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Elongation factor (EF) Tu promotes the binding of
aminoacyl-tRNA (aa-tRNA) to the acceptor site of the
ribosome. This process requires the formation of a ter-
nary complex (EF-TuzGTPzaa-tRNA). EF-Tu is released
from the ribosome as an EF-TuzGDP complex. Exchange
of GDP for GTP is carried out through the formation of
a complex with EF-Ts (EF-TuzTs). Mammalian mitochon-
drial EF-Tu (EF-Tumt) differs from the corresponding
prokaryotic factors in having a much lower affinity for
guanine nucleotides. To further understand the EF-Tumt
subcycle, the dissociation constants for the release of
aa-tRNA from the ternary complex (KtRNA) and for the
dissociation of the EF-TuzTsmt complex (KTs) were inves-
tigated. The equilibrium dissociation constant for the
ternary complex was 18 6 4 nM, which is close to that
observed in the prokaryotic system. The kinetic dissoci-
ation rate constant for the ternary complex was 7.3 3
1024 s21, which is essentially equivalent to that observed
for the ternary complex in Escherichia coli. The binding
of EF-Tumt to EF-Tsmt is mutually exclusive with the
formation of the ternary complex. KTs was determined
by quantifying the effects of increasing concentrations
of EF-Tsmt on the amount of ternary complex formed
with EF-Tumt. The value obtained for KTs (5.5 6 1.3 nM) is
comparable to the value of KtRNA.

The classical model of the elongation cycle for protein syn-
thesis is based on studies with Escherichia coli. In this model,
the active form of elongation factor (EF)1 Tu (the EF-TuzGTP
complex) binds aa-tRNA, forming a ternary complex. This ter-
nary complex promotes the binding of aa-tRNA to the A-site of
the ribosome. Once locked into the A-site by cognate codon-
anticodon interactions, the GTP in the ternary complex is hy-
drolyzed, and EF-Tu is released from the ribosome as an EF-
TuzGDP complex. This complex must be dissociated by EF-Ts
through the formation of an intermediate EF-TuzTs complex.
GTP then replaces EF-Ts, reforming the active form of EF-Tu.

The equilibrium dissociation constant governing the affinity

of E. coli EF-Tu for GDP is 8 nM, compared with 0.3 mM for GTP
(1). The dissociation of the EF-TuzGDP complex is thought to be
the rate-limiting step in the recycling of EF-Tu (1). EF-Ts
promotes the exchange of the tightly bound GDP for GTP
through the formation of an intermediate EF-TuzTs complex.
Presumably one of the reasons for the requirement for EF-Ts is
because of the 40-fold higher affinity of EF-Tu for GDP com-
pared with GTP. E. coli EF-Tu and EF-Ts have a high affinity
for each other; the dissociation constant for the E. coli EF-
TuzTs complex (KTs) is 2 nM (2). However, under intracellular
conditions in E. coli, the EF-TuzTs complex appears to have a
transient existence. The EF-TuzTs complex is rapidly converted
to the ternary complex by high intracellular concentrations of
GTP and by the tight binding of aa-tRNA to the EF-TuzGTP
complex. The dissociation constant for the release of aa-tRNA
from the ternary complex is ;1 nM in E. coli (3).

EF-Tu is a highly conserved protein. Mammalian mitochon-
drial EF-Tu (EF-Tumt) has significant sequence identity (;55–
60%) to the corresponding prokaryotic factors. Furthermore,
structural analysis of bovine EF-Tumt indicates that the mam-
malian mitochondrial factor folds into a three-dimensional
structure similar to that observed with E. coli and Thermus
thermophilus EF-Tu (4–7). The sequence of EF-Ts is less con-
served than that of EF-Tu, and distinct schemes are observed
for the interaction of EF-Tu and EF-Ts in different systems. In
T. thermophilus, a heterotetrameric complex ((EF-TuzTs)2) oc-
curs through the interaction of two EF-Tu molecules with a
stable EF-Ts dimer (8). Unlike the E. coli EF-TuzTs complex,
the T. thermophilus complex is not dissociated to a significant
extent by either GDP or GTP alone (9). No elongation factor
equivalent to EF-Ts has been identified in yeast mitochondria
or in the complete sequence of the yeast genome, perhaps
reflecting the observation that yeast EF-Tumt has a very low
affinity for guanine nucleotides (10).

