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We study the relative ability of several models of x-ray absorption spectra to capture the Franck–
Condon structure apparent from an experiment on gaseous nitrogen. In doing so, we adopt the
Born–Oppenheimer approximation and a constrained density functional theory method for
computing the energies of the x-ray-excited molecule. Starting from an otherwise classical model
for the spectrum, we systematically introduce more realistic physics, first by substituting the
quantum mechanical nuclear radial density in the bond separation R for the classical radial density,
then by adding the effect of zero-point energy and other level shifts, and finally by including explicit
rovibrational quantization of both the ground and excited states. The quantization is determined
exactly, using a discrete variable representation �DVR�. We show that the near-edge x-ray
absorption fine structure �NEXAFS� spectrum can be predicted semiquantitatively within this
framework. We also address the possibility of non-trivial temperature dependence in the spectrum.
By using constrained density functional theory in combination with more accurate potentials, we
demonstrate that it is possible to improve the predicted spectrum. Ultimately, we establish the
predictive limits of our method with respect to vibrational fine structure in NEXAFS spectra.
© 2010 American Institute of Physics. �doi:10.1063/1.3324889�

I. INTRODUCTION

Core-level spectroscopies were originally used as struc-
tural probes of simple gases. As methods and theory have
matured, they have been applied to increasingly
complex systems ranging from condensed phases of single
compounds to mixtures of polymers and biomolecules.1–3 In
the case of these more complicated systems, the information
embedded in the resulting spectra includes both structure and
signatures of molecular interactions. Even when one focuses
solely on a large molecule in the gas phase—thereby elimi-
nating the need to account for such environmental effects
correctly—the computational costs associated with predict-
ing the spectrum via many current �electronic structure�
methods become prohibitive. These difficulties provided the
impetus for development of innovative methods that scale
more reasonably with system size. In the process of devel-
oping one such method, we have shown that proper sampling
of quantum-mechanically allowed geometries can signifi-
cantly improve the quality of the predicted spectra.4,5

The present work, while built upon the same methodol-
ogy, addresses a more fundamental question than whether it
is possible to make such spectral predictions relatively
cheaply. Instead, we aim to underscore the quality of our
method by determining the upper limits of its performance
when essentially all errors, apart from those in the electronic
structure method itself, have been minimized. Our
test case is nitrogen gas �N2�, a simple, relatively well-

understood molecular system.6–14 An additional advantage of
this choice is that we are able, in the process of developing
increasingly more realistic spectral models, to describe in
exquisite detail the observable consequences of nuclear
quantization and to make concrete statements about the ori-
gins of spectral structure and broadening.

We begin by outlining standard approaches to the prob-
lem. In calculating the gas-phase near-edge x-ray absorption
fine structure �NEXAFS� spectrum, a discrete set of transi-
tion energies and associated intensities is generated; this
“stick spectrum” can then be broadened to match
experiment.5,15 Broadening is attributed to a combination of
lifetime effects—energetic smearing of the molecular states
due to the energy-time uncertainty principle—and experi-
mental sources such as finite monochromator width.1 There
appears to be no consensus in the literature as to how much
broadening to apply to the spectrum once calculated, as a
variety of linewidth schemes are often used.5,15 One such
scheme is the Voigt lineshape, a convolution of the Lorentz-
ian and Gaussian profiles associated with lifetime and instru-
ment broadening. The convolved curve does not support a
unique partition into these component contributions, and so
many choices of widths may yield a similar spectrum. In
practice, the Voigt profile is often approximated as a linear
combination of Lorentzian and Gaussian functions, although
we use the exact expression in the present work.

Experimental fitting of the nitrogen spectrum to the
Voigt lineshape has typically led to a Lorentzian lifetime
broadening of approximately 120 meV full width at half
maximum �FWHM�, with varying amounts of Gaussian
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broadening.6,14 One recent high-resolution experiment yields
an estimate of 115 meV.14 These values are in good agree-
ment with previous theoretical work by Coville and
Thomas,16 which used semiempirical electronic structure
methods to compute Auger rates; the broadening for N2 was
reported as 120 meV.

We have taken a different approach to the problem of
determining lifetime broadening; we sample the molecular
geometries and compute transition energies and intensities
essentially exactly, within the limitations of the electronic
structure method used to determine the excited-state energy
curve, and then apply broadening to match the experiment.
�In doing so, we account for quantum statistical effects for
the nuclei—those effects due to quantization of nuclear mo-
tion on the electronic potential energy curve and, thus, the
populations of the various nuclear states in the ensemble.�
The choice of widths that best fits the experimental data de-
termines the appropriate lifetime broadening. This approach
mirrors the procedure typically used for calculating spectra,
but as a result of the accuracy of our methods, we can deter-
mine the “exact” broadening associated with a given set of
approximations.

