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Structural Basis for Ca2�-induced Activation and
Dimerization of Estrogen Receptor � by Calmodulin*□S �
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Yonghong Zhang‡, Zhigang Li§, David B. Sacks§, and James B. Ames‡1
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National Institutes of Health, Bethesda, Maryland 20892

Background: Estrogen receptor � (ER-�) function is controlled by calmodulin (CaM).
Results: Both lobes of CaM interact structurally with the same site on ER-� (Trp292 and Lys299).
Conclusion: CaM stabilizes dimerization of ER-� and activates transcription.
Significance: CaM prevents ubiquitination of ER-� implicated in breast cancer.

The estrogen receptor� (ER-�) regulates expression of target
genes implicated in development, metabolism, and breast can-
cer. Calcium-dependent regulation of ER-� is critical for acti-
vating gene expression and is controlled by calmodulin (CaM).
Here, we present the NMR structures for the two lobes of CaM
each bound to a localized region of ER-� (residues 287–305). A
model of the complete CaM�ER-� complex was constructed by
combining these two structures with additional data. The two
lobes of CaMboth compete for binding at the same site on ER-�
(residues 292, 296, 299, 302, and 303), which explains why full-
length CaM binds two molecules of ER-� in a 1:2 complex and
stabilizes ER-� dimerization. Exposed glutamate residues in
CaM (Glu11, Glu14, Glu84, and Glu87) form salt bridges with key
lysine residues in ER-� (Lys299, Lys302, and Lys303), which are
likely to prevent ubiquitination at these sites and inhibit degra-
dation of ER-�. Mutants of ER-� at the CaM-binding site
(W292A and K299A) weaken binding to CaM, and I298E/
K299Ddisrupts estrogen-induced transcription.CaMfacilitates
dimerization of ER-� in the absence of estrogen, and stimula-
tion of ER-� by either Ca2� and/or estrogen may serve to regu-
late transcription in a combinatorial fashion.

The � isoform of the estrogen receptor (ER-�)2 functions as
a ligand-activated transcription factor that regulates expression
of target genes to affect reproduction, development, and gen-
eral metabolism (1, 2). ER-� contains an N-terminal region

with a transcriptional activation function (AF-1), a core DNA
binding domain (with two zinc finger motifs), a central hinge
region important for receptor dimerization (residues 248–
314), and a large C-terminal ligand binding domain (residues
317–599). Estrogen hormone (17-�-estradiol (E2)) binds to
ER-� and causes a conformational change that promotes recep-
tor homodimerization and facilitates recruitment of coactiva-
tor proteins to enable transcriptional activation (3).
Calcium-dependent activation of ER-� is mediated by cal-

modulin (CaM) (4, 5). CaMantagonists (CGS9343B, trifluoper-
azine, and peptide inhibitors) prevent E2 from stimulating
ER-� transcription (5, 6). CaM facilitates ER-� recognition of
the estrogen-response element (ERE) (7, 8) and activation of
ER-�-responsive promoters (8). Ca2�-bound CaM (hereafter
referred to as CaM) has been shown to bind directly to ER-� in
the hinge region (residues 298–317) (4). This Ca2�-induced
binding of CaM to ER-� has important implications for breast
cancer (9–11). Despite a wealth of structural information for
both ER-� (12–15) and CaM (16–19), the structural mecha-
nism of CaM-induced activation of ER-� is not understood.
Here, we present the NMR structures for the two lobes of

CaM each bound to a functional fragment of ER-� (residues
287–305, called ER(287–305)), andwe propose amechanism to
illustrate how CaM-induced dimerization of ER-� might regu-
late transcription. One CaM molecule binds two molecules of
ER-� in a 1:2 complex. The two lobes of CaM (N-lobe, residues
1–80; C-lobe, residues 81–148) each bind to nearly the same
site on dimeric ER-� (residues 292, 296, 299, 302, and 303).
CaM bound to ER-� sterically blocks access to key lysine resi-
dues (Lys299–Lys303) and explains how CaM prevents ubiquiti-
nation at these sites implicated in breast cancer (20, 21).

