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Derivative couplings and analytic gradients for diabatic states, with
an implementation for Boys-localized configuration-interaction singles

Shervin Fatehi, Ethan Alguire, and Joseph E. Subotnika)

Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia,
Pennsylvania 19104, USA

(Received 17 June 2013; accepted 23 August 2013; published online 26 September 2013)

We demonstrate that Boys-localized diabatic states do indeed exhibit small derivative couplings, as is
required of quasidiabatic states. In doing so, we present a general formalism for calculating derivative
couplings and analytic gradients for diabatic states. We then develop additional equations specific to
the case of Boys-localized configuration-interaction singles (CIS)—in particular, the analytic gradi-
ent of the CIS dipole matrix—and we validate our implementation against finite-difference results.
In a forthcoming paper, we will publish additional algorithmic and computational details and apply
our method to the Closs energy-transfer systems as a further test of the validity of Boys-localized
diabatic states. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820485]

I. INTRODUCTION

A. Exact diabatic states for use in dynamical theories

In quantum dynamics, a vast and rich literature exists de-
scribing the flow of energy between electronic and nuclear
degrees of freedom in model Hamiltonians with fixed dia-
batic states. The most famous dynamical models are undoubt-
edly Marcus theory1 and Redfield theory.2 On the one hand,
Marcus theory describes a simple model Hamiltonian for a
pair of fictitious, weakly-coupled diabatic electronic states,
each of which is in turn coupled strongly and linearly to a
bath of harmonic oscillators. On the other hand, Redfield the-
ory is more general, capturing the electronic dynamics of a
system of multiple diabatic electronic states, each coupled
weakly to an arbitary bath (usually chosen as harmonic). Mar-
cus and Redfield theory both begin with a set of fixed and im-
mutable diabatic states and then invoke Fermi’s golden rule
to determine the dynamical implications of their respective
Hamiltonians.

From this perspective, the adiabatic representation is
not privileged over a diabatic representation. Indeed, within
Marcus theory, the adiabatic states are never observable
and only serve as a distraction. Admittedly, there are some
specialized semiclassical nonadiabatic-dynamics algorithms
that require adiabatic representations to function in prac-
tice, e.g., surface-hopping dynamics.3 However, a truly rig-
orous theory of nonadiabatic dynamics must be indepen-
dent of representation, e.g., mixed quantum-classical Liou-
ville dynamics,4 fully-converged multiple spawning,5 and the
semiclassical implementation of the Meyer–Miller–Stock–
Thoss method.6 Moreover, dynamicists often prefer a diabatic
basis as a convenience:7 Diabatic potential-energy surfaces
are as smooth as adiabatic surfaces, but diabatic couplings are
much smoother than derivative couplings. In a best-case sce-
nario, a true dynamicist would prefer to work with parameter-
ized diabatic surfaces so as to focus computational resources

a)Electronic mail: subotnik@sas.upenn.edu

on capturing nuclear motion over a long timescale, rather than
on computing expensive electronic energies and forces many
times along short trajectories.

To sum up: Problems in nonadiabatic dynamics can often
be posed and addressed most naturally using a simple model
Hamiltonian with a fixed set of diabatic states, {|!A⟩}, with
derivative couplings vanishing by hypothesis,

∇R |!A⟩ = 0 ⇒ d[R]
AB ≡ ⟨!A|∇R|!B⟩ = 0. (1)

There are enough difficulties inherent in simulating and an-
alyzing dynamics that a practicing theorist does not want to
worry about computing diabatic potential-energy surfaces and
coupling parameters.

B. Generating adiabatic states for real molecules
from quantum chemistry

The motivation above notwithstanding, diabatic states
are not the fundamental starting point for modern quan-
tum chemistry as practiced by electronic-structure theorists.8

Rather, the basic mantra is the Born–Oppenheimer approxi-
mation, which assumes that all electronic motion occurs on a
timescale over which the nuclei are effectively frozen. Thus,
to generate potential-energy surfaces, the common approach
is to diagonalize the electronic Hamiltonian at each given set
of nuclear coordinates. The result is that one always computes
adiabatic states ab initio.

From the perspective of quantum chemistry, the
full Hamiltonian is composed of the nuclear kinetic
energy added to an electronic Hamiltonian,

H (r, R) = TN(R) + Hel(r; R). (2)

The adiabatic states are simply defined as those electronic
states which diagonalize the electronic Hamiltonian and de-
pend parametrically on the nuclear position R,

Hel(r; R) |"I (R)⟩ = EI (R) |"I (R)⟩. (3)
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It is clear that the nature of the adiabatic states can change
dramatically with the nuclear coordinate. To first order, elec-
tronic relaxation is mediated by so-called derivative (or nona-
diabatic) couplings between adiabatic states; these couplings
are induced by nuclear motion,

d[R]
IJ = ⟨"I (R)|∇R|"J (R)⟩ =

∫ ∞

−∞
"I (r; R)∇R"J (r; R) dr.

(4)
Following Tully’s treatment of the time-dependent
Schrödinger equation,3 the electronic wavefunction can
be propagated in time with the nuclear trajectory R(t) treated
as a parameter. All electronic relaxation is reflected in a rate
of transition proportional to the nuclear velocity V(t) ≡ Ṙ(t),

1
τ I→J

hop

∝ d[R(t)]
IJ · V(t). (5)

In the end, standard electronic-structure theory addresses
nonadiabatic dynamics by computing accurate adiabatic
potential-energy surfaces for the ground and excited states,
EI (R), and the derivative couplings between those states,
d[R]

IJ .

C. Generating approximate diabatic states from real
adiabatic states

Given the need for diabatic states in quantum dy-
namics and the ease of generating adiabatic states from
electronic-structure theory, many approaches have been pro-
posed over the last 50 years for constructing approximate di-
abatic states from adiabatic states. Early approaches by Baer9

and Truhlar10 focused on small molecules and sought to ob-
tain diabatic states with rigorously small derivative couplings,
d[R]

AB ≈ 0. More recently, Yarkony11, 12 has focused on meth-
ods to fit diabatic states with minimal derivative couplings for
molecules with a handful of atoms.