We examine a hierarchy of approximations, starting with
the full analytical classical configurational distribution com-
bined with classical transitions between the ground- and
excited-state curves and ending with an exact treatment
�within the Born–Oppenheimer approximation� of Franck–
Condon transitions between rovibrational levels on the quan-
tized electronic curves. In the literature, many have instead
calculated spectra using a single molecular configuration,
typically the optimized geometry from an electronic structure
calculation, or from a variety of configurations generated ei-
ther by �1� optimizing conformer geometries or by �2� sam-
pling from classical or path integral molecular dynamics
simulations. Common practice has also been to treat transi-
tions only at the classical level.

There is nevertheless a substantial body of work ac-
counting for Franck–Condon factors for small molecules un-
dergoing NEXAFS excitation.17–26 The most common ap-
proach in these studies is to calculate the minimum ground
state energy, the associated Hessian, and the equilibrium po-
sition of the excited state. Then it is assumed that the
excited-state motion is characterized by the normal
modes.23–25 A linear-coupling approximation is made, and
the Franck–Condon factors may be calculated explicitly or
assumed to adhere to a Poisson distribution. �Previous stud-
ies indicate that this choice yields only minor differences in
the results.�20 However, none of these studies quantizes the
rotational states, as we do here.

These detailed studies often used higher-level electronic
structure methods than density functional theory �DFT� and
involved explicit calculations of the vibrational modes of
both the ground and excited state.17–26 The molecules studied
are relatively complex compared to N2 and therefore provide
a more challenging test for prediction of the spectrum as a
whole. At the same time, because of the large number of
modes present in these systems, there is typically much less
spectral detail over a given range of energy. Even so, and in
spite of the rigor of such a treatment, the spectra are captured

only semiquantitatively, with obvious disparities �in both
peak location and height� in those regions of the spectrum
where fine structure is most prominent. �Agreement with
less-detailed spectral features is, in any case, more difficult
to judge.� We show in this paper that we can predict the
spectrum comparably well with respect to these fine spectral
details using a simpler approach. The N2 molecule is an ap-
pealing test case, because its entire first x-ray transition can
be construed as consisting of “fine structure.”

II. COMPUTATIONAL METHODS AND MODELS

A. Density functional theory calculations

The intuitive starting point for treatment of many spec-
troscopic absorption phenomena is the notion of the vertical
transition between electronic energy levels. DFT27,28 can ac-
curately reproduce the absorption energies associated with
such transitions, namely, the total energy difference ��SCF
or �KS� between the levels involved.23 Thus, rather than
using an explicit excited-state method, we solve the elec-
tronic structure problem for the ground state of the same
molecule, but with constraints chosen to reflect the true qua-
sibound system. Specifically, the constraints we determined
to yield a reasonable model of the core-excited system are
the inclusion of a full core hole on the atom whose core
excitation we wish to examine, as well as an associated ex-
cited electron.29

We refer readers to our earlier work for a detailed de-
scription of the electronic structure calculations.5 A brief
summary is as follows: the functional employed is the
Perdew–Burke–Ernzerhof30 form of the generalized-gradient
approximation to the exchange-correlation potential, and we
use a plane-wave representation �in a large periodic box� and
the pseudopotential approximation for the valence electronic
structure. In the present case, the initial state of the system is
chosen to be the nitrogen molecular ground state, X 1�g

+. We
approximate the excited state by replacing the pseudopoten-
tial of the core-excited nitrogen by another pseudopotential
that explicitly includes the core excitation, such that its elec-
tronic configuration is 1s12s22p4. When incorporated into the
N2 molecule, this configuration corresponds to a degenerate
pair of dipole-active molecular excited states with term sym-
bol 1�u �as well as a spin-forbidden state with term symbol
3�u

−�. This change in configuration is the only one relevant
for treating the first transition in the N2 NEXAFS spectrum,
which may be characterized as 1s→�* �LUMO�.14

We adopt the Born–Oppenheimer approximation and al-
low atomic nuclei to remain fixed. Transition amplitudes are
then estimated in the single-particle and dipole approxima-
tions and used to determine the x-ray absorption cross sec-
tion within a first-order Fermi’s golden rule treatment. The
spectra thus obtained were aligned to experiment.

B. Molecular sampling of DFT calculations

Over 800 nitrogen transitions were calculated at separa-
tion distances sampled from a path-integral molecular dy-
namics simulation, with special attention paid to configura-
tions lying in the ground-state potential well. Variations in
the transition probability were monitored and observed to
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remain within 1% of the intensity at equilibrium separation.
This result indicates that the transition dipole moment is in-
sensitive to the internuclear spacing. We are therefore safely
within the Franck–Condon regime �i.e., the electronic contri-
bution to the transition amplitude, �����̂�1s�, is essentially
constant� and may neglect Herzberg–Teller effects, which are
predicated on such sensitivity.5

