron proved to have arrhythmical firing during the LIA condition, as shown in 

the AC and CC histograms (Figure 14A). A Kruskal-Wallis ANOVA (LIA= 14 and 
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theta = 10; Table 3) demonstrates a significant difference in the duration of 

bursts, a 29.05% change when compared to the LIA state (X2 = 5.09529, df: 1, p< 

0.02399). The rhythmical pattern is accompanied with an increase in action 

potentials by 66.6% (X2 = 12.84627, df: 1, p<0.0001).  However, the frequency 

and ISI had no significant difference. 

Here, we used a GAD67 GABAergic marker to continue testing our hypothesis. 

Our results indicated that this type of cell was immuno-negative to GAD67, 

evident by its lack to overlap (Figure 14B). This does not eliminate the possibility 

of it being a GABAergic cell. It could potentially be another subclass, which was 

not tested for in this study (see limitations). 

 



39 
 

 

Figure 14 
Squared sections of a juxta-cellular recording in the MS (blue) with simultaneously recorded 
hippocampal EEG activity (red) were analyzed during LIA and theta conditions. AC and CC 
histograms show the activity of one SON labeled neuron (A). The immuno-reactivity for the 
recorded cell B-A (Streptavidin red) and GAD 67 B-B (FITC green) does not overlap in B-C. The 
tissue was treated with DAB in order to visualize the location of the recorded cell in the MS-vDBB 
(B-D). Square is amplified to 40x (B-d1). Contour map of the slice containing the cell of interest 
and neuron tracing of the labeled cell is shown in B-E and B-e1, respectively.  
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The firing characteristic of SON cells, as previously mentioned, is to fire 

rhythmically only under hippocampal theta rhythm (Figure 14A). They do not 

follow consistent alignment with a particular phase of theta as CON cells do, but 

show common occurrences. Figure 15 shows the results for our recorded SON 

cell, whose mean firing was at 127° of theta wave. 
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Figure 15 
Circular distribution showing theta phase values, in degrees, of an MS-vDBB cell which only fired 
rhythmical bursts while hippocampal theta activity was present. In red are the average firing 
action potentials of the labeled SON cell. Note this cell’s rhythmicity lies at several phases of the 
theta wave, but has a phase preference at 127°. 

 

 
 
 



41 
 

NON-NC 
 
Our third recorded neuron fits the category of a NON-NC cell. The recording 

shows sporadic firing under LIA condition but correlated with hippocampal theta 

as seen in the AC and CC (Figure 16A). This cell fired arrhythmically and 

increased its firing frequency after inducing hippocampal theta. A Kruskal-Wallis 

ANOVA (LIA= 8 and theta = 10; Table 4) did not show a significant difference in 

duration, AP, burst frequency, or ISI. This cell was immuno-negative when tested 

with the parvalbumin GABAergic marker as demonstrated in Figure 16BA.  
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Figure 16 
Juxta-cellular recording in the MS (blue) with simultaneously recorded hippocampal EEG activity 
(red) were analyzed during LIA and theta conditions. AC and CC histograms show the activity of 
one NON-NC labeled neuron. The immuno-reactivity for the recorded cell with Streptavidin red 
and PV (FITC green) are shown in B-A, which do not overlap. The contour map of the slice 
containing the labeled cell and neuron tracing is shown in B-B and B-b1, respectively. Tissue 
containing the recorded cell in the MS-vDBB was stained with DAB (B-C). The dashed square is 
amplified to 40x and shown in B-c1.  
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The firing tendency that characterizes a NON-NC cell in relation to theta phase, 

as opposed to the CON and SON, is that there is no particular inclination for a 

certain phase degree of theta wave (Figure 17).  
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Figure 17 
Circular distribution showing phase (degree) values of hippocampal theta activity in relation to an 
MS-vDBB NON-C cell. In red are the average firing action potentials of the labeled cell, which 
does not have a consistent phase within the theta wave.  
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Table 1 

Branched Analysis of neurons stained and investigated 
 

Average Branched Analysis 

Samples Category Area 
(µm)2 

Perimeter 
(µm) 