EXPERIMENTAL PROCEDURES

Protein Expression and Purification—Xenopus calmodulin
cDNA inserted in pET3a (without any tag) and pET15b (with
N-terminal His tag and thrombin cleavage site) were trans-
formed into Escherichia coli strain BL21(DE3) for protein over-
expression of the 148-residue full-lengthCaM.TheCaMN-ter-
minal lobe (CaMN, residues 1–80) construct was generated by
inserting a stop codon into the full-length pET15b-CaM tem-
plate. For the CaMC-terminal lobe construct (CaMC, residues
76–148), a cDNAwas generated by PCR and inserted (via NdeI
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and BamHI) into the pET3a expression vector. A cDNA that
codes for the hinge domain of human estrogen receptor � (res-
idues 248–317, ER(248–317)) was inserted in the pGEX-2T
vector containing an N-terminal GST tag and tobacco etch
virus cleavage site (Glu-Asn-Leu-Tyr-Phe-Gln-Gly). A cDNA
that codes for a fragment of ER-� that includes both the CaM-
binding and ligand-binding domains (residues 287–552,
ER(285–552)) was inserted into pRSET vector containing an
N-terminal His tag. Site-directed mutagenesis of full-length
ER-� was performed with the QuikChange site-directed
mutagenesis kit (Stratagene) as described previously (4). Plas-
mid pcDNA3-myc-ER was used as template. The mutant
cDNA was amplified by PCR with Pfu Turbo DNA polymerase
using appropriate oligonucleotides. These changes produced
the single ER-� mutants W292A, L296A, and K299A, the dou-
ble mutant W292A/L296A, and the triple mutant W292A/
L296A/K299A. ER�CaM, which has the I298D/K299E muta-
tion, was described and characterized previously (4). The
sequence of all constructs was confirmed by DNA sequencing.
Smaller peptide fragments of ER-� (ER(287–305) and ER(287–
311)) were chemically synthesized and purchased from CHI
Scientific (Maynard, MA).
All DNA plasmids (except for pRSET-ER(285–552), which

was transformed into C41(DE3) competent cells) were trans-
formed into E. coli strain BL21(DE3) and expressed in LB
medium (unlabeled proteins) or M9 media supplemented with
15NH4Cl for 15N-labeled proteins or 15NH4Cl/13C-glucose for
double-labeled proteins. CaM and CaMC were purified as
described previously (22) and further purified using size-exclu-
sion chromatography (Superdex 75). The His-tagged purifica-
tion of CaMN and ER(285–552) used the standard His tag pro-
tein purification protocol. The His tag was removed by
thrombin cleavage, and cleaved proteins were isolated by size-
exclusion chromatography (Superdex-75). ER(248–317) was
purified using GST-affinity and size-exclusion chromatogra-
phy (Superdex-75) following the removal of the GST tag by
tobacco etch virus protease. All final purified protein con-
structs in this study were verified to be more than 95% pure
based on mass spectrometry and SDS-PAGE analysis.
ITC Experiments—CaM binding to functional fragments of

ER-� (ER(287–552), ER(248–317), and ER(287–305)) were
monitored by ITC. Both CaM and peptide fragments of ER-�
were exchanged into ITC buffer: 20 mM Tris-HCl, 100 mM

NaCl, 5mMCaCl2, 10mM�-mercaptoethanol (orTris(2-carboxy-
ethyl)phosphine hydrochloride), with or without 5 �M �-estra-
diol (for ER(287–552)) at pH 7.0. The buffer exchange was per-
formed by three cycles of concentration/dilution using Amicon
ultracentrifugal filters Ultracel-3K (Millipore catalog no.
UFC900324, 3-kDa cutoff) or dialyzed against the ITC buffer.
CaM or each lobe (300 �M) in the injection syringe was titrated
into the sample cuvette containing ER-� peptide (20 �M). The
titrations were carried out using MicroCal VP-ITC microcalo-
rimeter at 30 °C. For each titration, 20–30 injections of 5 �l of
titrant were made at 5-min intervals. Data were corrected for
heats of dilution from control experiments and analyzed using
Origin ITC Analysis software (MicroCal Software, Northamp-
ton, MA).

NMR Sample Preparation—The purified CaMs (or individ-
ual lobes) were first exchanged into 10 ml of NMR buffer (20
mM Tris-d11, 5 mM CaCl2, 50 mM NaCl, 8:100% D2O, pH 7.0)
and then titrated with ER(287–305) peptide solution to give a
final molar ratio of 1:2 (full-length CaM) or 1:1 (each lobe). The
titration mixture was incubated at room temperature for 1 h
and concentrated to 0.4 ml using Amicon ultracentrifugal fil-
ters Ultracel-3K (Millipore catalog no. UFC900324, 3-kDa cut-
off) to give a final protein concentration of �0.5 mM. Protein
concentration was determined by UV absorbance at 280 nm or
a Bio-Rad protein assay kit using bovine serum albumin as
standard.
NMRSpectroscopy—All spectrawere recorded at 310Kusing

Bruker Avance III 800 MHz spectrometer equipped with a
four-channel interface and triple-resonance cryoprobe with
pulse field gradients. The 15N-1H HSQC spectra were
recorded on a sample of 15N-labeled CaM or each lobe in the
presence of unlabeled ER(287–305). All three-dimensional
NMR experiments for assigning backbone and side-
chain resonances (HNCACB/CBCACONH, HNCO, HBHA-
(CO)NH, C(CO)NH-TOCSY, H(CCO)NH-TOCSY, and
HCCH-TOCSY) were recorded on a sample of 13C/15N-la-
beled CaM bound to unlabeled ER(287–305) in Tris-d11
buffer (20 mM Tris-HCl, 50 mM NaCl, 5 mM CaCl2, 8% D2O
or 100% D2O, pH 7.0). NMR resonance assignments of
ER(287–305) bound to 13C/15N-labeled CaM were obtained
from two-dimensional 13C/15N-filtered (during F1 and F2)
NOESY experiments with a 120-ms mixing time. Distance
restraints for the structure calculation were obtained from
detailed analysis of three-dimensional NOESY spectra (both
15N-edited NOESY-HSQC and 13C-edited NOESY-HSQC)
recorded at 800 MHz on 15N-labeled and 13C/15N-labeled
CaM bound to unlabeled ER(287–305). Using the same sam-
ples, 13C-edited (F1) and 13C/15N-filtered (F3) HSQC-
NOESY spectra (120-ms mixing time) were recorded to
obtain intermolecular NOEs between CaM and the bound
ER(287–305). NMR data were processed using NMRPipe
(23) and analyzed with SPARKY (University of California,
San Francisco).
Residual Dipolar Coupling Analysis—For the measurement