C. Spectral models for classical-to-classical
transitions

Figure 1 depicts schematically the types of transition
considered. The leftmost �green� arrow depicts a vertical ex-
citation at bond length R from the bottom of the ground state
potential Vg�R� to the bottom of the excited state potential
Vx�R�. This type of transition may be termed “classical,” in
the sense that we treat all such excitations as being allowed
with equal �unit� probability; the structure of a spectrum
based on these transitions is determined by the �canonical�
classical radial density of the ground state. �“Density” and
“radial density” will be used throughout this work and will
always denote the nuclear radial probability distribution.� We
treat the spectrum as a set of intensities continuous in the
transition energy and determined solely by the relation

I��ECL�R�;�� � �CL�R;�� ,

where �ECL�R�=Vx�R�−Vg�R� is the transition energy,
�CL�R ;��= �1 /Q�e−�Vg�R� is the density, Q=�dRe−�Vg�R� is the
associated partition function, and the semicolon indicates
that the temperature dependence �included through the in-
verse thermal energy �=1 /kBT� enters only parametrically.

In previous work,5 another model has also been used that
incorporates the quantum mechanical density but leaves the
transition energy in classical form

I��ECL�R�;�� � ��R;�� .

Although this model is inconsistent from a physical point of
view, so too is any mixture of quantum and classical ener-

getics. We address it here for the sake of emphasizing the
relation between our work and its antecedents, and also be-
cause it is readily calculable even for large systems and,
therefore, of pragmatic interest.

D. A spectral model for quantum-to-classical
transitions

The second class of transition, depicted by the center
�blue� arrows, is distinguished from the first by �vibrational
or rovibrational� quantization of the ground state; here the
transition is from a state �vJ� on the ground state potential
energy curve to a classical excited state. ��E�R� for this type
of excitation will therefore be smaller than for the analogous
classical transition.� Because the excited state remains clas-
sical, all such transitions are still allowed, and the model for
the spectrum remains formally the same:

I��E�R�;�� � ��R;�� .

The density is now quantum mechanical: ��R ;��
= �1 /Z�	vJgN�J�e−�EvJ��vJ�R��2, where �vJ�R� is the radial
wave function for state �vJ�, Z=	vJgN�J�e−�EvJ is the quan-
tum canonical partition function, gN�J� is the rotational de-
generacy �which we will address in more detail below�, and
the transition energy now depends on the thermal average of
the quantized energies, �EvJ�= �1 /Z�	vJgN�J�e−�EvJEvJ, as
�E�R�=Vx�R�− �EvJ�.

The rotational degeneracy gN�J� is distinguished from
the usual degeneracy factor g�J�=2J+1 in that it also ac-
counts for the nuclear spin statistics of the N2 molecule: The
14N nucleus is a boson with spin I=1, and as a result the total
wave function must be symmetric with respect to exchange
of the nuclei. To impose this condition is equivalent to re-
quiring that asymmetric nuclear spin states be paired with
symmetric �even J� rotational states; similarly, symmetric
nuclear spin states are paired with antisymmetric �odd J�
rotational states.31 There are a total of nine symmetrized
combinations of the two nuclear spins, leading to a 2:1 ratio
of symmetric to antisymmetric spin states. Thus, for every
three molecules of N2, two will be ortho-nitrogen �support-
ing only even J� and one will be para-nitrogen �supporting
only odd J�. The combined rotational/nuclear-spin degen-
eracy must then be

gN�J� = 2�2J + 1�, J even,

gN�J� = 2J + 1, J odd.

E. The Franck–Condon spectral model for fully
quantum transitions

The third class of transition, shown as the set of four
�red� arrows at right in Fig. 1, is simply that of Franck–
Condon transitions between �ro�vibrational states on the
ground potential energy curve and �ro�vibrational states on
the excited state potential energy curve. The probability of
transition at given R is no longer uniform, and the density is
therefore an inappropriate quantity for use in determining the
spectrum. Since the Herzberg–Teller effect is apparently of
little importance for this system, and, therefore, the elec-

FIG. 1. A depiction of the three classes of transitions associated with our
spectral models. The green arrow at left depicts purely classical transitions,
the blue arrows in the center depict transitions from a quantized ground to a
classical excited state, and the red arrows at right depict transitions from a
quantized ground to a quantized excited state. See text for details.
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tronic transition dipole moment will be roughly constant,
falling within the framework of the Franck–Condon approxi-
mation, we now model the spectrum as deriving from all
symmetry-allowed ground-to-excited-state transitions �vJ�
→ �v�J��.