As interest in larger molecules has increased over
the last two decades, there has been an explosion of
new transformations13 for constructing diabatic states. Us-
ing chemical intuition, Köppel, Cederbaum, and co-workers
introduced14 block-diagonalization of chemically relevant
reference states; later, Atchity and Ruedenberg introduced
configurational uniformity;15, 16 and Nakamura and Truh-
lar developed the four-fold way.17–19 Focusing on physi-
cal observables, Cave and Newton wrote seminal papers20, 21

proposing the Generalized Mulliken–Hush (GMH) method of
generating diabatic states with a localized charge distribution
for describing electron transfer (as did Meyer and Werner22).
These notions of localized diabatization were later taken
up by Voityuk23 (fragment-charge difference) and Hsu24, 25

(fragment-energy difference). Our group showed recently that
GMH is really a limiting case of Boys localization,26 and
we have introduced both Boys- and Edmiston–Ruedenberg-
localized27 diabatic states as generalizations of orbital lo-
calization in traditional quantum chemistry.28, 29 We fur-
ther showed that localized diabatization can be justified
on the basis of different assumptions about system-solvent
interactions.27, 30

In many applications, the essential aim of localized-
diabatization techniques is to generate the Hamiltonian matrix
element between diabatic states, HAB, also called the diabatic
coupling. HAB is the only inter-state matrix element in an ex-
actly diabatic basis, and the Marcus rate of electron or energy
transfer is proportional to |HAB|2. But localized diabatic states
are not exactly diabatic states, and their derivative couplings
are not exactly zero. Thus, localized diabatic states are cou-
pled together by diabatic and derivative couplings, the latter
being presumed small. To our knowledge, however, derivative
couplings between localized diabatic states have never been
computed, and only a few reports of estimates exist in the
literature.31, 32 That such derivative couplings are small has
never actually been verified.

With these facts in mind, the goal of this paper is to de-
velop a rigorous method for computing derivative couplings
between localized diabatic states. We will focus on the case
of Boys-localized diabatic states in configuration-interaction-
singles (CIS) theory, but our approach is quite general. Having
computed the couplings, we will be able to verify or dismiss
the validity and usefulness of localized diabatic representa-
tions. We will also show that our formalism can be used to
obtain the analytic first derivative of any quantity in the di-
abatic representation, e.g., the gradient of the diabatic cou-
pling H

[Q]
AB , which provides an estimate of non-Condon ef-

fects. In this paper, we elaborate the necessary theory. In an
upcoming publication,33 we will apply our methods to the
Closs energy-transfer molecules, which constitute a canoni-
cal test set with experimentally-measured properties largely
consistent with the predictions of Marcus theory.34–38 In par-
ticular, we will assess for each molecule whether the diabatic
derivative couplings are actually small along the reaction co-
ordinate and whether the Condon approximation is violated,
which bears directly on the accuracy of the Marcus energy-
transfer rates previously computed by our group.38

D. Outline of the present work

The remainder of this paper is organized as follows: We
conclude this section with an overview of our notational con-
ventions and symbols. In Sec. II, we develop the general the-
ory for derivative couplings between diabatic states and pro-
vide the relevant expressions for the Boys diabatization; we
note that the same formalism can be used to obtain essentially
any first-order analytic gradient involving diabatic states. Be-
cause gradients of the adiabatic dipole matrix are required in
computing Boys-diabatic derivative couplings, we present in
Sec. III an analytic expression for their calculation in the con-
text of CIS. We validate our theory against finite-difference
calculations for lithium hydride and make a simple applica-
tion to p-benzoquinone in Sec. IV. Finally, we recapitulate
our findings in Sec. V, concluding with the most immediate
questions raised by our work. Respectively, Appendices A–
E discuss the coupled-perturbed CIS (CPCIS) and coupled-
perturbed Hartree–Fock (CPHF) equations for calculating
amplitude- and orbital-response contributions to the adiabatic
dipole-matrix gradient; provide expressions for the various
constituents of the mixed-derivative matrix appearing in the
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CPCIS equations; detail the manipulations leading to our
final analytic equation for the dipole-matrix gradient; present
the exact formula for overlap between nonorthogonal, singly-
excited Slater determinants used in the finite-difference cal-
culations of Sec. IV; and list Cartesian coordinates for the
distorted p-benzoquinone system.

E. Notation and symbols

In the text to follow, we will adhere to a variety of nota-
tional conventions and necessarily introduce quite a few sym-
bols. This section explains the basic choices we have made
in this regard, while Table I lists symbols that will appear,
together with brief descriptions and an index to associated
defining equations.

Diabatic states will be represented by !, with labels {A,
B, C, D, . . . }. They are obtained by mixing the adiabatic
states, which are given by " and the labels {I, J, K, L, . . . }.
(We will sometimes refer to these states as “diabats” and “adi-
abats.”) Elements of the diabatization matrix U will be written
with the diabatic-state index first, such that mixing of state I
into state A is due to the element UAI. M of the adiabatic states
are selected for diabatization.

The system contains NA atoms, corresponding to 3NA

degrees of freedom in Cartesian space. R is the full set of
nuclear positions and also, by convention, the CIS transition
density; context will make this distinction clear. RQ is a spe-
cific nuclear position, and ∇Q is the gradient with respect to

this position. The superscript [Q] is shorthand for the nuclear
gradient of a quantity or a label for the derivative coupling in-
duced by atom Q. We will use a superscript [R] to refer to the
gradient over the entire configuration space.

When the adiabats are given explicit form, Slater deter-
minants will be represented by $. Excitations will be labeled
to indicate which occupied MOs have been promoted to vir-
tuals, e.g., $a

i for a singles determinant; the associated am-
plitudes are, e.g., tai . The constituent molecular orbitals are
represented by φ. We use spin orbitals everywhere, such that
spin variables remain implicit.

The Hartree–Fock molecular-orbital basis comprises No

spin orbitals, O occupied and V virtual. Occupied MOs will
be labeled by {i, j, k, ℓ, m, . . . }; virtual MOs by {a, b, c,
d, . . . }; and generic (occupied or virtual) MOs by {p, q, s,
t, . . . }. Atomic orbitals, represented by ϕ, will be indexed in-
terchangeably with either {µ, ν, λ, σ} or {α, β, γ , δ}. The
coefficients characterizing a specific molecular orbital will
be given by Cµp, with the AO index always listed first. We
will use /µνλσ ≡ ⟨µν||λσ ⟩ to represent antisymmetrized two-
electron integrals in physicists’ notation.

Atomic-orbital quantities, once introduced, will be used
almost exclusively. In doing so, we will follow certain in-
dexing conventions in order to keep our expressions as com-
pact as possible. P′ (formally equivalent to S−1) will always
be indexed by µα. Gradients of AO quantities will always
be labeled from the set {µ, ν, λ, σ}; the orbital and ampli-
tude response gradients ![Q] and t[Q], which are naturally

TABLE I. Symbols appearing in this paper, their defining equations, and their meanings.

