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Econometrica, Vol. 83, No. 3 (May, 2015), 1211–1236

THE ECONOMICS OF COUNTERFEITING

BY ELENA QUERCIOLI AND LONES SMITH1

We develop a strategic theory of counterfeiting as a multi-market large game. Bad
guys choose whether to counterfeit, and what quality to produce. Opposing them is a
continuum of good guys who select a costly verification effort. In equilibrium, counter-
feiters produce better quality at higher notes, but verifiers try sufficiently harder that
verification still improves. We develop a graphical framework for deducing comparative
statics. Passed and counterfeiting rates vanish for low and high notes. Our predictions
are consistent with time series and cross-sectional patterns in a unique data set assem-
bled largely from the Secret Service.

KEYWORDS: Passed money, seized money, cat and mouse game, hot potato game,
implicit markets, supermodular games.

1. INTRODUCTION

COUNTERFEITING IS A MAJOR ECONOMIC PROBLEM, called “the world’s fastest
growing crime wave” (Phillips (2005)). This paper explores the counterfeiting
of financial documents such as money, checks, or money orders. The domestic
losses from check fraud may well have exceeded $20 billion in 2003.2 About
one in 10,000 U.S. dollar notes is counterfeit, with the domestic public losing
$80 million in 2011, more than doubling since 2003. The indirect costs of coun-
terfeiting are much greater, since it forces a re-design of U.S. currency every
7–10 years. As well, many costs are borne by the public checking the authen-
ticity of their money.3

When we write counterfeit money (or checks), we have in mind two mani-
festations of it. Seized money is confiscated before entering circulation. Passed

1The paper began in 2005 as “Counterfeit, $$$” as a model just of the hot potato game; the cat
and mouse game was developed while Lones visited the Cowles Foundation at Yale for Spring
2006. We have profited from the insights and/or data of Charles Bruce (Director, National Check
Fraud Center), Pierre Duguay (Deputy Governor, Bank of Canada), Antti Heinonen (Euro-
pean Central Bank, Counterfeit Deterrence Chairman), Ruth Judson (Federal Reserve), John
Mackenzie (counterfeit specialist, Bank of Canada), Stephen Morris, and Lorelei Pagano (for-
mer Special Agent, Secret Service), as well as comments at I.G.I.E.R. (Bocconi), the 2006 Bonn
Matching Conference, the 2006 SED in Vancouver, the Cleveland Fed, Tulane, Michigan, the
Bank of Canada, the 2007 NBER-NSF GE conference at Northwestern, the 2008 Midwest The-
ory Conference in Columbus, the 2011 Yale Summer Theory Conference, Maryland, Pittsburgh,
Stanford, Georgetown, Wisconsin, the St. Louis Fed, Western, Melbourne, the Philadelphia Fed,
Chicago, NYU, and Princeton. We thank the Editor and two referees for comments that re-
shaped the paper entirely. Lones thanks the NSF for funding (Grant 0550014).

2Data here are sketchy. This estimate owes to a widely cited Nilson Report (www.nilsonreport.
com).

3Arguably, the $500M budget of the Bureau of Printing and Engraving, and maybe $1B of
the Secret Service and Treasury budgets owe to anti-counterfeiting. Also, there is a large private
sector industry.

© 2015 The Econometric Society DOI: 10.3982/ECTA10975

http://www.econometricsociety.org/
http://www.nilsonreport.com
http://www.nilsonreport.com
http://www.econometricsociety.org/
http://dx.doi.org/10.3982/ECTA10975
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money is found at a later stage, and leads to losses by the public. Whereas
counterfeit money in toto is a stock variable, seized and passed are flows. We
have gathered an original data set mostly from the Secret Service on counter-
feit U.S. money over time and across denominations. All seized and passed
counterfeit currency in the United States must be handed over to the Secret
Service, and so very good data are potentially available. Our data include all
5,594,062 seized and 8,541,972 passed counterfeit notes in the United States
for the years 1995–2004, supplemented by aggregate data for 2005–2007 and
older published data. We have organized our data using two measures—the
passed rate, or passed over circulation, and something we call the seized-passed
ratio. Seized money is a volatile series (see Figure 3 below), as it owes to
random, maybe large, counterfeiting discoveries, and also consists purely of
contemporaneous counterfeit money. By contrast, passed money has been
found by thousands of individuals, and may also have long been circulat-
ing.

Counterfeiting induces two distinct linked conflicts: first, counterfeiters
against verifiers and police, and second, verifiers against each other. The ex-
tant literature focuses on the police-counterfeiter conflict; but this can only
explain seized money. To understand passed money—namely, the source of
harm to the public—we must also consider the conflict among passers.

We assume that notes of a single denomination change hands every pe-
riod. Some fake notes pass into circulation and a larger collateral game then
emerges: Good guys unwittingly pass on fakes they acquire in an anonymous
random matching exchange setting. We explore the steady-state of this stock-
flow model. To wit, (a) the counterfeits produced balance those seized and
passed, and (b) those passing into circulation are matched by those found.
Hence, the passing fraction of new fakes into circulation is the ratio of passed
to seized plus passed, and the passed rate is the counterfeiting rate times the
discovery rate of fake money.

We next document some key counterfeiting facts that motivate our theory.
We first consider counterfeiting across denominations (Facts 1–3), and then
explore the time series picture (Facts 4–6).

FACT 1: One plus the seized-passed ratio (a) rises in the note, but (b) far less
than proportionately.

This clear trend holds in the U.S. denominations $1, $5, . . . , $100 over the
samples of millions of passed and seized notes, as well as in Canada’s six pa-
per notes.4 Slopes in the log-log diagram of Figure 1, that is, elasticities, are
positive but well below 1 (0.18, on average).

4For Canada, from 1980 to 2005, the counterfeit-passed ratios are 0.095, 0.145, 0.161, 0.184,
0.202, and 3.054 for (respectively) $5, $10, $20, $50, $100, and $1000. The $1000 note was ended
in 2000.
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FIGURE 1.—Seized-passed ratio by denominations. At left is 1 + S/P for 1995–2008 for non–
Colombian counterfeits in the United States (in a log-log plot). Data for the $1 note in 1998 and
2005–2008 average 1.23. For this log-log graph, slopes are elasticities—positive and below 1. At
right, we plot seized-passed ratios for the $5–$20 notes from 1995 to 2004, each normalized to 1
for 1995. The sample includes almost ten million passed and five million seized notes.

Since one plus the seized-passed ratio is the reciprocal of the passing frac-
tion, it is a risk measure for criminals. But risk should rise with reward, and so
passing higher notes should be a riskier endeavor, that is, one plus the seized-
passed ratio should rise in the denomination. Our theory explains why this
measure rises less than proportionately, as Fact 1 also claims.

FACT 2: The passed rate (a) is tiny at $1; (b) shoots up until $20; and (c) falls
at the highest notes.

The passed rate is also a risk measure for transactors. As seen in the U.S. dol-
lar and euro data, this risk naturally rises with reward at low notes (parts (a)
and (b)). The left panel of Figure 2 plots the average fractions of passed

FIGURE 2.—Passed over circulation (P/M), dollar and euro. At left and right, respectively,
are the average ratios of passed domestic counterfeit notes to the June circulation levels, for
1990–2007 ($1 has some missing years), and for the euro, 2002–2013. Labels are 106 × (P/M).



1214 E. QUERCIOLI AND L. SMITH

TABLE I

FRACTION OF NON-COLOMBIAN PASSED NOTES DIGITALLY PRODUCED, 1995–2004a

Note 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 Avg.