We assume that both the ground and excited state fall
under Hund’s case �a� for coupling between the spin and
orbital angular momenta, which consists of weak coupling of
electronic and nuclear motions and strong coupling of the
spin and orbital motion to the internuclear axis.31 The ground
state X 1�g

+ has angular momentum around the internuclear
axis 	= �
+��=0, where 
 is the maximum projection of
the orbital angular momentum �corresponding to the Greek
letter in the term symbol for the state� and � is the appropri-
ate projection of the spin angular momentum. The excited
state 1�u has 	=1, fulfilling the �	=0, �1 selection rule
for the electronic transition; further, all rotational transitions
with �J=0, �1 are allowed. �This latter rule always holds,
of course, but the �J=0 case is forbidden for �	=0.� Note
also that, since J is bounded from below by 	, there is no
J=0 rotational state on the excited electronic surface.31

These transitions are treated as occurring in proportions
set by the relative thermal population of the state �vJ� with
respect to the ground state �00�, i.e., with probability
PvJ���= �1 /Z�gN�J�e−�Ev0J0, where �Ev�vJ�J=Ev�J�−EvJ.
These considerations yield the standard spectral model

I��E;�� � 	
v�vJ�J

���E − �Ev�vJ�J����J� − J�  1�

��v�J��vJ�PvJ��� ,

where the first Kronecker delta restricts �E to those values
supported by the ground and excited state energies, the sec-
ond Kronecker delta enforces the rotational selection rule,
and �v�J� �vJ�=�dR�v�J�

� �R��vJ�R� is the Franck–Condon
factor �overlap integral� for the transition. Hereafter, v� and
J� will be used to refer to quantum numbers for states on the
excited potential energy curve and v and J to those for states
on the ground potential energy curve.

F. The ground- and excited-state potentials and fits

Our initial calculations of the nitrogen x-ray absorptions
were for values of R centered in the ground-state potential
well; this is also true for the excited-state potential, which is
displaced in R by only �0.05 Å at equilibrium. Proper treat-
ment of the geometry of the potential away from the mini-
mum may be important in capturing nuclear quantum effects,
however; for example, anharmonicity at larger values of R
will affect the nuclear vibrational frequencies.

We avoided sampling the electronic structure energies on
an infeasibly dense grid in the radial coordinate by adding a
small number of points at an even spacing of 0.1 Å. These
points span the entire range of physically relevant bond sepa-
rations, from well into the repulsive barrier region �0.1 Å� to
near the dissociation threshold �4.7 Å for the ground state
and 3.4 Å for the excited state�. The complete set of points
was then used to develop a 14-Gaussian fitting function of

form V�R�=	iaie
−��R − ci� / bi�

2
+Ve for each curve, where Ve is

the energy at the well minimum and 
ai ,bi ,ci� are the fit
parameters.

The resulting ground- and excited-state potential fits are
shown in Figs. 2 and 3, respectively; they are paired for the
purpose of comparison with potentials obtained by fitting to
experimental data.6,32,33 Although our potential fits are in
good agreement with the experimentally-derived curves in
the well region, the dissociation energies are several eV too
large, indicating the overbinding commonly observed for
DFT.34 It is also apparent that the multi-Gaussian functional
form does not allow for reliable prediction of the electronic
energy outside of the fitting regions, but this is not an impor-
tant failing. The states of interest to us here are deep within
the well, at energies no higher than 0.435 eV for the ground

FIG. 2. The electronic structure energies for the ground state in eV �red
points� plotted with the 14-Gaussian fit �black� to the full region depicted.
The inset between 0.9 and 1.6 Å shows the quality of the fit for the bottom
of the ground-state well; rovibrational state �0,34� is deep within the well
�0.435 eV�.

FIG. 3. The electronic structure energies for the excited state in eV �red
points� plotted with the 14-Gaussian fit �black� to the full region depicted.
The inset between 1 and 1.5 Å shows the quality of the fit for the bottom of
the excited-state well; rovibrational state �6,34� lies at an energy of 403.8
eV.
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and 404 eV for the excited state �vide infra for discussion of
the physical relevance of these energies�.

G. The classical density

The classical radial density for the �rotationless� ground
state at 300 K was determined analytically. It is very nearly
Gaussian, with slight enhancement for values of R greater
than the most-probable bond separation and slight diminish-
ment for smaller values of R. The uneven distortion with
respect to a Gaussian is due to the shape of the potential,
which allows for more frequent visits to the large-R region
than to the small-R region at 300 K. To determine the clas-
sical canonical density at 0 K is trivial; the particle is at a
standstill, sitting at the bottom of the potential well. As such,
it is a �-function centered at the ground state equilibrium
position.

H. Computing the quantum densities: The Colbert–
Miller DVR

In determining the quantum densities, it is important that
the wave functions required can be obtained in a simple and
straightforward manner and that they be of high quality. As
such, we opted to use the discrete variable representation
�DVR� of Colbert and Miller, which we will briefly review
here �in its radial version�.35

As do other DVRs, the Colbert–Miller method involves

setting up a grid representation of the Hamiltonian Ĥ

= �p̂2 /2��+V�R̂� of the system, with � the reduced mass. In
this case, the grid falls in the coordinate range �0,��. Be-

cause the potential V�R̂� is a function only of the position
operator, its matrix representation in the basis of grid points

Ri� is trivial, Vij =�ijV�Ri�, and the challenge lies in deter-
mining the representation of the kinetic energy operator. Col-
bert and Miller show that there is a specific representation
that is independent of any choice of basis functions for the
grid:

Tij =
�2

2m�R2��2

3
−

1

2i2 for i = j ,

Tij =
�2

2m�R2 �− 1�i−j� 2

�i − j�2 −
2

�i + j�2 for i � j ,

where �R is the grid spacing and Ri= i�R for i� 
1, ¯ ,��.
They also show that the wave function associated with

each grid point may be written as

�R�Ri� =

sin���R − Ri�
�R


��R − Ri�

.