Unlike the E. coli EF-TuzTs complex, the bovine liver EF-
TuzTsmt complex cannot be dissociated in the presence of high
concentrations of guanine nucleotides (11). This observation is
due, at least in part, to a low affinity of EF-Tumt for GDP and
GTP. The equilibrium dissociation constants for the EF-
TumtzGDP and EF-TumtzGTP complexes are ;2 orders of mag-
nitude higher than those observed for E. coli EF-Tu.2 However,
in the presence of GTP and aa-tRNA, the EF-TuzTsmt complex
dissociates, and a classical ternary complex is observed (13, 14).
Thus, the basic steps of the bacterial elongation cycle appear to
occur in mammalian mitochondria. However, the equilibrium
constants that govern the interaction of EF-Tumt with EF-Tsmt

and with guanine nucleotides appear to be significantly differ-
ent. To facilitate the understanding of the translational elon-
gation cycle in mammalian mitochondria, the equilibrium dis-
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sociation constants governing the release of aa-tRNA from the
ternary complex and the dissociation of the EF-TuzTsmt com-
plex are reported here.

MATERIALS AND METHODS

Buffers—Buffer I was composed of 8 mM Hepes-KOH, pH 7.6, 50 mM

Tris-HCl, pH 7.8, 1 mM dithiothreitol, 76 mM KCl, 6.8 mM MgCl2, 5 mM

phosphoenolpyruvate, 3.4 units of pyruvate kinase, and 0.5 mM GTP.
Buffer II was composed of 20 mM Hepes-KOH, pH 7.0, 40 mM KCl, 1 mM

MgCl2, 0.1 mM EDTA, and 10% glycerol.
Expression and Purification of EF-Tumt and EF-Tsmt—EF-Tumt and

EF-Tsmt expressed in E. coli as His-tagged proteins were purified as
described previously (15). EF-Tsmt was further purified by incubating
the sample (prepared from 6 liters of cell culture) with 150 ml of
DEAE-cellulose resin for 15 min at 4 °C. The DEAE-cellulose resin was
removed by centrifugation in an Eppendorf tube at 14,000 rpm for 5
min, and EF-Tsmt remained in the supernatant. To determine an accu-
rate protein concentration, ;950 pmol of EF-Tsmt (determined by the
micro-Bradford method) in buffer II (90 ml) were denatured in 6 M

guanidinium chloride (total of 300 ml) by incubation at 50 °C for at least
5 h (16). The concentration of EF-Tsmt was then calculated from the
absorbance of the sample at 280 nm using an extinction coefficient of
38,370 M21 cm21, calculated by the procedure of Gill and von Hippel
(17).

Measurement of Ternary Complex Formation—Ternary complex for-
mation was monitored by taking advantage of the ability of EF-Tumt to
protect [14C]Phe-tRNAPhe from digestion by RNase A. Reaction mix-
tures were incubated with the indicated amounts of EF-Tumt and
[14C]Phe-tRNA in buffer I on ice for 20 min. The GDP present in the
EF-Tumt preparations was converted to GTP by phosphoenolpyruvate
and pyruvate kinase during this incubation. The reaction was stopped
by treating with RNase A (40 mg/ml), incubating for 30 s on ice, and
adding 3 ml of ice-cold 5% trichloroacetic acid. The precipitate was
collected after 10 min on ice by filtering through nitrocellulose mem-
brane filters to test for the amount of [14C]Phe-tRNA remaining (18,
19). The RNase A concentration was optimized by dosing RNase A in
reactions containing 10 pmol of [14C]Phe-tRNA.

The percentage of EF-Tumt active in forming ternary complexes was
determined by increasing the concentration of [14C]Phe-tRNA to satu-
rating levels (1 mM) in 50-ml reaction volumes while keeping the con-
centration of EF-Tumt at 0.2 mM and the concentration of GTP at 0.5 mM.
A blank representing the amount of [14C]Phe-tRNA remaining after
nuclease digestion was done at each [14C]Phe-tRNA concentration. This
blank (,0.5 pmol) was used to correct for variations in RNase activity
at different concentrations of [14C]Phe-tRNA. The maximal concentra-
tion of ternary complex detected was assumed to be equivalent to the
concentration of EF-Tumt capable of forming ternary complexes.

The equilibrium dissociation constant governing the release of
[14C]Phe-tRNA from the ternary complex was determined using a range
of EF-Tumt (0.02–1 mM) and [14C]Phe-tRNA (0.04–0.09 mM) concentra-
tions. The concentrations given reflect only the active EF-Tumt in each
preparation. The effects of spermine (0.5–2.0 mM) and spermidine
(16–64 mM) on ternary complex formation were examined by incubating
these reagents with EF-Tu (0.4 mM) and [14C]Phe-tRNA (;0.06, 0.1, and
0.15 mM) as described above.