$5 0.250 0.306 0.807 0.851 0.962 0.974 0.987 0.982 0.976 0.981 0.81
$10 0.041 0.097 0.511 0.854 0.910 0.913 0.962 0.963 0.972 0.978 0.72
$20 0.139 0.295 0.642 0.882 0.902 0.926 0.929 0.961 0.976 0.985 0.77
$50 0.305 0.414 0.642 0.849 0.905 0.925 0.945 0.848 0.839 0.872 0.75

$100 0.121 0.154 0.348 0.531 0.460 0.608 0.564 0.457 0.472 0.552 0.43

aCheaper digital methods of production skyrocketed in 1995–1998, focused on lower notes.

notes.5,6 The counterintuitive declining rate at high notes (part (c)) is not re-
alized in the U.S. data. But the euro offers two higher value notes, and the
passed rate of the 500 euro note is less than 10% that of the 200 euro note.

FACT 3: Counterfeit quality rises in the note.

Modern digitally produced counterfeits, using scanners and color printers,
are cheaper to make. As Table I depicts, the fraction of such fakes falls in the
note value. Judson and Porter (2003) found that 73.6% of passed $100 bills
were high quality circulars, but only 19.2% of $50 bills, and less than 3% of all
others. The “Supernote” (circular 14342) is the best quality counterfeit ever.
North Korea made this $100 note from bleached $1 notes, with the intaglio
printing process used by the Bureau of Engraving and Printing. Banks cannot
detect it.

Turning to time series facts, there has been a sea change in both seized and
passed money.

FACT 4: Since 1970, (a) the seized-passed ratio is down 90%, and (b) the
passed rate is up 75%.

Historically, seized vastly exceeded passed; nowadays, most counterfeit
money is passed, as the fraction passing into circulation has skyrocketed
roughly from 10% to 80% (Figure 3). Specifically, starting in 1986, and then
accelerating in 1995, the seized-passed ratio began to tumble. One brief time
window 1995–1998 witnessed a stunning 80% drop in the seized-passed ratios
for $5, $10, and $20 notes (right panel of Figure 1). While the passed rates

5These ratios per million have averaged 1�96, 19�46, 71�21, 72�03, 49�94, 81�43, respectively.
6The common claim that the most counterfeited note domestically on an annualized basis

is the $20 is false over our time span. Accounting for the higher velocity of the $20, on a per-
transaction basis (the relevant measure for decision-making), the $100 note is unambiguously the
most counterfeited note.

http://en.wikipedia.org/wiki/Superdollar


THE ECONOMICS OF COUNTERFEITING 1215

FIGURE 3.—U.S.A. passed and seized, 1964–2007. The solid line is seized money, and the
dashed line passed money—per thousand dollars of circulation (all denominations). From 1970 to
1985, about 90% of counterfeit money was seized. The reverse holds (about 20%) for 2000–2007.
The plummeting quotient of the solid and dashed lines is the seized-passed ratio.

have proven much more stable, they have still nearly doubled since 1967, and
are up a third since 1990.

Fact 4 asserts that the risk measures for criminals and transactors have
moved in opposite directions: The seized-passed ratio has plummeted, while
the passed rate has shot up. We offer a technological explanation for these
contrasting trends:

FACT 5: The fraction of notes produced using inexpensive digital methods leapt
up in 1994–1998.

The introduction of digital means of counterfeiting was very rapid, focused
in 1994–1998. This change is the major causal force behind our time series
dynamics.

FACT 6: Canada’s introduction of color notes temporarily nearly stopped coun-
terfeiting.

Canada almost eliminated passed money as it colorized each note in the
1970s (Table II). This fact speaks to the critical importance of costly inatten-
tion, as color is easily perceived. We thus center our model on endogenous
verification—a new assumption in the money literature. Our model confronts

TABLE II

“SCENES OF CANADA,” MULTICOLORED SERIES, 1971–1976

Note $5 $10 $20 $50 $100

Passed rate peak year 1973 1971 1970 1975 1976
Colored notes introduction 12/72 11/71 6/70 5/75 5/76
% fall in passed rate 99 99 99 98 93
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good guys with a risky choice: Since they might be purposefully or unwittingly
handed a fake note, they trade off uncertain losses from counterfeiting against
certain costs of greater scrutiny. Good guys expend effort screening out passed
counterfeit money handed them; more effort yields a higher verification rate,
or chance of catching fakes.

The verification rate is an endogenous quantity, reflecting the rival efforts
of bad guys to fool victims, and of good guys to avoid being fooled. Higher
quality fakes cost more, but better deceive good guys, and so pass more often.
Our verification function has diminishing returns to effort and quality. With
free entry into counterfeiting, profits must vanish; this determines the equilib-
rium effort. In particular, effort must rise in the note, and vanish at the lowest
notes.

The collateral pairwise interaction of good guys is a game of strategic com-
plements, since the more others verify, the more one should verify to protect
oneself. Effort in the unique symmetric Nash equilibrium rises in the coun-
terfeiting rate, vanishing if the rate does. We invert this relation, computing
the equilibrium counterfeiting rate as a derived demand. Since effort van-
ishes approaching the lowest notes, so does the counterfeiting rate. The passed
rate behaves similarly to counterfeit money. We use this to deduce Facts 2(a)
and (b).

Next, turning to the optimization among counterfeiters, greater quality
counterfeit notes frustrate verification efforts at the margin. By symmetry of a
cross partial derivative, the counterfeiters’ marginal returns to quality thus rise
in effort. Since higher notes command higher verification efforts, they elicit a
higher quality response; this yields Fact 3. Also, we argue that the rising quality
ultimately depresses the passed rate at the highest notes (Fact 2(c)).

With constant quality, zero profits requires the passing fraction moves in-
versely to the note. A fake $10 passes half as often as a fake $5, and so one plus
the seized-passed ratio has unit slope. But since costly quality optimally rises
in the note, the passing fraction falls more slowly—yielding the less than unit
slope in Fact 1(b). Theorem 2 argues that effort rises in the note proportion-
ately faster than quality, raising the verification at higher notes (Fact 1(a)).

Theorem 2 explains the time series Fact 4 using the technological explana-
tion Fact 5.

Relationship to the Literature. Existing counterfeiting work relies on a gen-
eral equilibrium value of money, and so is unrelated.7 In this paper, rather
than assume that money is a priced asset, we have inferred the counterfeiting

7In Green and Weber (1996), only government agents can descry fake notes, whose stock is
exogenous. Williamson (2002) assumes counterfeits of private bank notes are found with fixed
chance; counterfeiting does not occur in most of his equilibria. Verification is random and exoge-
nous in Nosal and Wallace (2007), who find no counterfeiting in equilibrium with a high coun-
terfeiting cost. Li and Rocheteau (2011) later questioned this. In Banerjee and Maskin (1996),
verification is either perfect or worthless for a good, but not a choice variable.
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rate8 via a new decision margin—costly variable intensity verification. If we in-
cluded general equilibrium effects, they would add nothing to our predictions for
passed and seized money—for they would only discount prices infinitesimally,
given the 1 in 10,000 counterfeiting rates. At higher counterfeiting rates, or
for counterfeit goods, costly verification and general equilibrium would both
matter.

Modeling verification itself is not new: Williamson and Wright (1994) as-
sumed transactors observe fixed signals of the authenticity of money after ac-
quiring it. Our verification efforts are endogenous, and crucially occur before
accepting money. Exogenous attention that does not respond to the payoff
stakes cannot rationalize the facts of counterfeiting that we document.

The model and early analysis are in Sections 2–3. We derive theoretical pre-
dictions in Section 4, and compare them to the data in Section 5, including
patterns in counterfeits found by Federal Reserve Banks that offer more evi-
dence. The Appendix proves existence, uniqueness, and curve shapes.