Eq. Symbol Meaning Eq. Symbol Meaning

. . . NA Number of atoms . . . ε Molecular-orbital energy

. . . No Total number of spin orbitals . . . a†/a Creation/annihilation operators

. . . O Number of occupied spin orbitals (41) µ Dipole operator or matrix

. . . V Number of virtual spin orbitals . . . O Arbitrary operator

. . . M Number of states in diabatization (31) A CIS supermatrix
(30) " Generic (or CIS) adiabatic state (36) ω CIS excitation energy
(7) ! Generic (quasi-)diabatic state (30) t CIS excitation amplitudes
(1) d[Q] Derivative coupling due to atom Q (37) R CIS transition density
(13) f Boys diabatization functional (37) B CIS difference density
(7) U Diabatization (rotation) matrix (39) D General (or inter-CIS) density
(10) θ Diabatic mixing angle (A4) D CPCIS supermatrix
(16) A U[Q] unitarity supermatrix (A5) L CPCIS Lagrangian for µ[Q]

(18) B U[Q] constraint supermatrix (A4) M[Q]
CPCIS mixed-derivative matrix

(17) C[Q] U[Q] constraint matrix (A9) z CPCIS z-vector for µ[Q]

. . . $ Slater determinant (C3) η CPCIS scaling vector

. . . φ Molecular spin orbital (C3) ζ CPCIS relaxer of attachment

. . . ϕ Atomic orbital (C3) ζ ′ CPCIS relaxer of detachment

. . . H Electronic Hamiltonian (C8) t CPCIS-relaxed CIS amplitude

. . . h One-electron integrals (C8) R CPCIS-relaxed transition density

. . . $ Two-electron integrals (C8) B CPCIS-relaxed difference density

. . . F Fock matrix (A17) ∂2E
∂!2 CPHF supermatrix

. . . C Molecular-orbital coefficients (A17) M[Q] CPHF mixed-derivative matrix

. . . S Overlap matrix (B8) Y CPHF Lagrangian for ω[Q] and d[Q]

(37) P Hartree–Fock density (A14) L̃ CPHF Lagrangian for µ[Q]

(43) P′ Formal equivalent to S−1 . . . z CPHF z-vector for ω[Q] and d[Q]

. . . E Energy of an electronic state (A18) z̃ CPHF z-vector for µ[Q]

. . . ! Hartree–Fock orbital-rotation angle (A21) B̃ Fully-relaxed difference density
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represented in the MO basis, will be indexed with ck and a
i
,

respectively. We will reserve the index pairs {µλ, σν} and
{αγ , δβ} for quantities that will be contracted with $
or $[Q].

Matrices will be italicized when in coordinate form (e.g.,
UAI) and set in boldface when referred to in their entirety
(e.g., U). Because the dipole operator µ is associated with
a 3-vector in Cartesian space, it will always be set in bold-
face, as will vector quantities derived from it. These quanti-
ties include the Lagrangians and z-vectors appearing in the
coupled-perturbed CIS and coupled-perturbed Hartree–Fock
equations, as well as the corresponding relaxed quantities.

Any asymmetric matrix can be partitioned into symmet-
ric and antisymmetric components according to the relation-
ships

⎧
⎪⎨

⎪⎩

Dµν = DS
µν + DA

µν

DS
µν ≡ 1

2

(
Dµν + Dνµ

)

DA
µν ≡ 1

2

(
Dµν − Dνµ

)

⎫
⎪⎬

⎪⎭
⇐⇒

⎧
⎪⎨

⎪⎩

D = DS + DA

DS ≡ 1
2

(
D + DT

)

DA ≡ 1
2

(
D − DT

)

⎫
⎪⎬

⎪⎭
.

(6)

As such, we know that the trace of D against some other sym-
metric (antisymmetric) matrix is the same as the trace of DS

(DA) against that matrix. We will make frequent use of this
fact, generally without comment.

II. DERIVATIVE COUPLINGS BETWEEN
DIABATIC STATES

In this section, we develop the formalism necessary for
computing derivative couplings between diabatic states; our
approach is general, insofar as our expressions are initially
agnostic with regard to both the diabatization method and the
initial set of adiabatic states. We will select a diabatization and
an adiabatic basis when necessary to further our discussion,
but our reasoning remains valid independent of these choices.

A. General theory of diabatic-state
derivative couplings

We begin with a set of M orthonormal adiabatic states,
{|"I⟩}. Applying an arbitrary diabatization method mixes
these states together to return M diabatic states, {|!A⟩}, de-
fined by

|!A⟩ ≡
∑

I

|"I ⟩ UAI , (7)

where U is the M × M diabatization matrix. The overlap be-
tween any two of the resulting diabats is given by

⟨!A|!B⟩ =
∑

IJ

UAI ⟨"I |"J ⟩ UBJ =
∑

I

UAIUBI . (8)

We will require that the diabats maintain orthonormality,
which is equivalent to imposing the unitary condition on U,

∑

I

UAIUBI = δAB ⇐⇒ UUT = I ⇐⇒ UT = U−1.

(9)

Consequently, the diabatization matrix has the form of a rota-
tion matrix; for a two-state diabatization, it can be written as

U(θ ) =
[

cos θ sin θ

− sin θ cos θ

]

, (10)

where we have introduced the mixing angle θ . Equal mixtures
of the adiabatic states correspond to θ = (π /4).

The derivative couplings between the diabats can be ob-
tained by inserting Eq. (7) into the definition in Eq. (1),

d[Q]
AB =

(
∑

I

UAI ⟨"I |
)

∇Q

(
∑

J

|"J ⟩UBJ

)

=
∑

IJ

UAI d[Q]
IJ UBJ +

∑

I

UAIU
[Q]
BI . (11)

We see immediately that the derivative couplings between
diabatic states naturally partition into two discrete contribu-
tions. The first term in Eq. (11) simply conjugates the adia-
batic derivative couplings into the new basis; the second term
accounts for couplings induced by changes in the composition
of the diabats, as encoded in U[Q].

Assuming that adiabatic derivative couplings are avail-
able for some desirable model chemistry, the problem at hand
reduces to computing the gradient of the diabatization matrix.
Obviously, the unitary condition of Eq. (9) does not provide
enough information to fix its elements; taking the gradient
yields

∑

I

U
[Q]
AI UBI +

∑

I

UAIU
[Q]
BI = 0 (12)

for each of the [M(M + 1)/2] distinct (matched or unmatched)
AB pairs. Additional constraints on U[Q] must be supplied by
specifying a diabatization method; for the sake of concrete-
ness, we will select the Boys diabatization.

B. Convergence condition for Boys-diabatic states

Boys-diabatic states are defined as maximizing the func-
tional of {|!A⟩} (function of U)

f (U) =
∑

AB

|µAA − µBB |2 , (13)

where µ is the electronic dipole operator and | · | denotes
the vector norm. In other words, Boys diabats are orthonor-
mal linear combinations of the adiabatic states chosen to
have maximally dissimilar charge distributions; they are well-
suited to describing charge transfer within and between
molecules.

In practice, the Boys functional is maximized using the
iterative method of Jacobi sweeps. At convergence, the first
variation of f in the diabats must vanish; the associated condi-
tion is39

µAB · (µAA − µBB) = 0 (14)

for each of the [M(M − 1)/2] distinct (unmatched) AB pairs.
This result, when combined with the unitary conditions of
Eq. (9), yields M2 equations in M2 unknowns, uniquely deter-
mining the diabatization matrix. By extension, Eq. (12) can
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be combined with the gradient of Eq. (14),

0 =
∑

IJ

µ
[Q]
IJ · (µAA − µBB) UAIUBJ

+
∑

IJ

µIJ · (µAA − µBB)
(
U

[Q]
AI UBJ + UAIU

[Q]
BJ

)

+
∑

KL

µAB · µ
[Q]
KL (UAKUAL − UBKUBL)

+
∑

KL

2µAB · µKL

(
U

[Q]
AK UAL − U

[Q]
BK UBL

)
, (15)

in order to fix the elements of U[Q].