Max 
Trees 

Avg 
Nodes 

 Avg 
Mean 

Length 
(µm) 

Avg Total 
Length 
(µm) 

Cell 1 CON 103.183 38.9 9 1.4 111.26 227.46 
Cell 2 SON 153.254 49.7 7 0.588 46.612 64.33 
Cell 3 NON-C 286.256 109.9 17 0.666 163.75 214.733 

 

 
CHAPTER 5 – SUMMARY AND RECOMMENDATIONS 

The goal of this study was to reveal the characteristics of neurons presumed to 

precede hippocampal theta activity in the MS-DBB, specifically the CON. Our 

results for the CON recorded cell in the MS-DBB supports our hypothesis that 

this cell is of GABAergic nature and whose activity influences the generation of 

hippocampal theta. We recommend expanding the number of CON cells 

recorded and testing more subclasses of GABAergic markers. It would be 

interesting to see if a CON cell is immunoreactive to more than one GABAergic 

marker.  

The SON and NON-NC reported cells provide additional data to what was 

previously described in our lab, extending our knowledge of some of the 

properties of these categorized cells. More specifically, the SON, which we 

suggest plays a recruiting role to further encourage theta activation, confirming 

the existence of the reciprocal loop between the MS and hippocampal structures. 
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Unfortunately, our staining attempt to identify this as a GABAergic neuron was 

restricted by our use of GAD67. Perhaps another GABA marker will prove to be 

successful; therefore, we recommend additional testing on this particular cell.  To 

broaden our knowledge of those cells previously described in our lab, and given 

that our NON-NC cell was immuno-negative to a GABA marker, we are 

interested in testing this particular cell with glutamatergic or cholinergic markers. 

Bursting cells, such as CONs, are key for neural synchrony that essentially forms 

a population of neurons that have the capacity to encode memory. Knowing the 

order of events in which regions of the brain containing these cells send or 

receive messages, the type of cells that precede and influence others and the 

kind of cellular firing patterns that are capable of modifying certain outcomes 

allow us to recognize functional and dysfunctional behaviors and interactions. 

Optogenetics, a method in which specific neurons are reactivated in a light 

induced manner, is a recently used method that has been successful in mapping 

cellular populations bearing memory engrams. This is a more innovative 

technique in which cellular activity at the molecular level is manipulated to control 

memory expression. Being able to target specific neurons is an encouraging 

alternative in preventing or delaying pathology. Overall, detecting activity at the 

micro-level of pathology is a promising therapeutic approach in which electrical 

modulation can set a dysfunctional neural circuit back to a functional tempo. Our 

results contribute a minute gain in a vast amount of knowledge that lays ahead in 

preventative treatments for neurodegenerative disease such as AD. 
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APPENDICES 
 
 
Analysis of CON’s Burst Frequency with simultaneous theta field activity  

Table 2 

Descriptive statistics 
LIA 

 
N total Mean SE of mean Minimum Median Maximum 

Duration 11 0.17182 0.01704 0.098 0.162 0.277 
AP 11 4.36364 0.38783 3 4 6 

Frequency 11 25.8641 1.14478 19.055 24.439 30.824 
ISI 11 0.04228 0.00195 0.03387 0.04268 0.05172 

       Theta 

 
N total Mean SE of mean Minimum Median Maximum 

Duration 18 0.12267 0.00467 0.095 0.124 0.163 
AP 18 4 0.14003 3 4 5 

Frequency 18 32.9838 1.0281 24.659 32.246 41.92 
ISI 18 0.03026 0.00132 0.02302 0.03109 0.0422 

 
Kruskal-Wallis ANOVA: 
 
 

  
N Min Q1 Median Q3 Max 

Duration LIA 11 0.098 0.124 0.162 0.21 0.277 
Theta 18 0.095 0.105 0.124 0.134 0.163 

AP LIA 11 3 3 4 6 6 
Theta 18 3 4 4 4 5 

Frequency LIA 11 19.055 24.185 24.439 29.943 30.824 
Theta 18 24.659 29.943 32.246 37.429 41.92 