2. THE MODEL

2.1. The Pairwise Matching Model

The story unfolds in periods 1�2�3� � � � . There are two types of risk neutral
maximizing agents: a continuum unit mass of homogeneous good guys, and an
infinitely elastic supply of homogeneous bad guys, who are potential counter-
feiters. We focus on notes of fixed value Δ > 0; genuine Δ notes are in fixed
supply M > 0.

Money changes hands exogenously, from counterfeiters to good guys, among
good guys, and between banks and good guys. Banks are a pass-through, re-
turning notes to good guys. At the end of Section 5, we assume they swap a
given fraction of notes with the Federal Reserve.

Each period, good guys with a note are randomly matched to those without
a note, or to banks. And good guys without a note are randomly matched to
good guys with a note, or to banks, or to bad guys. We explore a steady-state,
with density measures of all transactions unchanged each period. But since
counterfeiters—although rare—spend and never acquire notes, and we assume
that bank withdrawals balance bank deposits, good guys with a note are on the
long side of the market; they meet a trading partner with chance slightly less
than 1.9

8In Knowles, Persico, and Todd (2001), a police search chance incentivizes a decision to carry
drugs. By contrast, bad guys in our model have both an extensive margin (whether to counterfeit-
ing), and an intensive one (quality). They have no analogue of our good guys, who respond both
to quality and the counterfeiting rate.

9We do not model the rationing; we assume that good guys acquiring a note expect to soon
spend it.
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Good guys cannot distinguish other good guys from counterfeiters. They
know that they may be handed a fake note. If they see a fake note, they reject it,
and it becomes worthless passed money10—it is withdrawn from circulation, the
passer losing its face value Δ. The counterfeiting rate κ ∈ [0�1) is the fraction of
notes that are fake, from all transactors.11

Good guys expend effort e ≥ 0 scrutinizing any note before accepting it. Real
notes are never mistaken for counterfeits. A fake note is noticed with chance
v ∈ [0�1], the verification rate. The verification function v = V (e�q) intuitively
rises in effort e and falls in quality q > 0. As quality is unobserved, good guys
do not know the rate v, but infer it in equilibrium.

Good guys without notes next period become good guys with notes upon ac-
cepting a note. If matched, they go to a bank with chance β ∈ (0�1). Banks
detect and confiscate fakes with fixed probability α ∈ (0�1).12 With chance
1 −β, the good guy with a note meets a random transactor. So fake money
is found in transactions at the discovery rate δ(v) = βα+ (1 −β)v. The passed
rate p = δκ = P/M is the ratio of passed money to circulation for Δ notes.

Bad guys choose whether to enter, and if so, what quality q of notes to pro-
duce at cost c(q). We assume a fixed expected production quantity x ∈ (0�∞).13

Since verification efforts help the police, only an endogenous passing fraction
f (v) ≤ 1−v of production passes into circulation.14 Intuitively, the first verifier
catches a fraction v of notes, and police seize a share 1 − v − f (v). Criminals
earn zero profits every period, net of legal penalty. As counterfeiters are in-
variably eventually caught,15 and the stated penalty is constant across notes, we
assume a legal penalty 	 > 0, that is, the expected punishment loss.

10Knowingly passing on fake currency is illegal by Title 18, Section 472 of the U.S. Criminal
Code. We assume that no one engages in this crime of “uttering,” seeking a “greater fool” to
accept bad money.

11To wit, this is an average of a 100% counterfeiting rate from counterfeiters and a smaller
counterfeiting rate from good guys, because at least one good guy has already verified circulating
money.

12Bank tellers told us that they used protocols, and were not incentivized to look at higher notes
more carefully. As evidence of α< 1, ATMs dispense fake money (personal communication, John
Mackenzie, Bank of Canada).

13Quantity is finite because the marginal distribution costs rise in output, as each passing at-
tempt risks discovery: “If a counterfeiter goes out there and, you know, prints a million dollars,
he’s going to get caught right away because when you flood the market with that much fake cur-
rency, the Secret Service is going to be all over you very quickly.”—Kersten (2005) [All Things
Considered, July 23, 2005].

14The Secret Service also advises anyone receiving suspected counterfeit money: “Do not re-
turn it to the passer. Delay the passer if possible. Observe the passer’s description.”

15The Secret Service estimates that the conviction rate for counterfeiting arrests is close to
99%.

http://www.npr.org/templates/story/story.php?storyId=4768217
http://www.secretservice.gov/money_receive.shtml
http://www.npr.org/templates/story/story.php?storyId=4768217
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2.2. Optimization and Equilibrium

A verifier loses the value Δ of the note when three independent events si-
multaneously happen: (i) he is handed a fake note, and (ii) given such a fake
note, his verifying efforts miss it, and (iii) given that he passes a fake note, the
next agent catches it.16 Good guys choose their effort e to minimize verifica-
tion costs plus expected counterfeit losses next period,17,18 taking as given the
verification rate v and counterfeiting rate κ, that is,

e+ κ
(
1 − V (e�q)

)
δ(v)Δ�(1)

Since the model is in steady-state, we avoid time subscripts on all variables.
The passing fraction of fake notes into circulation is a smooth, falling func-

tion obeying f (v) ≤ 1 − v and f (0) > 0. So perfect verification chokes off
passing (f (1)= 0), and passing occurs if no one verifies. A counterfeiter cares
about his quality because it lessens the verification rate. Counterfeiters max-
imize profits equal to expected revenues f (v)xΔ less costs c(q) + 	, for an
increasing convex cost function c(q). Counterfeit profits thus equal

Π(e�q�Δ) ≡ f
(
V (e�q)

)
xΔ− c(q)− 	�(2)

Reflecting the decision margins of good and bad guys and the “rational ex-
pectations” verification rate, an equilibrium is a 4-tuple (e∗� q∗� v∗�κ∗) such
that: verification effort e∗ minimizes costs (1) of good guys at the counterfeit-
ing rate κ∗; quality q∗ maximizes profits (2) given e∗; counterfeiting profits (2)
vanish; and the verification rate is v∗ = V (e∗� q∗).

Solving four equilibrium equations in four unknowns is, in general, hard. But
since the counterfeiters only supply notes, and never accept them, they do not
care about the counterfeiting rate κ. So our equilibrium admits a block recur-
sive structure, parsing into two anonymous pairwise-matching games: In the
cat and mouse game, depicted in Figure 4 in Section 3.2, we solve for (v∗� q∗),
using the bad guys’ optimal quality q∗ that maximizes profits (2) and selects
a verification rate v∗ for which they vanish. Next, we compute the verification
rate via v∗ = V (e∗� q∗). Finally, in the hot potato game, we solve for κ∗: We use
it inversely, finding the counterfeiting rate κ∗ so that effort e∗ solves the good
guys’ optimization (1) for the required q∗ and rate v∗.

16As is the norm, we ignore technicalities of randomness and independence for a continuum
of events, and assume simply that probabilities of individual events correspond to measures of
aggregate events.

17While good guys without notes face a two-period optimization, we can simply reduce it to a
static one. We assume that χ absorbs any discounting between periods in this simple optimization.

18If banks verify at a different rate than good guys, then the counterfeiting rate there will
slightly differ. To simplify the analysis, we assume individuals use the same effort in all transac-
tions.
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2.3. Model Assumptions

We now make functional form assumptions that greatly simplify the analysis
and offer discipline for the comparative statics predictions. We assume that
V is homogeneous of degree zero, that is, doubling quality requires twice the
effort to secure the same screening chance. Thus, an increasing verification
cost function χ translates e and q into an endogenous rate v via the implicit
relation e = qχ(v). So V (e�q) ≡ χ−1(e/q) for all e < qχ(1), and V (e�q) = 1
for e≥ qχ(1). So verification is perfect for low qualities q ≤ e/χ(1).