C. Supermatrix equations for U[Q]

We have enough information to solve for the
diabatization-matrix gradient, but the conditions of Eqs. (12)
and (15) are not practical for the purpose—at least, not as
written. We emphasize that these equations form a linear
system by rewriting them in terms of a single matrix element,
U

[Q]
CK . Reformulating Eq. (12) in this way is straightforward:

0 =
∑

KC

(δACUBK + δBCUAK ) U
[Q]
CK

≡
∑

KC

AABKCU
[Q]
CK ∀ A ≤ B, (16)

where we define the unitarity supermatrix A. We can
similarly reexpress Eq. (15) by separating out the terms

that are independent of U[Q],

CBoys[Q]
AB ≡

∑

IJKL

[
µ

[Q]
IJ · µKL + µIJ · µ

[Q]
KL

]

×UAIUBJ (UAKUAL − UBKUBL) . (17)

Simple manipulations then yield

−CBoys[Q]
AB

=
∑

KC

{
δAC [2µAB · µKA + (µAA − µBB) · µKB]

+ δBC [(µAA − µBB) · µKA − 2µAB · µKB]

}

U
[Q]
CK

(18)

≡
∑

KC

BBoys
ABKCU

[Q]
CK ∀ A < B. (19)

In light of these results, we see that obtaining U[Q] requires us
to solve 3NA supermatrix equations

∑

KC

[
AABKC

BBoys
ABKC

]

U
[Q]
CK = −

[
0

CBoys[Q]
AB

]

, (20)

with both universal (A) and diabatization-specific (B, C[Q])
components.

To solve Eq. (20), we combine A and B to form a
square constraint matrix of size M2 × M2, as shown in par-
tial detail below (Eq. (21)). Given that diabatic states are usu-
ally formed from a small subset of the adiabats—typically
M = 2—the constraint matrix can be inverted directly. Of
course, there can in theory be specific systems and geometries
for which the diabatization itself is ill-behaved, giving rise to
a vanishing row—i.e., singularity—in the constraint matrix.

M2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1111 A1112 · · · A111M A1121 · · · A11MM

...
...

A1M11 A1MMM

A2211 A22MM

...
...

AMM11 AMMMM

B1211 B12MM

...
...

B1M11 B1MMM

B2311 B23MM

...
...

B(M−1)M11 B(M−1)M12 · · · B(M−1)M1M B(M−1)M21 · · · B(M−1)MMM

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U
[Q]
11

U
[Q]
21

...

U
[Q]
M1

U
[Q]
12

...

U
[Q]
MM

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
︸ ︷︷ ︸

3NA

M2 = −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

C[Q]
12

...

C[Q]
(M−1)M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
︸ ︷︷ ︸

3NA

M2.

(21)
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D. Analytic gradients for diabatic states: E[Q]
A , H[Q]

AB ,
and µ

[Q]
AB

Although the primary aim of this paper is to compute
diabatic-state derivative couplings, we note that we can re-
purpose U[Q] to calculate analytic gradients of essentially
any property of interest. We briefly outline the necessary
equations here, deferring more detailed discussion to future
publications.

Suppose we have some arbitrary operator O and that its
matrix elements and their analytic gradients, OIJ and O[Q]

IJ ,
are available. The corresponding diabatic quantities are

OAB =
∑

IJ

UAIOIJ UBJ , (22)

O[Q]
AB =

∑

IJ

U
[Q]
AI OIJ UBJ +

∑

IJ

UAIO[Q]
IJ UBJ

+
∑

IJ

UAIOIJ U
[Q]
BJ , (23)

which can be computed straightforwardly, given U[Q]. For ex-
ample, diabatic energies and gradients may be obtained from

EA =
∑

I

UAIEIUAI , (24)

E
[Q]
A =

∑

I

UAIE
[Q]
I UAI + 2

∑

I

UAIEIU
[Q]
AI (25)

for use in optimizing geometries on the diabatic surface; dia-
batic couplings and coupling gradients from

HAB =
∑

I

UAIEIUBI , (26)

H
[Q]
AB =

∑

I

U
[Q]
AI EIUBI +

∑

I

UAIE
[Q]
I UBI

+
∑

I

UAIEIU
[Q]
BI (27)

for use in evaluating the validity of the Condon approximation
(H [Q]

AB ≈ 0); and diabatic dipole matrices and dipole gradients
from

µAB =
∑

IJ

UAIµIJ UBJ , (28)

µ
[Q]
AB =

∑

IJ

U
[Q]
AI µIJ UBJ +

∑

IJ

UAIµ
[Q]
IJ UBJ

+
∑

IJ

UAIµIJ U
[Q]
BJ (29)

for use in constructing spectra incorporating Herzberg–Teller
effects, such as vibronic intensity borrowing.40 Of course, CIS
spectra should be qualitatively accurate at best, irrespective of
whether they are obtained from the adiabatic or diabatic rep-
resentation; CIS transition dipole moments do not even satisfy
the Thomas–Reiche–Kuhn sum rule for oscillator strengths.41

III. DERIVATIVE COUPLINGS BETWEEN
BOYS-DIABATIC CIS STATES: ANALYTIC
THEORY FOR µ

[Q]
IJ

To obtain U[Q] in practice, we must make a specific
choice of adiabatic states, then compute the adiabatic dipole
matrix µIJ and its gradient µ

[Q]
IJ in order to construct B and

C[Q]. Here we will diabatize and couple CIS states, for two
reasons: First, CI derivative couplings42–48 and gradients49–53

are well-known and readily available to us from our previ-
ous work.54 (Please refer to the latter part of Appendix B
for the equations.) Second, and most immediately relevant,
it is not unreasonably difficult to write down a complete
analytic-gradient theory for µ

[Q]
IJ within CIS by invoking basic

definitions and applying the chain rule. Similar calculations
in time-dependent Hartree–Fock or time-dependent density-
functional theory require a more sophisticated approach based
on linear response.55

A. CIS states

CIS is perhaps the simplest theory of excited states.41

Each adiabatic excited state has the form

|"I ⟩ =
∑

ia

t Ia
i

∣∣$a
i

〉
. (30)

The CIS amplitudes tI are uniquely specified by diagonalizing
the CIS supermatrix

Aℓdkc ≡
〈
$d

ℓ

∣∣H
∣∣$c

k

〉
(31)

= /dkℓc + δkℓFdc − δcdFℓk + δkℓδcdE (32)