Consequently, the eigenvectors obtained from the diagonal-
ization of the Hamiltonian matrix H=T+V may be ex-
pressed as a linear combination of the grid wave functions,
��i�=	icij�Rj�, which is evaluable for all R. Since we are
concerned here with computing densities and Franck–
Condon factors, obtaining a smooth wave function that may
be evaluated everywhere in space is not just reason for sat-

isfaction; it brings us nearer to the spirit of the analytical
theory.

Three parameters are varied in bringing the Colbert–
Miller DVR to convergence: the grid spacing �R, the maxi-
mum value of the position Rmax= imax�R, and a cutoff energy
Vc. The latter allows for a simple form of adaptive grid, in
which no grid points are placed where V�Ri��Vc. An intui-
tive choice of cutoff energy is the dissociation energy for the
curve in question, and Vc for the excited-state potential was
set accordingly. The analogous choice for the ground state
would be inappropriate; the potential fit was ill-behaved
when points at 0.8 Å and smaller were included, and so the
potential would not be represented as bound with such a
choice for Vc. The well is nevertheless sufficiently deep that
Vc�10.7 eV is compatible with convergence of the densi-
ties. Similarly, we wanted to allow for leakage of wave func-
tion amplitude via tunneling to as large a value of R as physi-
cally meaningful, and so we set Rmax to values well into the
classically forbidden region for each curve; 1.5 and 3.5 Å
sufficed for the ground- and excited-state potentials, respec-
tively. Finally, we found the point of convergence in �R by
examining the energies of the rovibrational states and a few
simple properties, such as canonical averages of the position
and momentum, their uncertainties, and the kinetic and po-
tential energies. Our working values were chosen to be
roughly three times smaller, in order to guard against any
residual distortion of the computed wave functions with re-
spect to their exact counterparts, and we tested for overall
convergence by varying Vc and Rmax. In the end, �R
=0.003 Å and �R=0.0125 Å were chosen for the ground
and excited states. This choice is equivalent to having chosen
199 and 203 grid points for the rotationless ground and ex-
cited states, respectively; only a few points are lost to the
cutoff as J increases. We validated our calculations by com-
parison of the DVR energies for the ground state to those
given by a Dunham expansion due to Le Roy et al.;33 they
were found to be in excellent, although, as expected, not
exact agreement.

I. The quantum densities

Once the DVR for the ground state was converged, ob-
taining the canonical density was a simple matter. A single
DVR calculation accounts for contributions to the density
from all �vJ�, with J fixed and included as part of the cen-
trifugal potential; we needed only to perform as many calcu-
lations as values of J we wished to include in the average. As
such, we chose an arbitrary cutoff in the rotational quantum
number, Jc. The condition imposed is that the relative popu-
lation in �0Jc� be of order 10−5 or smaller compared to that in
�0Jmax�, where Jmax is that J for which the population factor
P0J��� is largest. For T=300 K, we found the appropriate
choices to be Jmax=8 and Jc=34. At T=0 K, of course, Jmax

and Jc are both rigorously 0; however, nuclear spin selection
rules prevent conversion of para-nitrogen to ortho-nitrogen
under typical laboratory conditions.31 As a result, there will
initially be a 2:1 ratio of molecules in J=0 and J=1, respec-
tively, after a quench from room temperature.

With the canonical densities �J�R ;�� in hand, we con-
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structed the total density ��R ;�� by taking their weighted
average with respect to the populations of the �0J�. �This is a
very minor approximation at 300 K, since even the largest
relative contribution from the �1J� states is seven times
smaller than that for �0Jc�. At 0 K, it is no approximation at
all.� That is,

��R;�� =
Z

Zc
	
J=0

Jc

P0J����J�R;�� ,

where the partition function ratio ensures a normalized aver-
age and Zc=	J=0

Jc gN�J�e−�E0J is the appropriately restricted
partition function.

As was true in the classical case, the quantum density is
very nearly Gaussian; the distinction is that it is significantly
broader due to tunneling into the classically forbidden re-
gions on either side of the well. Because there is little change
in the density between states with low values of J, the two
distinct 0 K scenarios are essentially indistinguishable at this
level of approximation.

J. Classical and quantum-classical spectral
calculations

For the first class of transitions, shown in green at left in
Fig. 1 �and the corresponding spectral models�, densities dic-
tate the intensity of the x-ray absorption for specified values
of R. The associated transition energies are simply the energy
differences between the fitted ground- and excited-state po-
tentials. The resulting spectra were binned in the transition
energy to the nearest meV for convenience in plotting and
�more importantly� so that spectral degeneracy would be
properly reflected.