We assume that χ−1 obeys standard Inada conditions, and so its inverse χ
obeys χ(0)= χ′(0)= 0 with χ′ > 0 and χ′′ > 0 for v > 0. When v = V (e�q) < 1,
we may differentiate the identity qχ(V (e�q)) ≡ e to get qχ′Vq + χ ≡ 0 and
qχ′Ve ≡ 1. This yields the derivatives

Ve(e�q) = 1/qχ′(v) > 0 and Vq(e�q) = −χ(v)/qχ′(v) < 0�(3)

Twice differentiating qχ(V (e�q)) ≡ e yields qχ′Vee + qχ′′V 2
e ≡ 0, and so

convexity of χ yields diminishing returns to effort: q2Vee(e�q) = −χ′′(v)/
(χ′(v))3 < 0. There are diminishing returns to quality in reducing verification
when χ is strictly log-concave, so that χ′′/χ′ <χ′/χ:

q2Vqq = χ

χ′ +
(
χ

χ′

)2(
χ′

χ
− χ′′

χ′

)
> 0 >

χ(
χ′)2

(
χ′′

χ′ − χ′

χ

)
= q2Veq�(4)

We assume that vχ′′(v)/χ′(v)≥ 1, and so χ′(v)/v is monotone, and the limit
elasticity limv→0 vχ

′(v)/χ(v) ≥ 2 exists. Geometric functions χ(v) = vB obey
all assumptions if B ≥ 2.

We assume that verification increasingly helps police, as captured by a con-
vex passing fraction f . To limit this effect, f is strictly log-concave: (log f )′′ =
(f ′/f )′ < 0, and therefore f ′(0) > −∞, with limit f ′(v)/f (v) ↓ −∞ as v ↑ 1.
For example, if the police seize a constant fraction ξ ∈ [0�1) of fake notes,
then f (v) = (1 − ξ)(1 − v). Second, we jointly assume

vf ′′(v)
f ′(v)

+ vχ′(v)
χ(v)

≥ 1�(5)

For instance, any quadratic passing fraction f (v) = (1−v)(1−γv) is monotone
decreasing, convex, and log-concave when 0 ≤ γ < 1, and obeys f (0) > 0 =
f (1). With geometric costs χ(v)= vB, inequality (5) is slightly more restrictive,
now requiring γ ≤ (2B − 1)/(2B + 1).

The human and physical capital cost c(q) of the counterfeit quality q is
smooth, with c′� c′′ > 0 for q > 0, c(0) = 0, and c′(q) → ∞ as q ↑ ∞. We as-
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sume a monotone cost of quality elasticity, and so a well-defined limit η =
limq→0 qc

′(q)/c(q) ≥ 2:
(
qc′(q)
c(q)

)′
≥ 0�(6)

3. EQUILIBRIUM DERIVATION

3.1. The Hot Potato Game

First, e ≤ qχ(1), or else effort e is superfluous; therefore, the derivative Ve in
(3) exists. Next, if q = 0, then perfect verification arises with negligible effort
e > 0, and so we assume q > 0. Since Ve(e�q) > 0, the marginal product of
effort in (1) rises in the verification rate v. One should examine a note more
closely the more intensely it will be checked. So the minimizer ê in (1) rises
in v. Since benefits are linear in v, and χ is strictly convex with χ′(0) = 0, any
FOC solution with imperfect verification is a global minimum:

1 = κVe(ê� q)δ(v)Δ�(7)

But identical good guys choose the same best response, that is, v̂ = V (ê� q) = v.
As a product of weakly and strictly increasing functions, χ′(v)/δ(v) = [χ′(v)/
v][v/δ(v)] is increasing. The derived counterfeiting demand curve v �→ κ slopes
up, as fake notes are a bad, namely, the function

κ(v�q) = qχ′(v)
δ(v)Δ

= marginal verification cost
discovery rate × denomination

�(8)

So verification v is an equilibrium at quality q for the counterfeiting rate
κ(v�q). We depict the resulting constant counterfeiting rate locus K̄, where (8)
is fixed, in Figure 4. It is downward sloping because the derived counterfeit
level (8) is increasing in verification and in quality.

3.2. The Cat and Mouse Game

Given free entry, expected profits (2) vanish. In (q� v)-space, this means:

Δxf(v)− c(q)− 	= 0�(9)

Figure 4 depicts this zero profit locus Π̄. It slopes down because a greater verifi-
cation rate reduces expected revenue and so zero profits requires lower quality.
It requires Δ>Δ≡ 	/(xf (0)) > 0, for if not, counterfeiters lose money for any
quality q > 0. All told, we deduce e�q > 0 in equilibrium. So V (e�q) is smooth,
and thus the quality FOC (10) holds:

Πq(e�q�Δ)≡ Δxf ′(V (e�q)
)
Vq(e�q)− c′(q) = 0�(10)
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Absent police (f (v) = 1−v), this optimal quality locus Q∗ slopes up in Figure 4
since verification is submodular in effort and quality—as (4) implied: namely,
a higher verification rate raises the marginal benefit of increasing quality.19 We
want to express (10) in (q� v)-space using equation (3):

−Δxf ′(v)
χ(v)

χ′(v)
= qc′(q)�(11)

Taking logarithms in (9) and (11), we define T(q) ≡ log[c(q)+ 	] and U(q) ≡
log[qc′(q)] as well as F(v) ≡ log[xf(v)] and G(v) ≡ log[−xf ′(v)χ(v)/χ′(v)].
Then the Π̄ and Q∗ loci are

F(v)+ logΔ= T(q) and G(v)+ logΔ= U(q)�(12)

rephrasing (9) and (11) in additively separable forms. Now, if the passing frac-
tion is linear f (v) = 1 − v, then Q∗ is monotone since U ′ > 0 and G′ ≥ 0 by
log-concavity of χ. More generally, Q∗ globally slopes upward when the pass-
ing fraction is not too convex—namely, if G′(v) > 0, or equivalently:

f ′′

f ′ + χ′

χ
− χ′′

χ′ > 0�(13)

Since χ′′(v) ≥ vχ′(v), inequality (13) is stronger than (5), and so Q∗ need
not slope up. But with geometric costs χ(v) = vB, inequality (13) reduces to
f ′′(v) < −f ′(v)/v, that is, Q∗ slopes up if f is not too convex. Finally, even if
inequality (13) fails, log-concavity of both f and χ usefully restrict slopes of Q∗

and Π̄ in equilibrium for our comparative statics:

G′(v)− F ′(v)≡ f ′′

f ′ − f ′

f
+ χ′

χ
− χ′′

χ′ > 0�(14)

We now summarize the curves fixing equilibrium quality q and the verifica-
tion rate v:

LEMMA 1—Slopes: (a) The Q∗ locus starts at q = v = 0, is initially flat, and
hits v = 1 at some quality qΔ < ∞. If Q∗ slopes down at an equilibrium, then it
is steeper than Π̄. (b) The locus K̄ slopes down, is steeper than Π̄, and less steep
than Q∗ whenever Q∗ slopes down.

19Given Topkis (1998), the maximization of profits (2) yields an implied falling map e �→ q for a
submodular passing fraction f (V (e�q)). By Rockafellar (1970), the composition of an increasing
and convex function g(v) = −f (v) with an increasing and supermodular one W (e�−q) = V (e�q)
is supermodular. So when the passing fraction f is convex enough to secure inequality (13),
f (V (e�q)) is supermodular enough that Q∗ slopes up.
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FIGURE 4.—Optimal quality, zero profit, and constant counterfeiting rate loci. This captures
the equilibrium levels (v∗� q∗) solving the counterfeiters’ zero profit condition (9) and first order
condition (10), respectively, the Π̄ and Q∗ loci. Note that Q∗ in (10) is steeper than Π̄ in (9), if
Q∗ slopes down; Q∗ and Π̄ sandwich K̄, where (8) is constant.