of residual dipolar couplings (RDCs) of CaMbound to ER(287–
305), the filamentous bacteriophage Pf1 (Asla Biotech Ltd., Lat-
via) was used as an orienting medium. Pf1 (10–16 mg/ml) was
added to 15N-labeled CaM bound to unlabeled ER(287–305) at
pH 7.0, to produce weak alignment of the complex. The extent
of alignment was checked by measuring the splitting of the
deuterium resonance fromD2O (�8 Hz). One-bond HN RDCs
were recorded using the in-phase/anti-phase pulse sequence,
with 512 complex t1 (15N) points for both the isotropic and
anisotropic samples. The alignment tensor components were
calculated by the PALES program. All NMR spectra were pro-
cessed and analyzed using NMRPipe package.
Structure Calculation—The NMR structure of CaMN/C

lobes bound toER(287–305)was calculated on the basis ofNOE
distance restraints and residual dipolar couplings as described
previously (17, 24–26). The structure of ER(287–305) in the
complex was estimated to be mostly helical based on NOE pat-
terns (HN-HN connectivity) and chemical shift index (27) and
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was calculated by Xplor-NIH (28) using 15 NOE distances, 20
dihedral angles, and 20 hydrogen bond restraints. The NMR
structures of CaMN, CaMC, and ER(287–305) were then used
as input for a simulated annealing protocol within HADDOCK
(29) to calculate the structure of the CaM�ER-� complex using
intermolecular NOE restraints (supplemental Figs. S3 and S4)
and residual dipolar coupling data (supplemental Fig. S5). The
structure calculation protocol consists of three stages as fol-
lows: rigid-body docking, semi-flexible simulated annealing,
and refinement in explicit solvent as described previously (30).
After rigid body docking, 200 lowest energy structures were
selected for semi-flexible refinement using all the NMR exper-
imental restraints above. The structure of ER(287–305) was set
as full flexible, and the side chains of CaM that exhibit intermo-
lecular NOEs with ER(287–305) were allowed to move in the
semi-flexible annealing stage. The structures were further
refined in an explicit solvent including all NMR derived
restraints, followed by a final water refinement step.
For the CaMN/ER(287–305) calculation, 39 intermolecular

NOEs were set as unambiguous restraints. After the final water
refinement, the HADDOCK calculation generated a single
cluster containing 200 structures (cutoff � 2.5 Å), and the best
10 structures with lowest energy show a root mean squared
deviation of 1.0 Å (CaMN). The HN-N residual dipolar cou-
plings were included in the structure refinement, and the
ensembles of 10 lowest energy structures generated from the
initial simulated annealing (with RDC restraints) were used to
calculate the axial and rhombic components of the alignment
tensor (Da and Dr) using the PALES program (31). The HN-N
RDCs (total 34 1DNH RDC values in the structurally rigid
region) were introduced in the semi-flexible annealing and
water refinement stages as direct restraints (using the SANI
statement). Ten structures having lowest energy were selected
and went through another stage of refinement using all NMR
experimental restraints. The 10 final structures were superim-
posed with a root mean squared deviation of 0.68 Å (0.70 Å for
CaMN and 0.47 Å for ER(287–305)) (see Table 2 for structural
statistics). A Ramachandran analysis of the ensemble revealed
80.8% of residues in the most favored regions, 18.8% in allowed
regions, and only 1.2% in disallowed regions.
For the CaMC/ER(287–305) calculation, 52 intermolecular

NOEs were set as unambiguous restraints. After the final water
refinement, the HADDOCK calculation generated a single
cluster containing 200 structures (cutoff � 2.5 Å), the best 10
structures with lowest energy were selected for further RDC
refinement using total 38 1DNH RDC values in the structurally
rigid region, by following the similar calculation of CaMN/
ER(287–305) above. The best 10 structures after RDC refine-
ment show a root mean squared deviation of 0.64 Å (0.61 Å for
CaMC and 0.70 Å for ER(287–305)) (see Table 2 for structural
statistics). A Ramachandran analysis of the ensemble revealed
93.3% of residues in the most favored regions, 6.7% in allowed
regions, and 0% in disallowed regions. Thus, the NMR-derived
structures of CaMN and CaMC bound to ER(287–305) both
show good convergence and are well defined by the NMR
restraints.
Molecular Mass Analysis—Size-exclusion chromatography

was performed on a Superdex 75HR10/30 column (GEHealth-

care) at 4 °C. A 0.1-ml aliquot of protein was loaded onto the
column and eluted at a flow rate of 0.5 ml/min. Molecular
masses were analyzed by analytical size-exclusion chromatog-
raphy performed in-line with a multiangle light-scattering
miniDawn instrument with a 690-nm laser (Wyatt Technolo-
gies, Inc.) coupled to refractive index instrument (Optilab Rex,
Wyatt Technologies, Inc.). The molar mass of chromato-
graphed protein was calculated from the observed light scatter-
ing intensity and differential refractive index (32) using ASTRA
software (Wyatt Technologies, Inc.) based on Zimm plot anal-
ysis using a refractive index increment, dn/dc � 0.185 liter g�1