Upon quantizing the ground state, transitions to the clas-
sical excited state are made almost exclusively from v=0,
with rotational levels populated commensurate with the tem-
perature. The resulting minimum transition energy, which in-
cludes contributions from the zero-point energy of the
ground state, will therefore be lower than for the analogous
classical transition.

K. Franck–Condon spectral calculations

The Franck–Condon spectral calculation was carried out
for the same set of states �vJ� as in the ground-state density
calculations. Based on the number of peaks in the experi-
mental spectrum, we chose to include those states on the
fitted excited state potential with v�� 
0, ¯ ,6�; the range of
rotational quantum number chosen was J�� 
1, ¯ ,34�, de-
termined by choosing the excited state rotational cutoff value
Jc� to be that for which E0Jc�

first appreciably exceeds E10.
This criterion was used in part for convenience and in part to
ensure that a reasonable spread of transition energies would
be covered by our calculation. Franck–Condon factors
�v�J� �vJ� were then computed numerically from the DVR
wave functions and scaled by the population factor PvJ���.
The spectrum was constructed by combining the results of
these calculations and applying an additional scale factor
such that the height of the first peak in the computed spec-
trum matches that from the experiment; this latter scaling

may be interpreted as incorporating the magnitude of the
electronic transition dipole moment, which we have not cal-
culated explicitly for every R.

III. RESULTS AND DISCUSSION

Figure 4 is a direct comparison to experiment of our
results for the spectra arising from purely classical transi-
tions; we shifted all of our spectra, irrespective of the model
used to obtain them, to align energetically with the experi-
mental spectrum of Yates et al.14 In panel �a�, the classical
density is used, and, much as one would expect, the result is
a near-Gaussian spectrum lacking any nontrivial structure.
�In the 0 K limit, the spectrum is essentially a �-function,
though obviously not of infinite intensity.� We discuss this
simplest model here in order to help establish what relevant
features of the spectrum become apparent at which level of
approximation.

When the quantum densities are used instead, as in panel
�b� of Fig. 4, the absorption profile broadens substantially,
and the �now comparatively small� maximum shifts by 42
meV. Of greater interest is that the spectrum using this model
is almost completely temperature invariant; because only the
lowest vibrational level is appreciably populated, and be-
cause the densities of the various rotational modes are prac-
tically identical, the overall ground state density, and, thus,
the spectrum does not change significantly between 300 K
and 0 K. �This near-complete insensitivity to lowered tem-
peratures holds for all of our quantized spectra; we address
the question of higher temperatures in the context of our
conclusions.� In other words, tunneling spreads the density
over a wider range of R, as it must, but no model neglecting
the quantum energetics will contain any additional structure.

FIG. 4. Part �a� shows the experimental nitrogen K-edge NEXAFS �red, see
text� and the spectra generated by transitions from classical curves using the
classical density at 300 K �black� and 0 K �gray, dashed�. Note that the
spectra are too narrow. Part �b� shows the experimental nitrogen K-edge
NEXAFS and the spectra generated by transitions from classical curves
using the quantum densities at 300 K �brown�. The 0 K spectrum is com-
pletely hidden by the 300 K spectrum.
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Unsurprisingly, one must �at the very least� quantize the
ground state.

The results of the ground-state quantization and subse-
quent application of the second spectral model are shown in
Fig. 5. The spectrum calculated at 0 K displays a single peak
with very sharp onset and then a broader decay. The speed of
the onset is due to the fact that all transitions now originate
either from a pair of states spaced within �4 cm−1 �after a
quench from room temperature� or from the ground state
alone �at thermal equilibrium�; further, the small displace-
ment of the electronic potential minima ��0.05 Å� will result
in many transitions to the relatively flat bottom of the
excited-state well. At 300 K the ground-state rotational ener-
gies are no longer �essentially� completely degenerate, lead-
ing to a weaker onset and a broader decay; that is, the finite-
temperature rotational statistics of the ground state directly
result in broadening of the spectrum. There is also an inter-
esting additional feature: because the rotational progression
now spans a wider range of energies and values of J, the
nuclear spin statistics are directly observable as a series of
narrowly-spaced peaks corresponding to transitions from
even-J states. This “ragged onset” is an artifact of the ques-
tionably physical quantum-classical spectral model, and it
would be observed in some form irrespective of the shape of
the excited potential curve.

As we have seen, quantization of the ground state results
in a sharp Franck–Condon-like peak. It is clear, however,
that an accurate representation of the Franck–Condon struc-
ture of the experimental spectrum requires that the excited
state be quantized as well.

We begin by quantizing both states only vibrationally,
yielding the stick spectrum shown in light blue in Fig. 6�a�.
�There is essentially no difference between a 0 and 300 K
spectrum in this picture owing to the minimal change in
thermal population for v=1.� Because the pure vibrational
transitions �to a good approximation� set the positions of the

peaks, this model is effectively that used in fitting experi-
mental spectra, with the peak locations and the Lorentzian
and Gaussian widths contributing to the Voigt lineshape used
as fitting parameters.