= /dkℓc + δklδcd (E + εc − εk) , (33)

where we have introduced the orbital energies (diagonal
Fock-matrix elements) Fpq = εpδpq and the Hartree–Fock
energy E. Because singles determinants are orthogonal,
⟨$a

i |$b
j ⟩ = δijδab, the CIS normalization condition can be

written solely in terms of the amplitudes,

⟨"I |"J ⟩ =
∑

ijab

t Ia
i

〈
$a

i

∣∣$b
j

〉
tJb
j =

∑

ia

t Ia
i tJa

i = δIJ . (34)

The amplitudes also satisfy the CIS energy equation
∑

kc

Aℓdkct
Ic
k = EI t

Id
ℓ , (35)

with energies given by

EI = E +
∑

µν

hµνB
II
µν +

∑

µνλσ

(
RI

µλR
I
σν + BII

µλPσν

)
/µνλσ

≡ E + ωI . (36)

In Eq. (36), we have defined the CIS excitation energy ωI and
atomic-orbital representations of the Hartree–Fock density P,
CIS transition density RI , and (generalized) CIS difference
density BIJ (in terms of the molecular-orbital coefficients C),

Pµν ≡
∑

m

CµmCνm, (37a)
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RI
µν ≡

∑

ia

Cµat
Ia
i Cνi , (37b)

BIJ
µν ≡

∑

iab

Cµat
Ia
i tJb

i Cνb −
∑

ija

Cµit
Ia
i tJa

j Cνj . (37c)

B. Adiabatic dipole matrix µIJ

The elements of the adiabatic dipole matrix are given in
second quantization by

µIJ =
∑

pq

µpq⟨"I |a†
paq |"J ⟩ ≡

∑

pq

µpqD
IJ
pq =

∑

µν

µµνD
IJ
µν ,

(38)
where DIJ is the inter-CIS transition density between states I
and J,

DIJ
pq =

∑

iab

t Ia
i tJb

i δapδbq −
∑

ija

t Ia
i tJa

j δjpδiq + δIJ δocc
pq . (39)

We can immediately write down µIJ in MO and AO repre-
sentations,

µIJ =
∑

iab

t Ia
i µabt

Jb
i −

∑

ija

t Ia
i µij t

Ja
j + δIJ

∑

m

µmm (40)

=
∑

µν

µµνB
IJ
µν + δIJ µHF, (41)

where we have identified the Hartree–Fock dipole moment.
This HF contribution will cancel from Eqs. (13) and (14) and
cannot have any effect on our diabatization. We may therefore
omit this term when constructing B and C[Q], although we
retain it in our expressions.

C. Adiabatic dipole-matrix gradient µ
[Q]
IJ

The gradient of Eq. (41) can be obtained by noting the
dependence of the difference density on the CIS amplitudes
and the MO coefficients, which depend in turn on the over-
lap matrix and the Hartree–Fock orbital-rotation angles, i.e.,
BIJ ≡ BIJ

[
tI , tJ , C(S,!)

]
. (The implicit dependence of the

density on the underlying atomic-orbital basis—and the asso-
ciated overlap matrix S—is the source of Pulay forces in an-
alytic gradients;56 we must of course account for these terms
explicitly.) Applying the chain rule, we obtain

µ
[Q]
IJ = δIJ µ

[Q]
HF +

∑

µν

µ[Q]
µν BIJ

µν

+
∑

µναβ

µµν

(
∂BIJ

µν

∂Sαβ

)

tI ,tJ ,!

S
[Q]
αβ

+
∑

kcµν

µµν

(
∂BIJ

µν

∂5ck

)

tI ,tJ ,S

5
[Q]
ck

+
∑

iabµν

µµνCµa

(
t
Ia[Q]
i tJb

i + t Ia
i t

Jb[Q]
i

)
Cνb

−
∑

ijaµν

µµνCµi

(
t
Ia[Q]
i tJa

j + t Ia
i t

Ja[Q]
j

)
Cνj . (42)

Invoking the standard relations57

∂Cµp

∂Sαβ

= −1
2

∑

q

CµqCαqCβp ≡ −1
2
P ′

µαCβp, (43)

∂Cµp

∂5ck

= δcpCµk − δkpCµc (44)

leads in short order to the partial derivatives

(
∂BIJ

µν

∂Sαβ

)

tI ,tJ ,!

= −1
2

(
P ′

µαBIJ
βν + P ′

ναBIJ
µβ

)
, (45)

(
∂BIJ

µν

∂5ck

)

tI ,tJ ,S

=
∑

ia

t Ic
i tJa

i CνaCµk +
∑

ia

tJ c
i t Ia

i CµaCνk

+
∑

ia

CµcCνi t
Ja
i t Ia

k +
∑

ia

CνcCµit
Ia
i tJa

k .

(46)

Inserting these results into Eq. (42) and collecting terms leads
to the expression

µ
[Q]
IJ = δIJ µ

[Q]
HF +

∑

µν

µ[Q]
µν BIJS

µν −
∑

µναβ

S[Q]
µν P ′

µαµαβBIJS
νβ

+
∑

kc

⎡

⎣

∑
iaµν

(
t Ic
i tJa

i + tJ c
i t Ia

i

)
CµaµµνCνk

+
∑

iaµν CµcµµνCνi

(
t Ia
i tJa

k + tJa
i t Ia

k

)

⎤

⎦ 5
[Q]
ck

+
∑

ia

⎡

⎣
∑

bµν

CµaµµνCνbt
Jb
i −

∑

jµν

tJa
j CµjµµνCνi

⎤

⎦ t
Ia[Q]
i

+
∑

ia

⎡

⎣
∑

bµν

CµaµµνCνbt
Ib
i −

∑

jµν

t Ia
j CµjµµνCνi

⎤

⎦ t
Ja[Q]
i ,

(47)

which is manifestly symmetric in I and J, if one considers that(
BIJ

)T = BJI . For completeness, we note that the HF dipole
gradient is given by

µ
[Q]
HF =

∑

µν

µ[Q]
µν Pµν −

∑

µναβ

S[Q]
µν P ′

µαµαβPνβ

− 2
∑

kcµν

CµcµµνCνk5
[Q]
ck . (48)

Details of the amplitude- and orbital-response calcula-
tions necessary for evaluating Eq. (47) are provided in
Appendix A. The resulting analytic expression for the CIS
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dipole-matrix gradient is

µ
[Q]
IJ = δIJ µ

[Q]
HF +

∑

µν

µ[Q]
µν BIJS

µν −
∑

µναβ

S[Q]
µν P ′

µαµαβBIJS
νβ

+
∑

µν

h[Q]
µν

(
B̃IJ

µν + B̃JI
µν

)

+
∑

µνλσ

[
R

IJ

µλR
J
σν + R

JI

µλR
I
σν +

(
B̃IJ

µλ + B̃JI
µλ

)
Pσν

]
/

[Q]
µνλσ

−
∑

µναβ

S[Q]
µν P ′

µαFαβ

(
B̃IJ

νβ + B̃JI
νβ

)

− 1
2

∑

µναβγ δ

S[Q]
µν P ′

µα

⎡

⎢⎢⎢⎢⎢⎢⎣

R
IJ

νγ RJ
δβ + RJ

νγ R
IJ

δβ

+R
IJ

γ νR
J
βδ + RJ

γ νR
IJ

βδ

+R
JI

νγ RI
δβ + RI

νγ R
JI

δβ

+R
JI

γ νR
I
βδ + RI

γ νR
JI

βδ

⎤

⎥⎥⎥⎥⎥⎥⎦
/αβγ δ

−
∑

µναβγ δ

S[Q]
µν P ′

µαPνγ /αβγ δ

(
B̃IJ

δβ + B̃JI
δβ

)
. (49)

The various quantities appearing in this equation are named
in Table I and/or defined in Eqs. (37) (P, R, B), (43) (P′), (48)
(µ[Q]

HF ), (A21) (B̃), and (C8) (R). Further useful definitions are
given in Eqs. (A5), (A9), (A14), (A18), and (C3).