(33).
CaM-Sepharose Chromatography—HEK 293H cells were

cultured in Dulbecco’s modified Eagle’s medium (DMEM) sup-
plementedwith 10% (v/v) FBS and transfectedwithMyc-tagged
ER-� using Lipofectamine 2000 according to the manufactur-
er’s instructions. The following were transfected: wild type
ER-� and themutant ER-� constructs, namelyW292A, L296A,
K299A, W292A/L296A, W292A/L296A/K299A, and �CaM.
After 60 h, cells were lysed with buffer A (50 mM Tris, pH 7.4,
150 mM NaCl, 1% Triton X-100) containing Halt Protease and
Phosphatase Inhibitor mixture (Thermo) and 1mM PMSF. Cell
lysates, equalized for total protein, were pre-cleared with 20 �l
of glutathione beads at 4 °C for 1 h and then incubated with 20
�l of CaM-Sepharose at 4 °C for 3 h on a rotator. Complexes
were washed five times with buffer A, resolved by SDS-PAGE,
and transferred to PVDF membrane. Blots were probed with
anti-Myc antibody, and antigen�antibody complexes were visu-
alized with horseradish peroxidase-conjugated secondary anti-
body and developed by enhanced chemiluminescence (ECL).

RESULTS

CaM-binding Site in ER-�—Previous studies suggested CaM
binds to ER-� in the hinge domain (residues 248–317) (4). We
performed ITC binding studies on a variety of hinge domain
fragments to define a minimal sequence in ER-� that exhibits
functional binding to CaM (Fig. 1, supplemental Fig. S1, and
Table 1). The entire hinge domain construct, ER(248–317)
(residues 248–317) binds CaM with dissociation constant (Kd)
of �2 �M, whereas a shorter construct, ER(298–317) reported
previously by (4) bindsCaMwithmore than 10-fold lower affin-
ity (Table 1). Therefore, ER(298–317) lacks important resi-
due(s) needed for high affinity CaM binding. A slightly modi-
fied construct, ER(287–305) (adding 11 residues to the
N-terminal end and removing 12 residues from the C termi-
nus), binds to CaMwith the same high affinity as ER(248–317)
(Table 1). Our deletion analysis reveals that ER(287–305)
encompasses the minimum number of residues in ER-� that
bind functionally to CaM.
Quantitative analysis of the ITC binding data reveals one

CaMbinds to twomolecules of ER(287–305) (Fig. 1A andTable
1). The same 1:2 stoichiometry was observed for CaM binding
to the larger constructs, ER(248–317) or ER(287–552) (supple-
mental Fig. S1). The 1:2 binding suggests the two lobes of CaM
(N-lobe andC-lobe) each bind to a separatemolecule of ER-� as
seen previously for CaM binding to glutamate decarboxylase
(34). To more directly probe ER-� binding to the individual
lobes, we constructed separate lobe constructs of CaM (CaMN

Structure of Calmodulin Bound to ER-�
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and CaMC). Each CaM lobe binds to ER(287–305) with a 1:1
stoichiometry and similar Kd values (Fig. 1, B and C, and Table
1). Also, the �H for binding of ER(287–305) to full-length CaM
(21 kcal/mol) is equal to the sum of �H for binding of ER(287–
305) to CaMN (9 kcal/mol) and CaMC (12 kcal/mol). There-
fore, the two lobes of CaM are independent and bind separate
molecules of ER-� to explain the 1:2 binding stoichiometry.

CaM binding to ER(287–305) was further characterized by
NMR (supplemental Fig. S2). 15N-1H HSQC spectra of 15N-
labeled full-length CaM bound to unlabeled ER(287–305)
exhibit spectral changes that saturate upon binding of 2 molar
eq of ER(287–305). HSQC spectra of the individual CaM lobes
(CaMN and CaMC) both exhibit spectral changes that saturate
at 1 molar eq of ER(287–305). An overlay of the spectra for
CaMN/ER(287–305) and CaMC/ER(287–305) produces a
composite spectrumsimilar to that of full-lengthCaMbound to
two ER(287–305) (supplemental Fig. S2). Residues in struc-
tured regions of CaMhave identical chemical shifts in the over-
laid spectra and thus demonstrate the two lobes of CaM are
independently folded and each lobe binds to a separate
ER(287–305).
NMR Structures of CaM/ER(287–305)—NMR-derived