Yates et al. used this type of procedure to determine an
overall spectral broadening of 132 meV FWHM, partitioned
into 115 meV Lorentzian and 38.4 meV Gaussian contribu-
tions. When our spectrum is broadened by the same amounts,
the result is the purple line in Fig. 6�a�.14 We note that we
adopted the Gaussian broadening reported by Yates et al. as
a reasonable value for the instrument broadening, since it
cannot be determined a priori. Owing to the nonuniqueness
of the Lorentzian/Gaussian decomposition of the Voigt pro-
file, this choice is merely an example, if a well-justified one.

Although the first peak is shifted such that its maximum
is aligned with the experiment, and, thus, its location is im-
material in determining the quality of the predicted spectrum,
its width matches the experiment quite well. As v� increases,
our peaks are displaced progressively higher in transition en-
ergy from their experimental locations, and their heights do
not decay sufficiently quickly for v��2. We must stress,
however, that we arrived at these results by constructing the
spectrum literally “from the ground state up,” while the ex-
perimental broadening figures are determined by fitting. As
such, we find the agreement to be a striking confirmation of
the robustness of our approach.

Rotational transitions cannot be resolved spectroscopi-
cally, but we thought it worthwhile to estimate the associated
contribution to broadening of the spectrum. Results of the
rovibrational Franck–Condon spectral calculation are shown
at 300 K in Fig. 6�b� and at 0 K in Fig. 6�c�, with stick
spectra in light blue. When the spectra are broadened by 132
meV FWHM Voigt lineshapes, as before, the purple lines are
obtained. Comparison of the stick spectra in panels of Figs.
6�b� and 6�c� indicates that the addition of rotational struc-
ture leads directly to a very modest “broadening” of the spec-
trum, in the sense of formation of groups of closely clustered

FIG. 5. Comparison of the experimental nitrogen K-edge NEXAFS �red, see
text� and the spectra generated by transitions from a quantized ground state
to a classical excited state at 300 K �purple� and 0 K �blue, dashed� with
broadening of 1 meV.

FIG. 6. Part �a� shows the experimental nitrogen K-edge NEXAFS �red, see
text� and the spectrum generated by purely vibrational transitions from the
ground to the excited state �blue sticks� broadened with a Voigt lineshape
�purple�. The 0 K vibrational spectrum is indistinguishable from that for 300
K. Part �b� shows the experimental nitrogen K-edge NEXAFS and the spec-
trum generated by rovibrational transitions from the ground to the excited
state �blue sticks� broadened with a Voigt lineshape �purple� at 300 K. Part
�c� is the experimental nitrogen K-edge NEXAFS and the spectrum gener-
ated by rovibrational transitions from the ground to the excited state �blue
sticks� broadened with a Voigt lineshape �purple� at 0 K. In all cases the
Voigt lineshape is 132 meV FWHM, and the Gaussian contribution is 38.4
meV FWHM.
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peaks associated with a single excited vibrational state. The
magnitude of this rotational effect at room temperature may
be determined by adjusting the experimentally-motivated
Lorentzian broadening used thus far until an optimum fit is
obtained. Consequently, we estimate that quantized rotations
are responsible for 3 meV of the experimentally determined
lifetime broadening for N2, and we estimate the pure lifetime
broadening to be 112 meV. This value is in acceptable agree-
ment with the value of 120 meV predicted from Auger life-
time calculations by Coville and Thomas, although we note
that they treated the ionized rather than the bound system.16

Although a discrepancy of 3 meV is very small indeed, it
is nevertheless interesting to consider that N2 is a common
benchmark system for determining beamline resolutions. In
determining a Lorentzian/Gaussian decomposition of a given
Voigt lineshape, a slight overestimate of the lifetime broad-
ening corresponds to a slight underestimate of the instrument
broadening. As a result, a more careful treatment of rotations
might be of interest to the x-ray spectroscopy community.

We are not aware of any experimental studies of the N2

NEXAFS spectrum �or other molecules� at low temperature;
given the negligible narrowing effect due to quenching of
higher rovibrational states as the temperature is decreased,
we think it unlikely that any will be performed soon. High-
temperature experiments might be of interest, however.
Guimarães et al. computed the distinct vibrational progres-
sions associated with several originating values of v for the
NO molecule, demonstrating for that system that high-
temperature spectra will indeed display additional
structure.36 In the present case, as contributions from v�0
become non-negligible, shoulders will appear that are of
spacing identical to that observed in the ground state spec-
trum but with an additional energy shift of �Ev0. A simple
population analysis suggests that v=1 will first make a con-
tribution of 10% or more at �1500 K.