The kinetic dissociation rate for the ternary complex EF-
TumtzGTPzPhe-tRNA was measured as described (3). In this reaction,
0.015 mM [14C]Phe-tRNA and 0.015 mM EF-Tumt were incubated with
10, 100, and 500 mM GTP separately in 6.5 ml of buffer I as described
above. After incubation on ice for 15 min, RNase A (40 mg/ml) was
added. The dissociation of [14C]Phe-tRNA was monitored by removing
aliquots (0.5 ml) at different times (30 s to 6 min). The amount of
ternary complex remaining was determined as described above.

Measurement of the Equilibrium Dissociation Constant for the EF-
TuzTsmt Complex—The equilibrium dissociation constant governing the
EF-TuzTsmt complex was determined by competition with ternary com-
plex formation. EF-Tumt (1 mM) was combined with different concentra-
tions of EF-Tsmt (0.2–6 mM) in buffer II (100 ml). Aliquots (10 ml) were
diluted 5-fold with buffer I containing different concentrations of
[14C]Phe-tRNA (providing final concentrations of Phe-tRNA from 0.06
to 1.4 mM). An additional series of samples (in 50 ml of buffer I) was
prepared containing 2.1 mM [14C]Phe-tRNA, 0.1 mM EF-Tumt, and vari-
ous concentrations of EF-Tsmt (0.03–0.7 mM). All samples were incu-
bated on ice for 20 min. RNase A (2 mg for ,0.6 mM [14C]Phe-tRNA and
5 mg for .0.6 mM [14C]Phe-tRNA) was then added, and the samples were
incubated for 30 s on ice. The nuclease reaction was stopped by the
addition of 3 ml of cold 5% trichloroacetic acid, and the amount of

[14C]Phe-tRNA protected by EF-Tumt was measured as described above.
The maximal concentration of ternary complex detected was assumed
to be equivalent to the concentration of EF-Tumt in the EF-TuzTsmt

mixtures capable of forming ternary complexes.

RESULTS

Equilibrium Dissociation Constant for the Release of aa-
tRNA from the Ternary Complex—The function of EF-Tu is to
guide aa-tRNA into the A-site of the ribosome. This step re-
quires the formation of a ternary complex composed of EF-Tu,
aa-tRNA, and GTP. Since EF-Tumt forms functional ternary
complexes with aa-tRNAs from E. coli, we used E. coli Phe-
tRNAPhe to measure the equilibrium dissociation constant gov-
erning the ternary complex formed with EF-Tumt (13).

The amount of ternary complex present at different concen-
trations of EF-Tumt and Phe-tRNA was measured by a ribonu-
clease protection assay (18, 20). The time course of ternary
complex formation indicated that the formation of these com-
plexes was complete in ,1 min under the conditions used (data
not shown). However, we routinely used a 15-min incubation
for ternary complex formation to ensure that the reactions
reached equilibrium and to simplify processing.

Since aa-tRNA can deacylate over time by the hydrolysis of the
ester bond between the amino acid and the tRNA, the percentage
of the radiolabel present as [14C]Phe-tRNA in the preparations
was monitored using a trichloroacetic acid precipitation assay. In
some preparations, as much as 30% of the [14C]Phe-tRNA had
undergone spontaneous hydrolysis to free [14C]Phe and tRNA.
Essentially all of the [14C]Phe-tRNA remaining in each prepara-
tion could be protected from RNase digestion in the presence of
excess EF-Tumt, indicating that essentially 100% of the [14C]Phe-
tRNA was active in ternary complex formation (data not shown).
This value was determined in each experiment and used to
calculate the concentration of Phe-tRNA present.