structures for the separate CaM lobes bound to ER(287–305)
are illustrated in Fig. 2, CaMN/ER(287–305) (Fig. 2, A–C) and
CaMC/ER(287–305) (Fig. 2, D–F). The 1H-15N HSQC NMR
spectra of both complexes exhibited the expected number of
amide resonances with good chemical shift dispersion, indica-
tive of a folded complex (supplemental Fig. S2). Sequence-spe-

cific NMR assignments of the complexes have been deposited
in the BMRB (accession numbers 18082 and 18084). Three-
dimensional protein structures derived from the NMR assign-
ments were calculated on the basis of NOE data, chemical shift
analysis, 3JNH� spin-spin coupling constants, and residual dipo-
lar coupling restraints (see “Experimental Procedures”). The
final NMR-derived structures of CaMN/ER(287–305) and
CaMC/ER(287–305) are illustrated in Fig. 2 (atomic coordi-
nates have been deposited in the RCSB Protein Data bank,
accession numbers 2LLQ and 2LLO). Table 2 summarizes the
structural statistics calculated for 10 lowest energy conformers.
The main chain structure of ER(287–305) in the absence of

CaM is unstructured, although it adopts an �-helical structure
upon binding to CaM (Fig. 2). This bound �-helix contains a
hydrophobic surface (comprised of Leu291, Trp292, Leu296,
Met297, and Ile298) that contacts exposed hydrophobic residues
in CaM. The bound ER(287–305) helix also contains lysine side
chains (Lys299, Lys302, and Lys303) at the CaM interface that
form salt bridges with exposed glutamate residues in CaM.
Themain chain structure of the CaMN-lobe (CaMN) bound

to ER(287–305) (Fig. 2,A–C) is somewhat different from that in
the absence of ER(287–305) (16). The root mean squared devi-
ation is 1.4 Å when comparing the main chain atoms of CaMN
in the presence and absence of ER(287–305). Binding of
ER(287–305) induces a slight opening of the EF-hands that
looks similar to the CaM N-lobe bound to myosin light chain
kinase (MLCK) (17). TheEF-hand interhelical angles forCaMN
in the ER-� complex (84° for EF1 and 90° for EF2) are lower than

FIGURE 1. ITC of ER(287–305) binding to CaM (A), CaMN (B), and CaMC (C). The molar ratio of titrant added (CaM/ER-�) is plotted on the horizontal axis. The
ITC isotherms (bottom panel) were each fit to a one-site model (solid line). Binding parameters are listed in Table 1.

TABLE 1
ITC parameters for CaM binding to functional fragments of ER-�

ER(248–317)
CaM

ER(298–317)
CaM

ER(287–305)
CaM

ER(287–305)
CaMN

ER(287–305)
CaMC

apo�ER(287–552)
CaM

E2�ER(287–552)
CaM

Molar ratio (CaM/ ER-�) 1:2 1:2 1:2 1:1 1:1 1:2 1:2
Kd (�M) 1.9 � 0.2 �50 1.5 � 0.2 2–5 1.5 � 0.2 0.7 � 0.4 1.4 � 0.3
�H(kcal/mol) �14.0 � 0.3 �8 � 4 �20.6 � 0.5 �12.1 � 0.3 �8.9 � 0.2 �7.3 � 0.2 �19.9 � 0.5
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those for free CaM (EF, 103.8°; EF2, 101°) and more similar to
the angles for CaM bound to MLCK (17). The intermolecular
contacts between CaMN and ER-� involve mostly side-chain
atoms. Exposed hydrophobic side chains inCaMN (Ile27, Leu32,

Val55, Ile63, Phe68, and Met71) interact with the aromatic side
chain of Trp292 from ER(287–305) (Fig. 2C and supplemental
Fig. S3). Also noteworthy are exposed glutamate side chains in
CaMN (Glu11 and Glu14) that form salt bridges with lysine res-
idues in ER-� (Lys299, Lys302, and Lys303).

The main chain structure of the CaMC-lobe (CaMC) bound
to ER(287–305) (Fig. 2,D–F) is similar to that in the absence of
ER(287–305) (16). The root mean squared deviation is �0.5 Å
when comparing the main chain atoms of CaMC in the pres-
ence and absence of ER(287–305). Thus, binding of ER(287–
305) to CaMC does not alter the main chain conformation, and
intermolecular contacts with ER-� involve mostly side-chain
atoms. The EF-hand interhelical angles for CaMC in the com-
plex (103° for EF3 and 94° for EF4) are close to those for free
CaM. Exposed hydrophobic residues in CaM (Ile100, Leu105,
Met124, Ile125, Val136, and Phe141) form close contacts with the
aromatic side chain of Trp292 from ER(287–305) (Fig. 2F and
supplemental Fig. S4). Exposed hydrophobic side chains in
CaM (Ile85 andMet145) interact with side-chain methyl groups
of Leu296. Multiple lysine residues in ER-� (Lys299, Lys302, and
Lys303) form salt bridges with Glu84 and Glu87 in CaM (Fig. 2F
and supplemental Fig. S4). The structure of CaMC bound to
ER(287–305) is similar to a previous NMR structure of CaM
bound to the plasma membrane Ca2� pump in which the
C-lobe alone binds to a short target helix (35).
Mutagenesis of CaM-binding Site—To verify the biological

significance of the structural contacts in the CaM�ER-� com-
plex (Fig. 2), the following full-length ER-� mutants (W292A,
L296A, K299A, W292A/L296A, and W292A/L296A/K299A)
were constructed and characterized for CaM binding by CaM-