So quality vanishes when verification does, and also cannot explode near
perfect verification. Figure 4 depicts the curves K̄, Q∗, Π̄, with the K̄ locus
sandwiched between Π̄ and Q∗ by (5).

We now analyze the equilibrium of the overall game: a pair (q∗� v∗) where
Q∗ and Π̄ cross, then an effort e∗ = q∗χ(v∗), and finally the counterfeiting rate
κ∗ solving (8). That κ∗ < 1 is mathematically immaterial in the optimization
(1), but is needed for a meaningful counterfeiting rate.

THEOREM 1—Existence and Uniqueness: If
√

3xf(0)χ′(1) < (1 − β)×
c(1)1/η	1−1/η, then a counterfeiting equilibrium uniquely exists for each note
Δ>Δ, and fails to exist for Δ ≤ Δ. Verification is positive and imperfect (0 <
v < 1), and counterfeiting positive but bounded, with

κ∗ ≤
√

3xf(0)χ′(1)
(1 −β)c(1)1/η	1−1/η �(15)

The maximum κ rate (15) is lower if counterfeiting is harder—higher unit
quality costs c(1) or legal costs 	, or lower production x or passing rate f (0).
The maximum rate falls with better verification—a higher bank chance β, or
lower marginal verification costs χ′(1).

3.3. Example

Assume geometric costs c(q)= qA and χ(v)= vB with A�B ≥ 2, and f (v) =
1 − v (i.e., no police). The zero profit and optimal quality equations (9) and
(11) are

Δx(1 − v)− qA − 	= 0 and AqA −Δxv/B = 0�(16)
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FIGURE 5.—Verification, effort, quality, and counterfeiting/passed rates in example in Sec-
tion 3.3. Plots assume A = 5, B = 3, x = 2, 	 = 10, α = 4/5, and β = 1/4. Left: The verification
rate rises from Δ = 5 to v̄ = 0�8. Middle: Effort and quality (solid/dashed) and the ratio e/q rise
from 0. Right: The counterfeiting/passed rate curves (solid/dashed) vanish at small and large
notes.

Solving the zero profit condition in (16), verification vanishes for notes Δ ap-
proaching Δ = 	/x. And as Δ ↑ ∞, the verification rate tends to v̄ = AB/(1 +
AB) < 1, since20

qA = (1 − v̄)x(Δ−Δ) and v = v̄(1 −Δ/Δ)�(17)

So verification rises in the note Δ, but is forever imperfect. While effort e= qvB

rises in Δ, quality rises much faster, and infinitely so initially as B > 0, as seen
in Figure 5:

e= (1 − v̄)1/Ax1/Av̄BΔ−B(Δ−Δ)B+1/A�(18)

Substitute the discovery rate δ(v) = βα+(1−β)v, and the q and v expressions
(17) into the equilibrium formula κ = BqvB−1/(δ(v)Δ) from (8). This yields
the next counterfeiting rate expression, unimodal in Δ, with κ > 0 positive on
(Δ�∞), vanishing for both Δ ↓ Δ and Δ ↑ ∞:

κ= B(1 − v̄)1/Ax1/Av̄B−1Δ1−B+1/A(Δ−Δ)B−1+1/A

βαΔ+ (1 −β)v̄(Δ−Δ)
�(19)

Figure 5 also depicts the like-shaped plot of the passed rate p = δ(v)κ: It
understates the counterfeiting rate, but the ratio p/κ rises in Δ, tending to
v̄ < 1. Passed and counterfeiting rates vanish as Δ ↓ Δ (since B > 1 + 1/A),
and as Δ ↑ ∞, both vanish at the order O(Δ1/A−1).

20Given a strictly convex passing function f (v) = (1 − v)(1 −γv) (i.e., with police), a quadratic
equation fixes the verification rate v. More police presence (higher γ) depresses (“crowds out”)
v, and elevates quality q.



THE ECONOMICS OF COUNTERFEITING 1225

4. EQUILIBRIUM COMPARATIVE STATICS

Equilibrium comparative statics analysis is possible largely by shifting curves
in Figure 4.21

THEOREM 2: (a) Assume legal costs rise. Then the verification effort and rate
fall; counterfeit quality falls at low and high notes Δ, and always falls given (13);
the counterfeiting rate falls.

(b) Assume that marginal verification costs fall. Then the verification effort and
counterfeit quality fall, the verification rate rises, and the counterfeiting rate falls.

(c) If costs and marginal costs of counterfeiting fall, then the verification effort
and counterfeit quality rise, the counterfeiting rate rises, and the verification rate
falls if c′(q)/c(q) also falls.

(d) The verification effort and rate and counterfeit quality rise in the note if
Δ>Δ. The verification effort and rate, and counterfeit quality all vanish as Δ ↓ Δ.
The verification effort and quality explode as the note Δ ↑ ∞. The counterfeiting
rate vanishes as Δ ↓ Δ or Δ ↑ ∞.

Part (a) attests that a greater legal penalty displaces verification effort, but
still deters counterfeiting. In parts (b)–(c), we see that while lower verification
costs are generally not formally equivalent to greater counterfeiting costs,22 the
sign of their effects on all variables is the same. Part (d) is consistent with the
hump-shaped plot in Figure 5 (right panel) for the example in Section 3.3. In
each case, we derive the effort comparative statics from the zero profit iden-
tity (9), and v = V (e�q), and comparative statics of (v�q�κ) via the graphical
apparatus.

PROOF OF THEOREM 2(a): Differentiate (9) in legal costs 	 to get23 Πqq̇ +
Πeė+Π	 = 0. Since quality is optimal, Πqq̇ = 0—for q̇ = 0 if q = 0 in an open
ball around 	, and otherwise Πq = 0. Since Πe = Δf ′Ve < 0 and Π	 = −1 < 0,
we have ė < 0: Effort falls when legal costs rise.

Legal costs shift the zero profit curve down at each quality, since verification
effort must fall to avoid counterfeiter losses. Since the optimal quality locus Q∗

21We build on standard insights from supply and demand curve analysis. Notably, when both
curves shift, verification (resp. quality) comparative statics reflect which curve shifts more hori-
zontally (resp. vertically).

22An exact equivalence obtains in one specific case, since the model admits one functional
degree of freedom: scaling verification costs χ̂≡ χ/ν is equivalent to inversely scaling the quality
argument of counterfeiting costs to ĉ(q) ≡ c(νq), since qχ̂(v) ≡ (νq)χ(v). Hence, V (e/ν�q) ≡
χ−1((e/ν)/q) ≡ χ−1(e/(νq)) ≡ V̂ (e� νq).

23The notation ẋ denotes the derivative of x in 	. Later, it denotes derivatives in any changing
parameter.
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FIGURE 6.—Rising legal costs or falling verification costs: Theorem 2(a) and (b). Top: When
legal costs rise, the zero profit curve Π̄ shifts left (Π̄L to Π̄H), while Q∗ is unchanged. Verification
worsens and quality falls if Q∗ slopes up—that is, surely for low and high v. The counterfeiting
rate falls, with K̄′ left of K̄. Bottom: If marginal verification costs χ′ fall, the Q∗ locus shifts left
(Q∗

H to Q∗
L), and Π̄ is fixed. Verification improves and quality falls. The counterfeiting rate falls:

K̄′′ is left of K̄, and each locus has a lower counterfeiting rate (8).

in (11) is unaffected by 	, its shape alone governs changes in (q� v). Verification
falls, for either Q∗ slopes up, or slopes down and is steeper than Π̄. Finally, if
Q∗ is monotone, higher legal costs depress quality and the verification rate,
thus lowering the counterfeiting rate—as in Figure 6 (top). Q.E.D.