The percentage of EF-Tumt active in ternary complex forma-
tion was measured by dosing the amount of Phe-tRNA added to
a constant concentration of EF-Tumt (Fig. 1). In the presence of
excess Phe-tRNA, the maximal concentration of ternary com-
plex detected is equivalent to the concentration of EF-Tumt

capable of binding to Phe-tRNA. These assays indicated that
;30% of the EF-Tumt in most preparations was active in ter-
nary complex formation. A similar observation has been made

FIG. 1. Percentage of EF-Tumt active in ternary complex for-
mation. EF-Tumt (10 pmol) was incubated with increasing concentra-
tions of Phe-tRNA containing trace amounts of [14C]Phe-tRNA. The
amount of ternary complex formed was determined using the nuclease
protection assay described under “Materials and Methods.”
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for the native EF-Tumt obtained from bovine liver (18), indicat-
ing that this value is not the result of the use of recombinant
EF-Tumt. In E. coli, ;80% of the EF-Tu is capable of binding
GDP, whereas only 30–40% can form ternary complexes (3).
The underlying reason for this difference is not known. In
subsequent discussions, the EF-Tumt that is capable of binding
aa-tRNA is denoted EF-Tu(1)mt, and the EF-Tumt that is not
capable of binding aa-tRNA is denoted EF-Tu(2)mt.

In E. coli, GTP can bind free EF-Tu, whereas aa-tRNA can-
not bind to EF-Tu in the absence of GTP (21). Previous work
indicates that a similar sequence of events occurs in the mam-
malian mitochondrial system (14). Hence, in the analysis car-
ried out here, EF-Tumt is assumed to bind to GTP first, followed
by the binding of aa-tRNA. The formation of the ternary com-
plex is then described by the following two coupled reactions
(Equations 1 and 2).

EF-Tu(1)mt 1 GTPº EF-Tu(1)mt
zGTP (Eq. 1)

EF-Tu(1)mtzGTP 1 aa-tRNAº EF-Tu(1)mtzGTPzaa-tRNA (Eq. 2)

The equilibrium dissociation constants controlling these two
steps are as follows (Equations 3 and 4).

KGTP 5
[EF-Tu(1)mt][GTP]
[EF-Tu(1)mtzGTP]

(Eq. 3)

KtRNA 5
[EF-Tu(1)mtzGTP][aa-tRNA]
[EF-Tu(1)mtzGTPzaa-tRNA]

(Eq. 4)

The total concentration of aa-tRNA is given by Equation 5.

[aa-tRNA]t 5 [aa-tRNA] 1 [EF-Tu(1)mtzGTPzaa-tRNA] (Eq. 5)

In the assays described here, the concentration of GTP was 0.5
mM, which was much greater than the concentrations of EF-
Tumt (,0.4 mM) and aa-tRNA (,1 mM). At such high GTP
concentrations, .96% of the EF-Tumt binds to GTP as deter-
mined by the value of KGTP (18 mM) in the absence of aa-tRNA.2

Therefore, it was assumed that no free EF-Tumt was present in
these assays. Under these conditions, the total concentration of
EF-Tu(1)mt is given by Equation 6.

[EF-Tu(1)mt]t 5 [EF-Tu(1)mtzGTP] 1 [EF-Tu(1)mtzGTPzaa-tRNA] (Eq. 6)

The dissociation constant governing the ternary complex was
determined by measuring the concentration of the ternary com-
plex, [EF-Tu(1)mtzGTPzPhe-tRNA], formed at various total con-
centrations of EF-Tu(1)mt and Phe-tRNA (Fig. 2). [EF-
Tu(1)mtzGTPzPhe-tRNA] was determined by the RNase A
protection assay. [EF-Tu(1)mt]t was determined by the concen-
tration of EF-Tumt active in forming the ternary complex,
which was measured in each assay by the approach described
above. These values then permitted calculation of [EF-
Tu(1)mtzGTP] (Equation 6). [Phe-tRNA]t was determined from
the amount of ternary complex formed at saturating concen-
trations of EF-Tumt for each Phe-tRNA concentration or by the
trichloroacetic acid precipitation method. Free [Phe-tRNA] was
calculated from the values of [Phe-tRNA]t and [EF-
Tu(1)mtzGTPzPhe-tRNA] using Equation 5. KtRNA was then cal-
culated using Equation 4. The equilibrium dissociation con-
stant for the ternary complex was determined to be 18 6 4 nM

based on 16 independent assays.
A representative data set showing the concentration of the

ternary complex for a given constant value of [Phe-tRNA]t and
as a function of [EF-Tu(1)mt]t is shown in Fig. 2. Equations 4–6
imply the following (Equation 7).

2@EF-Tu~1!mt z GTP z aa-tRNA# 5 @EF-Tu~1!mt# t

1 [aa-tRNA]t 1 KtRNA

2 $~@EF-Tu~1!mt# t 1 [aa-tRNA# t 1 KtRNA!2 (Eq. 7)

2 4@EF-Tu~1!mt# t @aa-tRNA# t }1/2

As shown in Fig. 2, the data agree well with the values of
[EF-Tu(1)mtzGTPzPhe-tRNA] as predicted by Equation 7 for the
known values of [Phe-tRNA]t, [EF-Tu(1)mt]t and KtRNA 5 18
nM.