FIGURE 3. Mutagenesis of CaM-binding site in ER-� reduces binding to
CaM. HEK 293H cells were transiently transfected with Myc-tagged con-
structs of full-length ER-� (WT) or the indicated ER-� mutant constructs. Equal
amounts of protein were subjected to SDS-PAGE and Western blotting (A). In
addition, equal amounts of protein lysate were incubated with calmodulin-
Sepharose (CaM-Sepharose) or GST beads alone in the presence of 1 mM CaCl2
(B). After pelleting beads, bound proteins were resolved by SDS-PAGE and
transferred to PVDF. Blots were probed with anti-Myc antibodies. Data are
representative of three independent experimental determinations.

FIGURE 2. NMR structures of CaM N-lobe (A–C) and C-lobe (D–F) bound to
ER(287–305). Superposition of main chain atoms of 10 lowest energy struc-
tures is shown (A and D). Ribbon representation of the energy-minimized
average main chain structures is shown (B and E). The CaM N-lobe (cyan) is
bound to ER(287–305) (orange), and C-lobe (magenta) is bound to ER(287–
305) (white). Close-up view of ER-� interaction with exposed side-chain atoms
in CaM is shown (C and F). Side-chain atoms of key residues at the interface are
shown as sticks. Hydrophobic side-chain atoms in ER-� (Trp292, Leu296, and
Ile298) form detailed contacts with each lobe of CaM, and basic side chains in
ER-� (Lys299, Lys302, and Lys303) form salt bridges with Glu14 (N-lobe) and Glu84

(C-lobe) of CaM.

TABLE 2
Structure statistics for NMR-derived structures of CaM bound to
ER(287–305)

CaMN/ER-� CaMC/ER-�

NMR restraints
Short range NOEs for ER(287–305) 15 17
Dihedral angles for ER(287–305) 20 20
Total intermolecular NOEs 39 52
1DHN RDC 34 38
RDC Q-factora 0.24 0.12

Ramachandran plot
Most favored region 81.2% 93.3%
Allowed region 18.8% 6.7%
Disallowed region 0.0% 0.0%

Root mean squared deviation from average structure
CaM backbone atoms 0.70 Å 0.61 Å
ER(287–305) backbone atoms 0.47 Å 0.70 Å
All backbone atoms 0.68 Å 0.64 Å

a Q-factor � root mean square (r.m.s.) Dcalc � Dobs)/r.m.s.(Dobs), where Dcalc and
Dobs are calculated and observed RDC values, respectively. Short range NOE is
defined for residue numbers i and j, where i � j � i � 4. Long range NOE is de-
fined for residues i and j, where j � i � 4.
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Sepharose chromatography (Fig. 3B). Mutation of Trp292 in
ER-� abrogated binding to CaM. By contrast, replacing Leu296
did not alter the ability of ER-� to bind CaM, whereas replacing
Lys299 impaired its association by �50%. Consistent with these
findings, the binding of ER-� (W292A/L296A) and ER-�
(W292A/L296A/K299A) to CaM was minimal. ER�CaM,
which does not bind ER-� (4), served as a control (Fig. 3). No
binding of ER-� to beads alone is detected, verifying the speci-
ficity of the interactionwithCaM.The expression level of all the
ER-� constructs was equivalent (Fig. 3A).
CaM Induced Dimerization of ER-�—The structures of CaM

bound to ER(287–305) (Fig. 2) imply that the two lobes of CaM
attach to two separate molecules of ER-�. The 1:2 stoichiome-
try suggests that CaMmay facilitate functional dimerization of
ER-�, which could help place two ER-� DNA binding domains
in contact with tandem repeat sequences in ERE (36, 37). The
ER-�LBD (residues 305–552) forms a dimer in the x-ray crystal
structure of the E2-bound state (12), whereas the E2-free apo-
LBD has weaker dimerization affinity (38, 39). Thus, ER-�
dimerization stabilized by E2 binding may be important for
activating transcription (3). We wondered whether CaM bind-
ing to apo-ER-� might also stabilize dimerization and hence
activate transcription in the absence of E2. We generated an
ER-� construct, ER(287–552), that contains both the CaM
binding hinge region (residues 287–305) and ligand-binding
domain (317–552). CaM binds to the apo-ER(287–552) with a
1:2 stoichiometry and Kd of 1–2 �M, similar to that for CaM
binding to E2-bound ER(287–552) (Fig. 1 and Table 1). These
results indicate thatCaMbinds to and stabilizes dimerization of
ER(287–552) even in the absence of E2, consistent with previ-
ous observations (40).