ISI LIA 11 0.03387 0.03557 0.04268 0.04855 0.05172 

Theta 18 0.02302 0.02398 0.03109 0.03448 0.0422 

        Test Statistics: 
    

 
Chi-Square DF Prob>Chi-Square 

    Duration 5.50056 1 0.01901 
    AP 0.33506 1 0.56269 
    Frequency 13.00295 1 3.11E-04 
    ISI 14.95984 1 1.10E-04 
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Analysis of SON’s Burst Frequency with simultaneous theta field activity 
 

Table 3 

Descriptive statistics  

LIA 

 

N 
total Mean SE of mean Sum Minimum Median Maximum 

Duration 14 0.15007 0.00887 2.101 0.095 0.148 0.209 
AP 14 3.35714 0.13289 47 3 3 4 
Frequency 14 23.2915 1.52993 326.081 14.291 22.26 33.092 
ISI 14 0.04542 0.00424 0.63585 0.02321 0.04381 0.08424 

        Theta 

 

N 
total Mean SE of mean Sum Minimum Median Maximum 

Duration 10 0.2308 0.03213 2.308 0.134 0.191 0.42 
AP 10 5 0.33333 50 3 5 7 
Frequency 10 24.4774 2.86106 244.774 13.1 22.8035 37.428 
ISI 10 0.04663 0.00646 0.46632 0.02014 0.0444 0.08239 
 
 
Kruskal-Wallis ANOVA 

        
  

N Min Q1 Median Q3 Max 

 LIA 14 0.095 0.12175 0.148 0.1735 0.209 
Duration Theta 10 0.134 0.1535 0.191 0.303 0.42 

 
LIA 14 3 3 3 4 4 

AP Theta 10 3 4.75 5 5.25 7 

 
LIA 14 14.291 18.494 22.26 28.446 33.092 

Frequency Theta 10 13.1 16.4348 22.8035 32.6815 37.428 

 
LIA 14 0.02321 0.03465 0.04381 0.05271 0.08424 

ISI Theta 10 0.02014 0.0303 0.0444 0.06362 0.08239 

        Test Statistics 
    

 
Chi-Square DF Prob>Chi-Square 

    Duration 5.09529 1 0.02399 
    AP 12.84627 1 3.38E-04 
    Frequency 0.00343 1 0.95328 
    ISI 0 1 1 
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Analysis of NON-NC’s Burst Frequency with simultaneous theta field 

activity 

Table 4 

Descriptive statistics 

LIA 

 

N 
total Mean SE of mean Minimum Median Maximum 

Duration 8 0.294 0.03981 0.144 0.286 0.487 
AP 8 4.375 0.625 2 4 7 
Frequency 8 15.17738 1.33491 11.031 14.4195 20.96 
ISI 8 0.06995 0.0077 0.04282 0.06689 0.10466 

       Theta 

 

N 
total Mean SE of mean Minimum Median Maximum 

Duration 10 0.2949 0.02542 0.143 0.2905 0.405 
AP 10 5.2 0.41633 3 5 7 
Frequency 10 18.0424 1.0868 13.789 17.944 25.152 
ISI 10 0.05927 0.00447 0.03496 0.05897 0.07768 

 
Kruskal-Wallis ANOVA: 
 

 

 
N Min Q1 Median Q3 Max 

Duration LIA 8 0.144 0.186 0.286 0.36575 0.487 
Theta 10 0.143 0.23575 0.2905 0.3665 0.405 

AP LIA 8 2 3 4 6 7 
Theta 10 3 4 5 6.25 7 

Frequency LIA 8 11.031 11.81525 14.4195 19.296 20.96 
Theta 10 13.789 14.53 17.944 19.9775 25.152 

ISI 
LIA 8 0.04282 0.05127 0.06689 0.09118 0.10466 

Theta 10 0.03496 0.04958 0.05897 0.07445 0.07768 

         Test Statistics 
       

 
Chi-Square DF Prob>Chi-Square 

    Duration 0.00198 1 0.96455 
    AP 1.17567 1 0.27824 
    Frequency 2.56319 1 0.10938 
    ISI 0.78947 1 0.37426 
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