D. Estimated computational costs of our method

Having obtained a closed form for µ
[Q]
IJ , we take a mo-

ment to consider the cost of calculating the diabatization-
matrix gradient. The most computationally costly and
memory-intensive operation required to obtain the elements
of the dipole-matrix gradient is the contraction of form D ·
$[Q] · D′, which occurs twice in calculating the CIS gradi-
ent or (adiabatic) derivative coupling. Referring to Eq. (49)
and noting that the relaxed densities R and B̃ are Cartesian
3-vectors, we see that each diagonal element of the dipole-
matrix gradient requires 6 contractions with $[Q], while each
off-diagonal element involves 9. In other words, we may write

cost
(
ω

[Q]
I

)
≈ cost

(
d[Q]

IJ

)
≈ 1

3
cost

(
µ

[Q]
I

)
≈ 2

9
cost

(
µ

[Q]
IJ

)
.

(50)
For a Boys diabatization involving M states, the relevant part
of µ

[Q]
IJ for computing U[Q] includes M diagonal and [M(M −

1)/2] off-diagonal elements:

cost(U[Q]) ≈ Mcost
(
µ

[Q]
I

)
+ M(M − 1)

2
cost

(
µ

[Q]
IJ

)

≈ 3M(3M + 1)
4

cost
(
ω

[Q]
I

)
. (51)

We therefore estimate that the cost of our method for a
two-state Boys diabatization will be 10 times that of a CIS
gradient.

IV. NUMERICAL RESULTS

We have implemented restricted and unrestricted ver-
sions of Eqs. (11), (20), and (49) within a development ver-
sion of the Q-CHEM software package.58, 59 To verify our

derivations and implementation, we validated our method
against finite difference for a variety of diabatic quantities
and a range of systems, including H2, HeH+, LiF, H2O, and
NHFCl. Results for LiH are provided below; a simple appli-
cation of our method to p-benzoquinone follows.

A. Validation by finite difference: LiH Boys-diabatic
derivative couplings

A stringent test of our analytic derivative couplings is to
compare them for a small system against the corresponding
central-difference formula for each Cartesian degree of free-
dom x,

d[x]
IJ ≈

⟨"I (x)|"J (x + 6x)⟩ − ⟨"I (x)|"J (x − 6x)⟩
26x

+O[(6x)2], (52a)

d[x]
AB ≈

⟨!A(x)|!B (x + 6x)⟩ − ⟨!A(x)|!B (x − 6x)⟩
26x

+O[(6x)2]. (52b)

Slater determinants associated with different molecular ge-
ometries need not be orthonormal, so we must write down
an exact expression for their overlap. Distinguishing deter-
minants with different underlying geometries by a prime, we
write

⟨"I |" ′
J ⟩ =

∑

ijab

t Ia
i

〈
$a

i

∣∣$b
j
′〉 t ′Jb

j , (53a)

⟨!A|!′
B⟩ =

∑

ijab

UAI t
Ia
i

〈
$a

i

∣∣$b
j
′〉 t ′Jb

j U ′
BJ . (53b)

We then apply a theorem due to Löwdin60 to evaluate the sin-
gles bracket; the result can be found in Appendix D.

We performed calculations for LiH at the HF/cc-pVDZ
minimum characterized by Li–H = 1.618436 Å, with the
molecule aligned to the z axis. Table II lists the lowest-lying
CIS/cc-pVDZ singlet states at this geometry; we focus our at-
tention on the non-degenerate S1/S3 state pair. Consistent with
our previous analysis54 of the scaling of finite-difference er-
ror in LiH derivative couplings, we used a step size of 6x =
10−4 Å in our calculations; when combined with HF and CIS
energy-convergence conditions of 10−8 Eh, this choice leads
to an expected agreement between finite difference and ana-
lytical theory of ∼10−4 a−1

0 . As shown in Table III, we more
than satisfy this expectation—in other words, our derivation

TABLE II. Symmetries, excitation energies ω, and dipole moments µz of
the lowest-lying CIS/cc-pVDZ singlet states of LiH at the Hartree–Fock min-
imum. The HF energy is E = −7.983686 Eh.

State Symmetry ω (eV) µz (D)

S1 7+ 4.0248 − 6.7308
S2 / 5.0651 − 1.1415
S3 7+ 6.9219 6.2950
S4 / 7.8317 − 1.0054
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TABLE III. Derivative couplings induced by motion of atom Q between the
adiabatic state pair S1/S3 and the corresponding Boys diabats of LiH, as com-
puted for CIS/cc-pVDZ by finite difference (FD: Eqs. (52), (53), and (D1)),
analytic theory for the adiabats (CIS: Eqs. (B5) and (B7)–(B9)), and analytic
theory for the diabats (Boys: Eqs. (11), (20), and (49)). The agreement is far
better than the expected order of errors (∼10−4 a−1

0 ). Note that the couplings
have vanishing components except along the z axis.

d[Q]
IJ

(
a−1

0

)
d[Q]

AB

(
a−1

0

)

Atom (Q) FD CIS FD Boys

H 0.047933 0.047931 0.079044 0.079043
Li − 0.146642 − 0.146641 − 0.177753 − 0.177753

of the Boys-diabatic analytic-gradient theory is correct, and
our implementation is sound.

We emphasize that, in diabatizing S1 and S3, we intend
only to validate our implementation of Eqs. (11), (20), and
(49). Obviously, S1 and S3 are not usefully mixed at this
geometry; the energy gap between them is significant.61 For a
more physical example, we turn to p-benzoquinone.