PROOF OF THEOREM 2(b): Smoothly transform the old technology t = 1
into the new one (t > 1) with money more readily verified, via the parame-
terized verification cost function χ(v� t). Integration of the posited inequality
χvt(v� t) < 0 on [1� v] yields χt(v� t) < 0. Define V(e�q� t) = v iff e = qχ(v� t).
First, the zero profit curve Π̄ fixes how effort evolves. Differentiate its identity
(9) in t, now written as:

Δxf
(
V(e�q� t)

) − c(q)− 	= 0�

Its q derivatives cancel by (10). Then Veė + Vt = 0. Since Ve > 0, effort e falls
in t.

For every t ≥ 1, implicitly define ν(v� t) by χ(v� t) ≡ χ(ν(v� t)), so that
νt(v� t) < 0 < νv(v� t). Then χ(ν(v� t))/χ′(ν(v� t)) falls in t for each v, by log-
concavity of χ. So Q∗ in (11) shifts left in t for every v. As seen in Figure 6
(bottom), quality falls, and verification rises. The counterfeiting rate falls as
(i) the locus K̄ shifts down to K̄′′, and (ii) each locus has a lower counterfeiting
rate (a lower marginal verification cost function χ′ in (8)). Q.E.D.
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PROOF OF THEOREM 2(c): Write c(q� τ) as a smooth function of τ, with
cτ� cqτ < 0. From profits (9), Πq = 0 implies Πτ +Πeė = 0. Since costs fall in τ,
we have Πe < 0 <Πτ, and so ė > 0.

Given Tτ�Uτ < 0 < Tq�Uq, when τ rises, Π̄ and Q∗ shift right, as q rises to
maintain equality in (12). Since costs fall in τ, so does c(q� τ)/(c(q� τ)+ 	). If
c′/c also falls, then

Uτ − Tτ = d

dτ
log

(
qc′(q� τ)
c(q� τ)+ 	

)
(20)

= d

dτ
log

(
qc′(q� τ)
c(q� τ)

)
+ d

dτ
log

(
c(q� τ)

c(q� τ)+ 	

)
< 0�

Thus, as τ rises, Q∗ shifts right more than Π̄, lowering the verification rate
(Figure 7, top).

Next, when G′ > 0, the optimal quality locus Q∗ slopes up, and quality rises
when Q∗ and Π̄ shift right, as seen in Figure 7. But if G′ < 0, then Q∗ slopes
down, and both Π̄ and Q∗ shift up: In this case, since Q∗ is steeper than Π̄ at
an equilibrium by Lemma 1, quality rises in τ exactly when Q∗ shifts up more
than Π̄ at each q. This occurs due to two re-enforcing effects. First, given (20),
U shifts up more than T , for fixed q; thus, G must rise more than F . Next,
since F ′(v) < G′(v) < 0 by (14), this translates into a greater vertical shift in
Q∗ than Π̄. At both left and right, the counterfeiting locus shifts up to K̄′, and
the counterfeiting rate rises. Q.E.D.

FIGURE 7.—Falling counterfeit costs or a falling note: Theorem 2(c) and (d) depicted. Top:
The counterfeiting costs fall from H to L, pushing the locus Q∗ right more than Π̄, raising quality
but worsening verification. The counterfeiting rate rises, since K̄ shifts right to K̄′. Bottom: When
Δ rises from L to H , the locus Π̄ shifts right more than Q∗, raising verification. Next, quality rises
even when Q∗ slopes down, since Q∗ shifts up more than Π̄ in this case. While K̄ shifts right to
K̄′, the counterfeiting rate might fall, as Δ is higher in (8).
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PROOF OF THEOREM 2(d): That ė > 0 follows by differentiating the zero
profit identity for (2) in Δ, and using Πq = 0:

Πeė+ΠΔ = 0�(21)

So ė > 0 since Πe < 0 < ΠΔ by (2). Next, Π̄ and Q∗ shift right in (12) as Δ

rises. The logic of (20) implies U ′(q) > T ′(q), shifting Π̄ right more than Q∗,
raising verification. Next, if Q∗ slopes up, quality rises: But when Q∗ slopes
down, quality rises since Q∗ shifts up more than Π̄ (Figure 7, bottom right), as
|F ′(v)|> |G′(v)|. Indeed, F ′(v) <G′(v) by (14) and G′(v) < 0.

As the note Δ ↓ Δ= 	/(xf (0)), the Π̄ locus (9) tends to the origin. So v and
q vanish in equilibrium, where Π̄ and Q∗ cross, as does e = qχ(v). Next, as
Δ ↑ ∞, the left side of (11) explodes as χ/χ′ weakly rises in v, v weakly rises
in Δ, and −f ′(v) ≥ −f ′(0) > 0. So qc′(q) ↑ ∞, and q explodes. So e = qχ(v)
explodes as Δ ↑ ∞, for v is monotone in Δ.

Finally, we analyze the counterfeiting rate. While the K̄′ locus at the higher
denomination in Figure 7 (bottom) is right of the K̄ locus, the counterfeiting
rate (8) is also exogenously depressed by the higher note Δ. Thus, we must
proceed analytically. First, the counterfeiting rate vanishes for low notes Δ ↓ Δ,
since q and v vanish in (8), while the discovery rate obeys δ(v) ≥ βα> 0. Next,
assume Δ ↑ ∞. Substitute the optimal quality condition (10) into (8):

κ= qχ′(v)
δ(v)Δ

= qχ′(v)
δ(v)

xf ′(v)Vq(e�q)

c′(q)
= −xf ′(v)χ(v)

δ(v)c′(q)
�(22)

Since quality explodes, so too does marginal cost c′(q). Now, χ(v) ≤ χ(1) < ∞,
and −f ′(1) ≤ −f ′(0) < ∞ since f is convex. Hence, the counterfeiting rate
vanishes: κ → 0. Q.E.D.

5. PREDICTIONS ABOUT COUNTERFEIT MONEY

5.1. Passed and Seized Money

Fix Δ > Δ. We relate our theory to the data using two steady-state approx-
imations: first, new counterfeit production replenishes the outflow of seized
and passed money, and second, new counterfeit production passing into circu-
lation balances passed money outflows: P = f (v)(S + P). Also using our zero
profit equation (9), the seized-passed ratio S/P obeys

1
1 + S/P

= f (v) = c(q)+ 	

xΔ
= average costs

denomination
�(23)

By Theorem 2(d), verification v rises in Δ, and so S/P rises in Δ (left equality of
(23)). Next, look at the equality of the first and third terms in (23). With fixed
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quality, 1 + S/P rises proportionately to Δ. But as quality rises in Δ, 1 + S/P
rises less than proportionately to Δ.

Define the annualized passed rate pa = P/M , namely, the ratio of yearly
passed money to circulation.24 This is the passed rate p times the annual veloc-
ity V , which varies by note.25 By the formula (8) for the counterfeiting rate κ,
the passed rate satisfies

P/M

V = pa

V = p = δκ = qχ′(v)
Δ

= marginal verification cost
denomination

�(24)

Since the discovery rate δ(v) increases in the note Δ by Theorem 2(d), so does
the ratio p/κ. So if the counterfeiting rate levels off, the passed rate must
continue to rise—for example, it peaks at a higher note than the counterfeiting
rate does in the example in Section 3.3.26

Theorem 2(a)–(d) has respective implications for seized and passed money:

COROLLARY 1: (a) If legal costs rise, then the seized-passed ratio and the
passed rate both fall.

(b) If marginal verification costs fall, then the seized-passed ratio rises.
(c) Assume that counterfeiting costs c(q) and marginal counterfeiting costs

c′(q) fall. Then the seized-passed ratio falls—and the passed rate rises if c′(q)/
[c(q)+ 	] also does not fall.