Polyamine Effects on the Formation of the Ternary Com-
plex—The crystal structure of the ternary complex indicates
that the backbone of the TcC stem of the aa-tRNA interacts
with side chains of EF-Tu through a series of electrostatic
contacts (22, 23). Several Lys residues have been reported to
play an important role in the formation of the ternary complex
(24). Consequently, ionic conditions are expected to influence
the formation of the ternary complex.

Polyamines are known to play a role in a number of reactions
involving tRNAs (25). To test the effect of polyamines on the
formation of the ternary complex, different concentrations of
spermine and spermidine were incubated with limiting concen-
trations of EF-Tumt and [14C]Phe-tRNA. Spermine inhibited
the formation of the ternary complex even at extremely low
concentrations (Fig. 3A). Spermidine also had an inhibitory
effect on ternary complex formation (Fig. 3B), although higher
concentrations (.10-fold) were needed to have the same inhib-
itory effect as spermine. This difference may arise from the fact
that spermidine has three positive charges, whereas spermine
can have four positive charges. Polyamines probably interact
with the backbone of the tRNA, masking some of its negative
charge and preventing interaction with EF-Tumt.

Dissociation Rate Constant for the Ternary Complex—The
rate of dissociation of the ternary complex was analyzed using
a modification of the RNase protection assay (3). For these
experiments, the ternary complex was allowed to form. Subse-
quently, RNase A was added to the reaction mixture. As the
Phe-tRNA dissociated from the complex, it was rapidly hydro-
lyzed by the RNase present. This step prevented the reassocia-
tion of the Phe-tRNA with EF-Tumt and allowed the quantita-
tion of the amount of ternary complex remaining. Samples
were removed at different times after the addition of the
RNase, and the ternary complex remaining was measured by
cold trichloroacetic acid precipitation.

FIG. 2. Formation of the ternary complex. Different concentra-
tions of EF-Tumt were incubated with 47 nM Phe-tRNA. The amount of
Phe-tRNA protected by EF-Tumt is plotted as a function of the total
EF-Tumt concentration. The solid line was obtained from Equation 7
with KtRNA 5 18 nM.
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The dissociation of the ternary complex follows first-order
kinetics and is described by Equation 8,

W(t) 5 W(0)e2kt (Eq. 8)

where W(t) is the concentration of the ternary complex at time
t, W(0) is the initial concentration of the ternary complex, and
k is the dissociation rate constant. The natural logarithm of
W(t)/W(0) was plotted as a function of time, and the data were
analyzed by least-squares linear fits. The dissociation rate
constant for the ternary complex was determined from the
slope. Three different concentrations of GTP were used (Fig. 4).
The rate constant was very similar at each concentration since
the GTP concentrations were much higher than the EF-Tumt

concentrations (at least 600-fold higher). The dissociation rate
constant was determined to be (7.3 6 1.3) 3 1024 s21. The
dissociation rate constant for the ternary complex formed with
E. coli EF-Tu and E. coli Phe-tRNAPhe is very similar to that
observed with EF-Tumt (17 3 1024 s21) (3).

Equilibrium Dissociation Constant for the EF-TuzTsmt Com-
plex—In previous work, the equilibrium dissociation constant
for EF-Tumt and a fluorescent analog of GDP, mantGDP, was
found to be ;2 mM.2 Initially, competition experiments between
mantGDP and EF-Tsmt for binding to EF-Tumt were under-
taken in an effort to obtain an estimate of the equilibrium
dissociation constant for the EF-TuzTsmt complex (KTs). How-
ever, the affinity of EF-Tsmt for EF-Tumt was too high com-
pared with the affinity of mantGDP for EF-Tumt to allow an
accurate determination of KTs by this method. Therefore, com-
petition between EF-Tsmt and GTP plus Phe-tRNA for binding
to EF-Tumt was developed as an approach to determine KTs.

The percentage of EF-Tsmt molecules active in binding EF-

Tumt was shown to be close to 100% using gel filtration chro-
matography and several other methods (data not shown). EF-
Tumt was also determined to be fully active in forming the
EF-TuzTsmt complex using saturating amounts of biotinylated
EF-Tsmt and avidin-conjugated beads (data not shown).