B. Boys diabatization of distorted p-benzoquinone

We now make a simple demonstration of the fact that
Boys diabats have near-vanishing derivative couplings when
applied to adiabatic states close to a crossing point. Our
test case is p-benzoquinone (Figure 1), which is of bio-
logical significance as a building block of photosynthetic
electron acceptors, Vitamin K, and chemical defenses in
insects.62, 63 p-benzoquinone and its derivatives have been
studied extensively, with a significant literature discussing
their electronic structure and spectroscopy,64–68 normal
modes and vibrational spectra,63, 69–71 and photoacceptance/-
detachment properties.72–75 Our group has previously studied
an electron-transfer system consisting of benzene and several
p-benzoquinone molecules.26

Instead of the Hartree–Fock-minimum structure of
p-benzoquinone, we study a geometry with stretched bonds
and distorted angles that nevertheless maintains approximate
D2h symmetry. Average geometric parameters are provided in
Table IV; the associated Cartesian coordinates are listed in

CB

CA

O

O

H

•x

z

y

FIG. 1. p-benzoquinone, with labels to distinguish carbon types and one hy-
drogen shown explicitly. The coordinate system used in assigning state sym-
metries and reporting dipole moments is depicted at bottom left.

TABLE IV. Average geometric parameters of the distorted p-benzoquinone
studied in this paper. Bond types indicated are meant only to provide a corre-
spondence with the sketch in Figure 1; we did not compute bond orders.

Bond type Bond length (Å) Angle type Angle (◦)

C=O 1.428 ̸ C–C–C 157.8
C=C 1.064 ̸ C–C=C 101.1
C–C 1.659 ̸ C=C–H 143.4
C–H 1.155 ̸ C–C–H 115.3

Appendix E. As shown in Table V, this geometry has several
closely-spaced CIS/6-31G∗∗ singlet states; indeed, S2, S3,
and S4 are separated by less than the thermal energy at room
temperature.

The mixing angle for Boys diabatization grows larger
with the transition dipole moment between states; as shown
in Refs. 20, 21, and 26, it is given by

tan 2θ = 2µIJ

|µI − µJ | (54)

when the moments are aligned. Thus, we might expect diaba-
tization to be most important for state pairs I/J with a large
transition dipole. The symmetry products of our candidate
states are

S2/S3 : B1u ⊗ B3g = B2u y-active : µ23 → µ
y
23, (55a)

S2/S4 : B1u ⊗ B1g = Au inactive : µ24 = 0, (55b)

S3/S4 : B3g ⊗ B1g = B2g inactive : µ34 = 0. (55c)

Following this intuition, we diabatize the S2/S3 pair, which
does indeed have a comparatively large transition dipole
aligned with the y axis, µ

y
23 = −2.444 D.

We find that the Boys diabatization mixes S2 and S3 al-
most equally, θ ≈ (π /4). The effect of the diabatization is con-
veniently visualized by imaging the attachment/detachment
densities of the adiabatic and diabatic states together76—that
is to say, by separately plotting isosurfaces of the two terms
of BIJ (cf. Eq. (37c)) and BAB , as in Figure 2. We see that the
adiabatic attachment densities strongly resemble each other—
and, therefore, the corresponding diabatic attachment densi-
ties, which remain delocalized. At the same time, the diabatic
detachment densities are clearly charge-localized on the left-
or right-hand side of the molecule, in stark contrast to the
adiabatic densities.

TABLE V. Approximate symmetries, excitation energies ω, and dipole mo-
ments µy—other moments are negligible—of the lowest-lying CIS/6-31G∗∗

singlet states of p-benzoquinone in the distorted geometry of Appendix E.
The HF energy is E = −378.417577 Eh.

State
Approx.

symmetry ω (eV) µy (D)

S1 Au 2.4012 0.0001
S2 B1u 2.8532 0.0201
S3 B3g 2.8562 − 0.0201
S4 B1g 2.8586 0.0000
S5 B2g 2.9195 0.0000
S6 B3u 3.9543 0.0000
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A B C D

FIG. 2. Attachment/detachment (red/purple) densities for S2 (Panel A) and
S3 (Panel B) and the corresponding Boys diabats (Panels C and D). All of
these densities are symmetric in the plane of the molecule; the attachment
densities are nearly indistinguishable. Because excited electrons are trans-
ferred to areas covered by the attachment density from those covered by the
detachment density, Panel C depicts the left-polarized state with dipole µy

= −2.444 D; Panel D, the right-polarized state with dipole µy = 2.444 D.

Having mixed S2 and S3 to form the diabats, we next
computed the derivative couplings, the magnitudes of which
are listed in Table VI; the vectors are plotted against the p-
benzoquinone bond edges in Figure 3. (To be precise, we
computed the derivative couplings with and without pertur-
bative electron-translation factors. Results presented for p-
benzoquinone include this correction, as per Eq. (B10), and
are superscripted accordingly with ETF; for more informa-
tion on this point, refer to the latter part of Appendix B and
Refs. 54 and 77.) The adiabatic derivative couplings are ex-
tremely large—as we would expect, owing to the energy de-
nominator in d[Q]

IJ (cf. Eq. (B5)). By contrast, the derivative
couplings between the diabats are reduced almost to zero; the
effective scaling associated with the diabatization is no less
than ≈2600 and as large as ≈37 000 (cf. Table VI). These
data confirm that Boys diabatization yields a nearly perfect
pair of diabats for distorted p-benzoquinone.

C. CPCIS contributions to µ
[Q]
IJ are crucial

It is reasonable to wonder whether the numerical effort
involved in computing µ

[Q]
IJ can be avoided by instead using

its unrelaxed equivalent

unrelaxed µ
[Q]
IJ = δIJ µ

[Q]
HF +

∑

µν

µ[Q]
µν BIJS

µν

−
∑

µναβ

S[Q]
µν P ′

µαµαβBIJS
νβ , (56)

which is essentially free to compute.

TABLE VI. Magnitudes of the ETF-corrected derivative couplings
(Eq. (B10)). induced by the atoms of p-benzoquinone for the adiabatic-state
pair S2/S3 and the diabatic-state pair formed on Boys localization. The val-
ues presented are averaged over atom type; their ratio provides an effective
scaling associated with the Boys diabatization.

Atom (Q) |dETF[Q]
IJ | (a−1

0 ) |dETF[Q]
AB | (a−1

0 ) |dETF[Q]
AB |/|dETF[Q]

IJ |

CA 1 041.418 0.069 15 000
CB 589.622 0.016 37 000
O 307.772 0.118 2 610
H 60.235 0.014 4 300

∼ dETF[Q]
IJ ÷ 103

A

∼ dETF[Q]
AB × 8.5

B

FIG. 3. The ETF-corrected derivative couplings (Eq. (B10)) between adi-
abatic states S2 and S3 (Panel A) compared with those between the corre-
sponding Boys-diabatic states (Panel B). The vectors in each panel are scaled
by the norm of the largest coupling, per Table VI. Note that the derivative
couplings correspond to a b2u collective motion, consistent with the direct
product of state symmetries. Normal modes of the same symmetry include
carbon-carbon bond stretches, carbon-hydrogen bond stretches and bends,
and the carbonyl bend.63, 70

General considerations based on the structure of the CP-
CIS supermatrix (cf. Appendix A 1) show that this approx-
imation would fail abjectly at a conical intersection between
states I and J: Because the corresponding CIS energies are de-
generate, the bare supermatrix (A − EI ) has vanishing eigen-
values for both tI and tJ . While the normalization condition
can be incorporated into the supermatrix to shift the eigen-
value of tI , as in Eq. (A2), no similar modification can be
made for tJ . Thus, the full supermatrix DI also becomes
singular, and the amplitude response tI [Q] will necessarily
diverge, with exquisite sensitivity to the precise values of
tJ . (Similar arguments hold for tJ [Q] and its sensitivity to
tI .) This divergence is carried from µ

[Q]
IJ into U[Q] and the

unitarity-gradient term in Eq. (11), where it ultimately can-
cels the divergence of the adiabatic derivative couplings. To
neglect relaxation of the dipole-matrix gradient at or near a
conical intersection would be to omit crucial information.