(d) One plus the seized-passed ratio monotonically rises in Δ>Δ, but does not
rise in proportion to the note. The passed rate vanishes as Δ ↓ Δ or Δ ↑ ∞.

PROOFS: Parts (a)–(c) owe to Theorem 2(a)–(c) and the facts that the dis-
covery rate δ and the seized-passed ratio S/P rise in the verification rate. While
Theorem 2 made clear predictions about the unobserved counterfeiting rate,
we can only conclude that the passed rate δκ falls in part (a). For the coun-
terfeiting rate moves opposite to the discovery rate in parts (b) and (c). For
the exception in part (c), when c′(q)/[c(q) + 	] does not fall, the verification
rate does not fall by inequality (20), and so the discovery rate does not fall.

24Circulation includes fake money, but the approximation pa ≈ P/M = δ(v)κ is accurate
within 1% of 1%.

25Lower notes wear out faster, surely due to a higher velocity. Longevity estimates are
5.9, 4.9, 4.2, 7.7, 3.7, and 15 years, respectively, for $1, . . . , and $100 [www.newyorkfed.org/
aboutthefed/fedpoint/fed01.html].

26Equations (23) and (24) can be used to estimate model parameters from our data. The “street
price” of counterfeit notes is at most the average costs, and so at most ΔP[Δ]/(S[Δ]+P[Δ]). The
implied U.S. street price ceilings for the $5, $10, $20, $50, and $100 notes can be computed
from Figure 1, to get $3.37, $5.95, $9.30, $19.20, $35.70, respectively. We thank Pierre Duguay
(Bank of Canada) for this insight; he said the predicted street prices are realistic. Next, we can
likewise back out marginal verification costs from (24). They equal the passed rate times the
denomination, peaking around 1/4 cent for the $100 bill.

http://www.newyorkfed.org/aboutthefed/fedpoint/fed01.html
http://www.newyorkfed.org/aboutthefed/fedpoint/fed01.html
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We have shown the first half of (d); finally, the passed rate vanishes when the
counterfeiting rate does, as δ≤ 1 always. Q.E.D.

We now revisit our motivational facts. Fact 1 ensues from the initial result in
Corollary 1(d)–first, that the slope is positive, and second, that it is much less
than 1. Thus, 1 + S/P rises less than proportionally to the note. For example,
it does not even double moving from $5 to $100.

Consider Fact 2. If the velocity V is bounded, Corollary 1(d) implies that the
annualized passed rate vanishes at the least notes. This is consistent with the
U.S. passed rates in Figure 2 (left panel). The plot for the euro also illustrates
our extra claim that the passed rate vanishes for very large notes—the passed
rate of the 500 euro is less than 8% of the 200 euro.

Theorem 2(d) predicts Fact 3, that quality rises in the denomination. It also
makes sense of the greater prevalence of lower quality digital counterfeiting
at the lower notes (see Table I), as well as the fact that the highest quality
“Supernote” was the $100.

Facts 4 and 5 are best understood jointly. For if we assume that the main
structural change in the 1990s was a reduction in the cost of producing fake
notes (Fact 5), when digital technology lowered the non-Colombian costs of
counterfeiting notes (Table I), then Corollary 1(c) predicts the crash in the
seized-passed ratio and the rise in the passed rate. The last proviso part (c) of
Fact 4 is relevant if the fixed costs of counterfeiting fall proportionately much
more than marginal costs. This is an apt description of the digital technology
change.

Finally, to see Fact 6, observe that Canada’s 1970–1976 color note introduc-
tion massively raised the fixed costs of counterfeiting—namely, a rare novel
color printing technology was required. This is a compelling case where a fall
in verification costs is not equivalent to a rise in counterfeiting costs. This is
addressed by the last proviso of (the reverse of) Corollary 1(c), which predicts
a fall in the passed rate along with a rise in the seized-passed rate.

5.2. Missed Counterfeit Money

We conclude by turning our attention to one compelling additional piece
of evidence for this model: Commercial banks transfer damaged or unneeded
notes to the Federal Reserve Banks (FRB), who find $5–$10 million of fake
money yearly. This offers a reverse test of our model, since passed money at the
FRB missed earlier detection. Figure 8 depicts plots that fall from $1 through
$50 for the three years with available data—first, the FRB share of all passed
notes, and second, the ratio of the internal FRB passed rate and the passed
rate. All told, Federal Reserve Banks find proportionately fewer counterfeits as the
note rises, until $100. These trends might be surprising, as the lowest notes are
the poorest quality fakes (Fact 3), and so easiest for verifiers to catch before
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FIGURE 8.—Passed money at the FRB. At left, the ratios of internal FRB and passed rates in
1998 (dashed), 2002 (dotted), 2005 (solid). At right, the respective FRB passed note shares.

they hit the FRB.27 We now argue that the endogenously vanishing verification
rate at low notes rationalizes this.

A fake note lands at an FRB if four independent events transpire: it is fake,
it is deposited into a bank, it is not found, and then it is transferred to an FRB.
If the FRB has a perfect counterfeit detection, then the (internal) FRB passed
rate is the counterfeit fraction of transferred notes:

ζ = fake notes hitting FRB
total notes hitting FRB

= κβ(1 − α)φ

β(1 − κ)φ+ κβ(1 − α)φ

≈ κ(1 − α)�

The approximation is accurate within κ ≈ 0�0001, or 0.01%. While this depends
on the unobserved counterfeiting rate, the FRB passed ratio ζ/p ≈ (1 − α)/δ
does not. The discovery rate δ rises in the note Δ, since v does by Theo-
rem 2(d). So our theory predicts a falling FRB passed ratio, matching Fig-
ure 8, except at the $100 bill. Here, the simplifying assumption of constant
bank verification chance α is most strained: If the bank detection chance of
the (high quality) fake $100 note is sufficiently lower, so that α[100] < α[50],
then the FRB ratio rises at $100. The right panel of Figure 8 illustrates a strik-
ing related fact that the FRB share of counterfeit notes found also falls in the
denomination, until the $100.

APPENDIX: OMITTED PROOFS

A.1. Optimal Quality and Zero Profit Curves: Proof of Lemma 1(a)

The Q∗ locus starts at q = v = 0 and is initially flat—since −∞ < f ′(0) < 0
and the limit of vχ′(v)/χ(v) as v ↓ 0 finitely exists, whereas v/q = −[vχ′(v)/
χ(v)][c′(q)/Δxf ′(v)] → 0 as q�v → 0. Also, Q∗ hits v = 1 at quality qΔ < ∞,

27See Table 6.1, 6.3, and 6.3 (resp.) in Treasury (2000, 2003, 2006), and Table 1 in Judson and
Porter (2003).
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where qΔc′(qΔ) = −Δf ′(1)χ(1)/χ′(1) > 0, for 1 − v ≥ f (v) > 0 and the convex
passing fraction f implies a slope f ′(v)≥ −1 as v ↑ 1.

CLAIM 1—Strict SOC: The second order condition at an optimum is strict:
Πqq < 0.

PROOF: The SOC for maximizing Π(e�q�Δ) is locally necessary:

Πqq = Δxf ′Vqq +Δxf ′′V 2
q − c′′ ≤ 0�(25)

The derivative of the quality first order condition (10) in the note Δ yields

0 = Πqqq̇+Πqeė+ΠqΔ�(26)

For a contradiction, assume Πqq = 0. Then (21) and (26) yield different for-
mulas for 1/ė at the optimum, which can be simplified using Πqe = Δ(f ′Vqe +
f ′′VeVq) and ΠqΔ = f ′Vq:

1/ė= f ′Vqe + f ′′VeVq

f ′Vq

= f ′Ve

f
⇒ 0 <

Vqe

Vq

=
(
f ′

f
− f ′′

f ′

)
Ve�

This is a contradiction, because Ve > 0 and f ′/f < f ′′/f ′ by strict log-concavity
of f . Q.E.D.