As described above, free EF-Tumt was generally ;30% active
in forming the ternary complex. However, in the presence of
EF-Tsmt, the percentage of EF-Tumt active in ternary complex
formation increased. Therefore, it was essential to obtain an
estimate of the percentage of EF-Tumt active in ternary com-
plex formation as a function of the concentration of EF-Tsmt. To
determine these values, EF-Tumt was incubated with different
amounts of EF-Tsmt and then tested for the ability to form
ternary complexes at different concentrations of Phe-tRNA. At
higher concentrations of Phe-tRNA and saturating concentra-
tions of GTP, EF-Tumt will form the ternary complex instead of
forming the EF-TuzTsmt complex. The maximal amount of the
ternary complex that can be formed reflects the percentage of
EF-Tumt active in binding Phe-tRNA in each sample.

Plotting the percentage of active EF-Tumt obtained as de-
scribed above as a function of the amount of EF-Tsmt added
indicated that, in the presence of EF-Tsmt, the percentage of
EF-Tumt active in forming the ternary complex increased from
26 to 41% (Fig. 5). This phenomenon was also observed with E.
coli EF-Tu in the presence of E. coli EF-Ts (data not shown).
This activation of EF-Tumt increased until the ratio of EF-Tumt

to EF-Tsmt was ;1:1.
Representative data for the competition between EF-Tsmt

and Phe-tRNA for binding EF-Tumt are shown in Fig. 6. The
amount of ternary complex formed clearly decreases as the
concentration of EF-Tsmt is increased. The analysis of these

FIG. 3. Effects of polyamines on the
formation of the ternary complex.
Different concentrations of spermine (A;
0.5–2.0 mM) or spermidine (B; 16–64 mM)
were incubated with EF-Tumt (0.4 mM)
and one of three concentrations of Phe-
tRNA in buffer I (50 ml) on ice for 20 min.
In A, the Phe-tRNA concentrations were
0.06 mM (●), 0.10 mM (f), and 0.15 mM (Œ).
In B, the Phe-tRNA concentrations were
0.07 mM (●), 0.09 mM (f), and 0.16 mM (Œ).
Ternary complex formation was deter-
mined by the ribonuclease protection
assay.

FIG. 4. Dissociation rate for the ternary complex. Experimental data for the determination of the dissociation rate for complexes formed
between EF-TumtzGTP and Phe-tRNA are shown. Each ternary complex was equilibrated in 6.5 ml of reaction buffer in the presence of EF-Tumt
(0.015 mM) and Phe-tRNA (0.015 mM). The concentration of GTP was 10 mM (●), 100 mM (f), or 500 mM (Œ). After 15 min on ice, 40 mg/ml RNase
A was added. Aliquots of 0.5 or 1 ml were removed after 0.5–5.5 min and processed as described under “Materials and Methods.” A, the ternary
complex concentration decreases as a function of time. B, shown is a representative plot of the time dependence of the natural logarithm of
W(t)/W(0), where W(t) is the time-dependent concentration of the ternary complex. The data are linear, indicating first-order dissociation kinetics
(Equation 8). Data like these were fit by linear least-squares analysis to find the value of the dissociation rate constant k.
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data for the determination of KTs was as follows. Depending on
the amount of EF-Tsmt present, 30–40% of the EF-Tumt was
active in forming the ternary complex. However, all of the
EF-Tumt was active in binding to EF-Tsmt. This difference
suggests that two forms of EF-Tumt exist in the system at any
given concentration of EF-Tsmt. Form 1 of EF-Tumt, denoted
EF-Tu(1)mt, is active in binding EF-Tsmt and in forming the
ternary complex. Form 2 of EF-Tumt, denoted EF-Tu(2)mt, is
active in forming the EF-TuzTsmt complex, but is not active in

forming the ternary complex. Previous studies have shown that
EF-Tumt is nearly 100% active in guanine nucleotide binding,
indicating that EF-Tu(2)mt can bind GTP.2

The possible interactions are described by Equations 1 and 2
and the following three additional equilibria, where n 5 1 or 2
(Equations 9 and 10).

EF-Tu(n)mt 1 EF-TsmtºEF-Tu(n)zTsmt (Eq. 9)

EF-Tu(2)mt 1 GTPºEF-Tu(2)mtzGTP (Eq. 10)

The equilibrium dissociation constants are given by Equations
3, 4, 11, and 12.