One possible source of the discrepancy between our
peak locations and heights and those observed experimen-
tally is that we neglected the 
-splitting of the + and �
components of the 1�u term with increasing J in computing
our Franck–Condon spectrum.31 Although this effect will be
on the order of fractions of a wavenumber for low values of
J, it could be significant for the higher values included,
growing as large as tens of wavenumbers �or larger�. If the
effect were strong enough for high J, contributions from
from the P and R branches would disappear �as these would
not be symmetry-allowed transitions to the 1�u

+ state�. Even
assuming that the 1�u

− term were still near enough to degen-
erate with 1�u

+ that we could ignore its being symmetry-
forbidden, we would have to add the J-dependent splitting
�or combination defect� by hand, drawing values from an
appropriate experiment31 or computing them from a model.37

Thus, while it is possible that 
-splitting might contribute, it
is difficult to say a priori what the effect of including it
might be.

The most straightforward explanation of the peak loca-
tion and height discrepancy we observe, however, is that the
DFT ground- and excited-state potential geometries are dif-
ferent from those of the real physical states involved in the
x-ray absorption process. Specifically, and as mentioned pre-

viously, we would expect that our overbinding potential
curves overestimate the zero-point energy and the vibrational
level spacing. The blue line in Fig. 2 is the MLR4�6,8�
ground-state potential developed by Le Roy et al. from fit-
ting to experimental data for vibrational levels up to v=19; it
compares favorably to configuration-interaction results ob-
tained by Gdanitz.32,33 Comparison to our ground-state fit
shows that the well is, in fact, slightly too narrow, although
the overall geometry is quite similar. An analogous compari-
son may be made for the excited state: The blue line in Fig.
3 is the Morse potential implicit in the spectroscopic con-
stants for nitrogen reported by Chen et al.;6 once again, our
fitted curve is too narrow.

The results presented in Fig. 7 address the question of
how much improvement will be visible in the spectrum when
a better-quality ground- or excited-state potential curve is
used. Panel �a� is the same spectrum as in Fig. 6�b�, with
both states determined by our DFT calculations and subse-
quent fitting. Figure 7�b� substitutes the fitted Morse poten-
tial for the excited state curve, while Fig. 7�c� involves the
additional replacement of the ground-state potential by
MLR4�6,8�.6,32,33 Perhaps surprisingly, the best fit to the ex-
periment is obtained from the combination of the DFT
ground state and the excited state given by Chen et al.; the
peak locations are exceptionally accurate, and ratios between
the heights of adjacent peaks are also in excellent agreement.
�Of course, some improvement is to be expected, since an
empirical fit must necessarily incorporate the “right answer,”
in some sense.� Such is not true for the �in principle� superior
combination presented in Fig. 7�c�, which improves the pre-
dicted peak locations but actually suffers by comparison to
the purely DFT-derived spectrum with respect to the intensi-
ties. This unexpected reversal might be due to the fact that
the excited Morse potential was determined without consid-
eration of rotations, and, thus, already accounts for them in
an averaged sense. Alternately, it might be the result of for-
tuitous cancellation of errors when the Morse fit is combined

FIG. 7. Part �a� shows the experimental nitrogen K-edge NEXAFS �red, see
text� and the spectrum generated by rovibrational transitions from the
ground to the excited state �blue sticks�, as defined by our Gaussian fits, and
broadened with a Voigt lineshape �purple� at 300 K. Part �b� shows the
experimental nitrogen K-edge NEXAFS and the spectrum generated by
rovibrational transitions from the DFT ground state potential to the Morse
potential due to Chen et al. �blue sticks� and broadened with a Voigt line-
shape �purple�. Part �c� shows the experimental nitrogen K-edge NEXAFS
and the spectrum generated by rovibrational transitions from the Le Roy
et al. ground state to the Morse potential due to Chen et al. �blue sticks� and
broadened with a Voigt lineshape �purple�. In all cases the Voigt lineshape is
132 meV FWHM, and the Gaussian contribution is 38.4 meV FWHM.
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with the DFT ground state. Such inconsistent improvement
in the predicted spectrum emphasizes the general need for
higher-quality ground- and excited-state potentials, whether
empirical or ab initio. In any case, our constrained DFT ap-
proach leads to a reasonably good prediction.

IV. CONCLUDING REMARKS

In this article, we have shown that the NEXAFS spec-
trum can be predicted semiquantitatively using a combina-
tion of constrained DFT and exact methods for quantization
of the nuclear motions. In the process, we explored a hierar-
chy of models for the spectrum and established which of the
salient features of the spectrum appear at each successively
more accurate level of approximation. Specifically, we find
that a sharply peaked onset will appear once the ground state
has been vibrationally quantized; full Franck–Condon struc-
ture is recovered on quantization of the excited state, unsur-
prisingly; and the addition of rotational quantization shows
that there are associated very modest, but real, contributions
to the intrinsic broadening of the spectrum. We also ad-
dressed the possibility of nontrivial temperature dependence
in the spectrum. Finally, we have shown that it is possible to
improve the predicted spectrum by using constrained DFT in
combination with more accurate potentials and established
the predictive limits of our method in its current form.
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