CLAIM 2: If Q∗ slopes down at an equilibrium, then it is steeper than Π̄.

PROOF: We now argue that the SOC reduces to G′(v)T ′(q) > F ′(v)U ′(q).
Since the respective slopes of the Π̄ and Q∗ curves are T ′(q)/F ′(v) and
U ′(q)/G′(v), this says that if Q∗ is negatively sloped, then it is absolutely steeper
than Π̄—in other words, G′(v) < 0 implies T ′(q)/F ′(v) > U ′(q)/G′(v). Refor-
mulating the SOC (25), we find

0 >Πqq(v�q�Δ) = c′
[
Vqq

Vq

+ f ′′

f ′ Vq

]
− c′′(q)(27)

= c′
[−1

q

(
1 + χ

χ′

(
χ′

χ
− χ′′

χ′

))
− f ′′

f ′

(
χ

qχ′

)]
− c′′(q)

by (9) and (3) and (4). Taking the quotient of (10) and (9), using Vq = −χ/
(qχ′), we find

f ′

f
= − qc′(q)

c(q)+ 	

χ′

χ
⇒ qχ′

χ
= −F ′(v)/T ′(q)�(28)
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That G′(v)T ′(q) > F ′(v)U ′(q) follows from (27) and (28), for they yield

χ′′

χ′ − χ′

χ
+ f ′

f
− f ′′

f ′ <
χ′

χ

qc′′(q)
c′(q)

+ f ′

f
+ χ′

χ

= qχ′

χ

(
qc′′(q)+ c′(q)

qc′(q)
− c′(q)

c(q)+ 	

)

and thus, (14) yields F ′(v) − G′(v) = −[F ′(v)/T ′(q)](U ′(q) − T ′(q)), as de-
sired. Q.E.D.

A.2. Constant Counterfeiting Rate Curve Slope: Proof of Lemma 1(b)

Differentiating the log of (8), the proportionate change in the counterfeiting
rate is

dκ

κ
= dq

q
+

(
vχ′′(v)
χ′(v)

− vδ′(v)
δ(v)

)
dv

v
− dΔ

Δ
�

Holding κ and Δ fixed, the change in quality along the K̄ locus obeys

dq

q

∣∣∣∣
K̄

=
(
vδ′(v)
δ(v)

− vχ′′(v)
χ′(v)

)
dv

v
�(29)

Along the Π̄ locus, the change in quality obeys

dq

q

∣∣∣∣
Π̄

= Δxvf ′(v)
qc′(q)

dv

v
= −vχ′(v)

χ(v)

dv

v
(30)

after substituting (11). By log-concavity of χ, we see that (29) strictly exceeds
(30). Thus, the slope of K̄ exceeds that of Π̄, but we now show that it is less
than the slope of Q∗. This is clear when Q∗ has positive slope. Indeed, log-
differentiating (11):(

1 + qc′′(q)
c′(q)

)
dq

q

∣∣∣∣
Q∗

=
(
vf ′′(v)
f ′(v)

+ vχ′(v)
χ(v)

− vχ′′(v)
χ′(v)

)
dv

v
�

When Q∗ has negative slope, it is steeper than K̄ (see (29)) since c′′(q)/c′(q) ≥
0 and by (5):

vf ′′(v)
f ′(v)

+ vχ′(v)
χ(v)

≥ 1 >
vδ′(v)
δ(v)

�
Q.E.D.

A.3. Existence and Uniqueness: Proof of Theorem 1

We establish equilibrium in (v�q� e) space, and derive the counterfeiting rate
κ from (8).
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A.3.1. Existence

When Δ> Δ, we find a solution to the zero profit and optimal quality equa-
tions (9) and (11) in Figure 4. Since f ′ < 0 < c′, (9) implicitly defines a con-
tinuous and decreasing function q = Q0(v). Given c(Q0(0)) = Δxf(0) − 	 > 0
when Δ> Δ, we have Q0(0) > 0. Since Δxf(0) > 	 and f (1) = 0, choose v̂ < 1
with Δxf(v̂) = 	. Then Q0(v) → 0 as v → v̂. By the Implicit Function The-
orem (IFT), since qc′(q) is strictly increasing, the quality FOC (11) implic-
itly defines a differentiable function q = Q1(v). Since the limit vχ′(v)/χ(v)
exists and is positive as v → 0, both sides of (11) vanish, and so Q1(0) = 0.
Easily, (11) is positive at v = v̂, and so Q1(v̂) > 0. Given Q1(0) = 0 < Q0(0)
and Q1(v̂) > 0 =Q0(v̂), the Intermediate Value Theorem yields v ∈ (0� v̂) with
Q0(v) = Q1(v). But then 0 < v < 1 and 0 < q = Q1(v) = Q0(v) < ∞. So κ > 0
by (8). Since Q0(v)�Q1(v) are differentiable in Δ, so is q[Δ] and v[Δ]. (Or,
apply the IFT to the system (9) and (11).)

A.3.2. Uniqueness

Assume two equilibria (e1� q1) and (e2� q2) for a note Δ. If q1 = q2, then
e1 = e2, as profits fall in effort. Assume q1 < q2. By a line integral of Π along
the smooth optimal quality curve from (e1� q1) to (e2� q2), that is, Q∗ = {(e�q) :
Πq(e�q) = 0� q1 ≤ q ≤ q2}:

0 − 0 =Π(e2� q2)−Π(e1� q1)=
∫
Q∗
(Πe�Πq) · (de�dq) =

∫ e2

e1

Πe de�

Since Πe < 0, e1 = e2. Then v1 > v2, and so profits are higher at (e2� q2) than
(e1� q1), a contradiction. (Also, 0 < vi < 1, since Π̄ has positive intercepts and
Q∗ rises from the origin.)

A.3.3. The Peak Counterfeiting Rate

We proceed in three steps.

STEP 1: Modifying the counterfeiting rate formula (22) for zero profits (9),
we find

κ(v)= −xf ′(v)χ(v)
δ(v)c′(q)

= xf(v)χ′(v)
δ(v)

q

c(q)+ 	
≤ xf(0)χ′(1)

(1 −β)c′(q)
(31)

since (c(q) + 	)/q is minimized when qc′(q) − c(q) = 	, where it equals the
marginal cost c′(q), and since δ(v) ≥ (1−β)v and χ′(v)/v is weakly increasing.

STEP 2—Lower Bound on Cost and Marginal Cost of Quality: Since
qc′(q)/c(q) is monotone by (6), c′(q)/c(q) ≥ η/q if q > 0. Integrating on
[1� q) yields log c(q) − log c(1) ≥ logqη if q ≥ 1. So c(q) ≥ c(1)qη. Then
c′(q)/c(q) ≥ η/q implies c′(q) ≥ c(1)ηqη−1.
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STEP 3—A Fixed Upper Bound for the Counterfeiting Rate: Define pro-
ducer surplus π(q) ≡ qc′(q)− c(q). Let Q(	) be the quality yielding producer
surplus π(Q(	)) ≡ 	. Then

	= π
(
Q(	)

) = Q(	)c′(Q(	)
) − c

(
Q(	)

) ≥ c(1)ηQ(	)η − c(1)Q(	)η

by the cost bounds in Step 2. This implies a lower bound that allows us to
simplify (31):

c′(Q(	)
)
>

π
(
Q(	)

)
Q(	)

≥ 	

Q(	)
≥ 	(

	/c(1)(η+ 1)
)1/η

≥ c(1)1/η	1−1/η/
√

3

since (1 + η)1/η is monotone decreasing in η > 1, and we assumed η ≥ 2.
Q.E.D.
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