KTs 5
[EF-Tu(n)mt][EF-Tsmt]

[EF-Tu(n)zTsmt]
(Eq. 11)

KGTP 5
[EF-Tu(2)mt][GTP]
[EF-Tu(2)mtzGTP]

(Eq. 12)

In each assay, the total concentrations of Phe-tRNA and EF-
Tsmt were known from the starting conditions and are given by
Equations 5 and 13.

[EF-Tsmt]t 5 [EF-Tsmt] 1 [EF-Tu(1)zTsmt] 1 [EF-Tu(2)zTsmt] (Eq. 13)

The total concentrations of the two forms of EF-Tumt were
determined by the percentage activity for forming the ternary
complex as described above and are given by Equations 14 and
15.

[EF-Tu(1)mt]t 5 [EF-Tu(1)mt] 1 [EF-Tu(1)mtzGTP]

1 [EF-Tu(1)zTsmt] 1 [EF-Tu(1)mtzGTPzaa-tRNA] (Eq. 14)

[EF-Tu(2)mt]t 5 [EF-Tu(2)mt]

1 [EF-Tu(2)mtzGTP] 1 [EF-Tu(2)zTsmt] (Eq. 15)

FIG. 7. Composition of different forms of EF-Tu in E. coli and
mammalian mitochondria. The fraction of EF-Tu present in various
complexes was calculated based on the data listed in Tables I and II.

TABLE I
Equilibrium dissociation constants for EF-Tu from bovine

mitochondria and E. coli with guanine nucleotides, Phe-tRNA, and
EF-Ts

EF-Tu KGDP KGTP KtRNA KTs Ref.

mM mM nM nM

E. coli 0.0077 0.3 1.1 2 2, 3, 21
Bovine

mitochondria
1.0 6 0.4 18 6 6 18 6 4 5.5 6 1.3 This worka

a Y.-C. Cai, J. M. Bullard, N. L. Thompson, and L. L. Spremulli,
submitted for publication.

FIG. 5. Effect of the amount of EF-Tsmt on the percentage of
EF-Tumt active in forming the ternary complex. EF-Tumt (0.2 mM)
was incubated with various concentrations of EF-Tsmt. These mixtures
were tested for the percentage of EF-Tumt active in forming the ternary
complex. For this determination, each mixture of EF-Tumt and EF-Tsmt
was tested for the maximal amount of ternary complex that could be
formed (see Fig. 1). The data here represent the plateau values for
ternary complex formed at saturating levels of Phe-tRNA.

FIG. 6. Competition of EF-Tsmt with GTP and [14C]Phe-tRNA
for binding to EF-Tumt. Several concentrations of EF-Tsmt (0.2–1.2
mM) were used to compete with Phe-tRNA for EF-Tumt (0.2 mM) in 50-ml
reaction volumes as described under “Materials and Methods.” The
total concentration of Phe-tRNA was 0.065 mM (●), 0.14 mM (f), or 0.34
mM (Œ). The amount of ternary complex formed was determined using
the RNase protection assay and is plotted as a function of the total
concentration of EF-Tsmt. The lines represent linear least-squares fits.
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For given amounts of [EF-Tu(1)mt]t, [EF-Tu(2)mt]t, [GTP]t,
[aa-tRNA]t, and [EF-Tsmt]t, the concentration of the ternary
complex, denoted [EF-Tu(1)mtzGTPzaa-tRNA], was determined
by the nuclease protection assay as described above (Fig. 6).
The concentration of free Phe-tRNA was then calculated using
Equation 5. Because the value of KtRNA had been determined,
the value of [EF-Tu(1)mtzGTP] could then be calculated from
Equation 4. The total concentration of GTP (0.50 mM) was
much higher than the total concentration of EF-Tumt (#0.2 mM)
or Phe-tRNA (#2 mM). Therefore, it was assumed that the
concentration of free GTP was equal to the total concentration
of GTP. [EF-Tu(1)mt] was found from Equation 3 and the pre-
viously measured value of KGTP (Table I). [EF-Tu(1)mtzTsmt]
was then calculated from Equation 14. Equations 11 (with n 5
1 and 2), 12, and 15 can be used to find the following expression
(Equation 16).

[EF-Tu(2)zTsmt]5
@EF-Tu~2!mt# t

1 1 S1 1
[GTP]
KGTP

D @EF-Tu~1!mt z GTP#

@EF-Tu~1! z Tsmt#

(Eq. 16)

which was used to calculate [EF-Tu(2)zTsmt]. This concentra-
tion was then used to calculate [EF-Tsmt] using Equation 13.
The equilibrium dissociation constant KTs was then found from
Equation 11 with n 5 1. Equations 12 and 15 also imply the
following (Equation 17).