A structural model of ER(287–552) bound to CaM (Fig. 4)
was generated by connecting the C-terminal end of the
ER(287–305)�CaM complex (Fig. 2) to the N-terminal end of
the LBD crystal structure (residues 305–552 and Protein Data
Bank code 1A52). The � and � dihedral angles of residue 305
(attachment site) were altered such that the attached lobes of
CaM in the complex were constrained to be less than 7 Å apart
(central linker distance). The resulting structural model of
ER(287–552)/CaM in Fig. 4 illustrates how each lobe of CaM is
attached to a separate hinge domain helix of dimeric ER(287–
552). Thus, CaM serves as a clamp that holds hinge domain
residues in the ER-� dimer close together to prevent dissocia-
tion. Deletion of the hinge residues (287–305) prevents CaM
binding (4). Our structure of CaM bound to dimeric ER(287–
552) suggests that CaMcan facilitate ER-� dimerization even in
the absence of E2, consistent with the observation that CaM
binding to endogenous full-length ER-� does not require E2
binding (40). We propose that CaM can stabilize dimerization
and perhaps activate ER-� in the absence of E2, and ER-� stim-
ulation by either Ca2� and/or E2 may regulate transcription in
a combinatorial fashion.

DISCUSSION

In this study, we present the NMR structures for the two
lobes of CaM each bound to the hinge domain region of ER-�
(Fig. 2), and we propose a model to explain how CaM stabilizes
dimerization of ER-� (Fig. 4) and activates transcription (Fig.
5). Both lobes of CaM compete for binding to the same site on
ER-�, which explains how a single CaM can bind to two mole-
cules of ER-�. The aromatic side chain of Trp292 in ER-� forms
critical contacts with exposed hydrophobic residues in CaM,

FIGURE 4. Structural model of CaM bound to dimeric ER-� (residues 287–552). The main chain structure of the CaM/ER(287–552) complex was generated
using the structures above in Fig. 2 (ER-� residues 287–305) attached to the dimeric LBD crystal structure (residues 305–552; Protein Data Bank code 1A52) as
described in the text. One polypeptide chain of the ER-� dimer (orange) is bound to the CaM N-lobe (CaMN, cyan) and the other ER-� chain (white) is bound to
the CaM C-lobe (CaMC, magenta). E2 is bound to the dimeric LBD (green), and Ca2� is bound to CaM (yellow).

Structure of Calmodulin Bound to ER-�

MARCH 16, 2012 • VOLUME 287 • NUMBER 12 JOURNAL OF BIOLOGICAL CHEMISTRY 9341

 by guest on O
ctober 2, 2019

http://w
w

w
.jbc.org/

D
ow

nloaded from
 

http://www.jbc.org/


N-lobe (Ile27, Leu32, Val55, Ile63, Phe68, and Met71) and C-lobe
(Ile100, Leu105, Met124, Ile125, Val136, and Phe141). Surprisingly,
this critical Trp residue was not identified in previous binding
studies (4), and our structure defines the complete set of ER-�
residues needed for CaMbinding (Fig. 1). Also important in our
structure are salt bridge contacts formed by Lys299 in ER-�with
various glutamic acid residues in CaM (Glu14 in N-lobe and
Glu84 in C-lobe). The biological importance of these structural
interactions is demonstrated by ER-� mutants (W292A and
K299A) that weaken binding to CaM (Figs. 1 and 3) and double
mutant (I298E/K299D) that disables E2-dependent transcrip-
tion (4). CaM facilitates dimerization of ER-� in the absence of
estrogen, suggesting that ER-� stimulation by both Ca2� and
estrogen may serve to regulate transcription.
A schematic model illustrates how CaM binding to ER-�

might regulate transcription (Fig. 5). In the absence of E2 and at
resting cytosolic Ca2� levels (100 nM), neither E2 nor Ca2�-free
CaM is able to bind to ER-�, causing dissociation of the ER-�
dimer (38, 39) and inactivation of transcription (36). At ele-
vated Ca2� levels (micromolar or higher) and absence of E2,
Ca2�-bound CaM can now bind to apo-ER-� and induce
dimerization in the hinge region (red helix in Fig. 5). CaM-
induced dimerization of ER-� may help position the two ER-�
DBDs in close contact with tandem repeat sequences in ERE
needed for high affinity DNA binding (37). When E2-respon-
sive cells contain elevated Ca2� levels (e.g. during signal trans-
duction), E2 and CaM both bind to ER-� and cause multiple
conformational changes (Fig. 5, bottom right panel). E2 binding

stabilizes dimerization of LBD (circle versus square in Fig. 5),
and CaM bridges together two hinge domains (red helix in Fig.
5). The combined structural changes induced by E2 and CaM
bindingmayhelp snapER-� into a functional dimer that ismost
competent for activating transcription. In essence, ER-� acts as
a coincidence detector that is maximally activated only when
Ca2� and E2 signals are both detected. Such a mechanism can
more effectively reject false positive signals caused by small
fluctuations in either Ca2� or E2. Cytosolic and nuclear Ca2�

levels serve as a second messenger in the cell (41, 42) that con-
trols biosynthesis and/or signaling of E2 (43). Our model illus-
trates how ER-� might integrate estrogen signals and calcium
cascades during signal transduction to control gene expression
in neurons (44) and breast cancer cells (11).
The mechanism in Fig. 5 predicts partial activity of ER-�

even in the absence of E2 (Fig. 5, upper right panel). CaM bind-
ing to apo-ER-� will connect two hinge domains together to
form a dimer that may place two DBDs in contact with repeat
sequences in ERE (37) and perhaps cause partial activation of
ER-�. We propose that combinatorial regulation of ER-� by
both Ca2� and E2 could provide a means of having multiple
levels of transcriptional activity as follows: zero activity at low
Ca2� and low E2, intermediate activity at high Ca2� and low E2
(or vice versa), and strongest activity at high levels of both E2
and Ca2�.
The CaM-binding site in ER-� is somewhat different from

the CaM-binding sites in other target proteins (19). The CaM-
binding site in ER-� (residues 287–305) does not follow the

FIGURE 5. Schematic model of ER-�-mediated transcription regulated by estrogen and Ca2�. DNA binding domain (DBD), LBD, and CaM are shown in
black, gray, and light blue. The CaM-binding site on ER-� is shown by a red helix. At low Ca2� and low estrogen (E2), ER-� dimer is destabilized by apo-LBD (gray
circles). High E2 levels stabilize dimerization of LBD (gray squares). At high Ca2� levels, CaM binding induces dimerization of the hinge domain (red helix) that
in turn places the DBD (triangle) in contact with tandem repeat sequence in ERE (37). High Ca2� and E2 levels are both needed to maximally activate
transcription (green arrow).
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consensus sequence of any known CaM-binding motif (IQ,
1–10, 1–14, and 1–16) (45) andmay represent a newmotif. The
reverse sequence of the CaM-binding site in ER-� resembles a
basic 1–5-10 motif (45). Normally, the basic 1–5-10 sequence
starts with three basic residues at the N-terminal end followed
by bulky residues (usually Trp) 5 and 10 residues away
(KKKXXXMXXXXW). Conversely, the ER-� sequence has
three basic residues at the C-terminal end with corresponding
bulky residues on the N-terminal side (WXXXXMXXXSKK).
The initial ER-� residue in this motif, Trp292, makes significant
contacts to CaM (Fig. 2, C and F) and is essential for CaM
binding (Figs. 1 and 3 and Table 1). The terminal basic residues
(Lys299, Lys302, andLys303) form salt bridges and are also impor-
tant for CaM binding. Thus, CaM recognizes a reversed basic
1–5-10 motif in ER-�, implying that CaM can bind to this hel-
ical motif in both directions. We suggest that CaM might also
recognize the reverse sequence of other known CaM-binding
motifs, which would substantially increase the number of pos-
sible target sequences that bind to CaM.
Our structure of CaM bound to twomolecules of ER-� (Figs.

2 and 4) is unique among the known structures of CaM target
complexes (19, 46). Typically, the two lobes of CaM collapse
around a central target helix and form interdomain contacts as
seen in previous structureswithMLCK (17), CaMkinase II (47),
and CaM kinase kinase (48). The structures of CaM bound to
two molecules of either glutamate decarboxylase (34) or two
molecules of Ca2�-activatedK� channels (49) each contain two
or more helices from distinct target molecules bundled
together and surrounded by the two lobes of CaM in a compact
fold. The compact structures of CaM�MLCK or the
CaM�glutamate decarboxylase 1:2 complex both contrast with
the extended structure of CaM bound to ER-� (Fig. 4). The
extended bipartite binding to ER-� is reminiscent of the struc-
tures of other EF-hand proteins, yeast frequenin (50) and tro-
ponin C (51), that each bind to two separate target helices.
Approximately 70% of all breast carcinomas depend on E2

and ER-� for growth (52). CaM contributes to the regulation of
both ER-� degradation and ER-�-mediated transcriptional
activation, thereby enhancing the growth-promoting effects of
E2 (53). The structural information presented here provides
insight into themolecularmechanism of both of these effects of
CaM. Usually, E2 induces degradation of ER-� via the ubiqui-
tin-proteasome pathway, and E2-induced down-regulation of
ER-� is thought to limit ER-� signaling (54). CaM enhances the
stability of ER-� (40) by reducing its ubiquitination (55). Several
of the residues on ER-� with which CaM interacts are sites of
post-translational modification (52). For example, Lys302 and
Lys303 are ubiquitylated, and it is likely that bound CaM would
sterically hinder ubiquitylation, preventing ER-� degradation.
This would increase ER-� levels in the cell, leading to enhanced
ER-� signaling and tumorigenesis. Consistentwith this hypoth-
esis, Lys303 has been shown to be mutated to Arg in invasive
breast carcinoma and is associated with a poor prognosis (56).
Increased ER-� transcriptional activity would also lead to
increased growth of breast epithelium. The transcriptional
activity of ER-� is inhibited by acetylation at Lys303, Lys302, and
Lys303 (57). Because all of these residues are critical for interac-
tion with CaM, it is tempting to speculate that ER-� acetylation

will be blocked by CaM, resulting in enhanced ER-� transcrip-
tional activity, culminating in breast carcinoma.
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