[EF-Tu(2)mt] 5
[EF-Tu(2)mt]t 2 [EF-Tu(2)mtzTs]

11
[GTP]
KGTP

(Eq. 17)

Using the values of [EF-Tu(2)mt] obtained from Equation 17,
KTs was found using Equation 11 with n 5 2. These values were
equivalent to those calculated from Equation 11 with n 5 1.
The average value of KTs determined from 11 independent
assays was 5.5 6 1.3 nM.

KTs for the bovine EF-TuzTsmt complex is close to that of the
E. coli EF-TuzTs complex (2 nM) (2). EF-Tumt binds to EF-Tsmt

;3-fold more tightly than it binds aa-tRNA in the ternary
complex in the presence of excess GTP. Compared with the
dissociation constants for guanine nucleotides, KTs is ;2 orders
of magnitude lower than KGDP or KGTP. In contrast, in E. coli,
the EF-TuzGDP and EF-TuzTs complexes have similar dissoci-
ation constants.

DISCUSSION

In this study, the equilibrium dissociation constants govern-
ing the interaction of bovine EF-Tumt with its ligands Phe-
tRNA and EF-Tsmt have been determined. The classical model
for the elongation cycle of protein synthesis is based on studies
with E. coli. Generally, the basic steps in the elongation cycle
in mammalian mitochondria are the same as those observed in
E. coli. However, several of the equilibrium dissociation con-
stants governing the interactions of EF-Tumt with its ligands

are quite different from those of its E. coli counterpart (Table I).
In E. coli, the dissociation constants for EF-TuzGDP, EF-TuzTs,
and EF-TuzGTPzaa-tRNA are all relatively comparable. In this
system, EF-Ts stimulates the dissociation of EF-TuzGDP, form-
ing the EF-TuzTs complex. The EF-TuzTs complex is readily
dissociated by coupling the formation of the EF-TuzGTP com-
plex to the formation of the ternary complex. EF-TuzGDP,
EF-TuzTs, EF-TuzGTP, and the ternary complex are all ob-
served as intermediates in the elongation cycle in E. coli.

In bovine mitochondria, the elongation cycle also proceeds
through these intermediates. However, the binding of guanine
nucleotides to EF-Tumt is quite weak compared with the bind-
ing of EF-Tsmt or with the binding of aa-tRNA (Table I). Con-
sequently, neither the EF-TumtzGDP nor the EF-TumtzGTP
complex is readily detected in this system. In both E. coli and
bovine mitochondria, EF-Ts and aa-tRNA bind to EF-Tu with
nanomolar affinities. However, for E. coli EF-Tu, KGDP is only
;4-fold higher than KTs, whereas in bovine mitochondria, KGDP

is 2 orders of magnitude higher than KTs. Therefore, in mito-
chondria, the EF-TumtzGDP complex is readily replaced by the
formation of EF-TuzTsmt.

Although the equilibrium dissociation constants governing
the elongation cycle are different in mammalian mitochondria
and in prokaryotes, calculations suggest that, under in vivo
conditions, the ternary complex will be the major form for
EF-Tu in both systems (Fig. 7). Using estimated concentrations
of the translational components in E. coli and the known bind-
ing constants (Tables I and II), calculations indicate that 90%
of the EF-Tu in E. coli will be present in ternary complexes.
These estimates are made based on the assumption that aa-
tRNAs are free of their cognate aminoacyl-tRNA synthetases
and that the system is in equilibrium. There is almost a com-
plete absence of free EF-Tu (,0.01%). Although the volume of
a typical liver mitochondrion is similar to that of an E. coli cell,
the concentrations of the elongation factors in mitochondria are
quite different from those found in E. coli (Table II). However,
despite the dramatic differences in concentrations, the majority
of EF-Tumt (91%) is still estimated to be present in ternary
complexes (Fig. 7). The composition of the different intermedi-
ates observed with EF-Tumt is thus quite similar to that calcu-
lated for the E. coli system. These observations suggest that
the weak affinity of EF-Tumt for GTP and its strong interaction
with EF-Tsmt do not have a negative effect on the availability of
the ternary complex for protein biosynthesis. The bacterial and
mitochondrial systems both appear to be designed to operate
under conditions in which the ternary complex is readily avail-
able and is not limiting for translation.
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