As a concrete example of this behavior, we have
partitioned the unique elements of µ

[Q]
IJ for our dis-

torted p-benzoquinone system into an unrelaxed contribution
(Eq. (56)), a CPCIS contribution (from the terms in Eq. (47)
proportional to tI [Q] and tJ [Q]), and a CPHF contribution
(from the term proportional to ![Q]). As shown in Table VII,
CPCIS accounts for nearly all of the transition-dipole gradi-
ent, and the same is true for the unitarity-gradient term.

TABLE VII. Magnitudes of contributions to the full transition-dipole gradi-
ent µ[R]

IJ and unitarity-gradient term (
∑

I UAI U
[R]
BI ) for the S2/S3 state pair of

the distorted p-benzoquinone molecule. (See the text of Sec. IV C for more
details.) The conjugated ETF-corrected derivative couplings for this system
are of size |

∑
IJ UAI dETF[R]

IJ UBJ | = 1, 940.022 a−1
0 , and they cancel with

the unitarity gradient to yield |dETF[R]
AB | = 0.197 a−1

0 .

Quantity (units) Unrelaxed CPCIS CPHF Total

|µ[R]
22 | (D/Å) 6.180 17 911.827 7.604 17 914.844

|µ[R]
23 | (D/Å) 2.256 147.665 4.115 147.569

|µ[R]
33 | (D/Å) 5.393 17 936.132 5.346 17 934.350

|
∑

I UAI U
[R]
BI | (a−1

0 ) 0.066 1 940.049 0.061 1 940.116
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TABLE VIII. Magnitudes of contributions to the full transition-dipole gra-
dient µ

[R]
IJ and unitarity-gradient term (

∑
I UAI U

[R]
BI ) for the S1/S3 state pair

of LiH. (See the text of Sec. IV C for more details.) The conjugated adi-
abatic derivative couplings for this system are of size |

∑
IJ UAI d[R]

IJ UBJ |
= 0.154 a−1

0 , and they combine with the unitarity gradient to yield |d[R]
AB |

= 0.195 a−1
0 .

Quantity (units) Unrelaxed CPCIS CPHF Total

|µ[R]
11 | (D/Å) 6.300 7.355 4.288 16.406

|µ[R]
13 | (D/Å) 0.842 1.669 0.364 1.804

|µ[R]
33 | (D/Å) 7.086 10.393 4.411 8.865

|
∑

I UAI U
[R]
BI | (a−1

0 ) 0.032 0.003 0.015 0.044

To establish whether µ
[Q]
IJ can be safely approximated by

Eq. (56) in regions of configuration space far from a cross-
ing point would require a systematic survey over a range of
molecules. For LiH, the unrelaxed, CPCIS, and CPHF com-
ponents of µ

[Q]
IJ are basically comparable (cf. Table VIII), sug-

gesting that such an approximation may always be ill-advised.
It is clear, in any case, that the CPCIS terms must be accounted
for in regions near a conical intersection, where the diabatiza-
tion itself will be most important.

V. CONCLUDING REMARKS

Our work has addressed a long-standing question—are
the derivative couplings between localized diabatic states
actually small? For the canonical electron acceptor p-
benzoquinone, the answer is a resounding yes. We have com-
puted analytical derivative couplings between Boys-diabatic
CIS states and shown that the diabatic derivative couplings
are reduced by factors of greater than 103.

To arrive at this conclusion, we have formulated a com-
prehensive, completely general analytic-gradient theory for
(quasi-)diabatic states. Furthermore, we have realized our the-
ory for Boys diabatization (Eq. (13)) by taking the deriva-
tive of the Boys convergence condition (Eq. (14)), thus de-
termining the Boys-specific constraint matrices of Eqs. (17)
and (18). The latter matrices depend in turn on the adia-
batic dipole-matrix gradient; we therefore developed the nec-
essary analytic theory for CIS states, summarized in the boxed
Eq. (49). A simple estimate suggests that the combined
method of Eqs. (11), (20), and (49) incurs a computational
cost comparable to 10 CIS gradients for a two-state Boys di-
abatization; while not insignificant, this cost is not unreason-
able, either.

We have validated both our derivations and our imple-
mentation rigorously by comparison with finite-difference
calculations, including those for LiH presented in Table III.
We have also made a first step toward studying large systems
with p-benzoquinone (Table VI and Figure 3). Further steps
in this direction will be presented in a forthcoming paper,33

which will detail our algorithms as implemented and apply
them to the Closs energy-transfer molecules, which contain
tens of atoms, as a further test of the validity of Boys-diabatic
states.

Answers to many questions now seem within reach, the
most immediate being: Given that the Boys diabatization
appears to be nearly rigorous, what of other approaches,
such as the BoysOV variant26 or the Edmiston–Ruedenberg
methods?29, 38, 61 How small are the diabatic derivative cou-
plings in the neighborhood of avoided crossings? Can we ac-
curately determine the derivative couplings at conical inter-
sections? We intend to investigate these and other intriguing
avenues of research in short order.
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APPENDIX A: AMPLITUDE- AND
ORBITAL-RESPONSE CALCULATIONS

1. Amplitude response from coupled-perturbed CIS

In order to evaluate Eq. (47), we must account for the ef-
fects of amplitude and orbital response associated with t[Q]

and ![Q]. As such, we now detail our approach to the CPCIS
and CPHF equations. We will soon see that relaxation of the
CIS amplitudes will introduce additional terms into the pref-
actor of ![Q], such that we should address CPCIS first, then
move on to CPHF.

The CPCIS equations can be developed completely anal-
ogously to those for CPHF;49, 78–81 namely, we take the gradi-
ent of the variational condition for the amplitudes and solve
for the amplitude response, t[Q]. In the case of CIS, the varia-
tional condition and the energy equation are identical; that is,
we evaluate

∇Q

[
∑

kc

(Aℓdkc − δkℓδcdEI ) t Ic
k = 0

]

. (A1)

There is a subtle problem in Eq. (A1): The secular ma-
trix (A − EI ) has a vanishing eigenvalue associated with
tI and is therefore not invertible. In order to solve for the
CIS amplitude gradients, we must make some modification
that moves the eigenvalue away from zero without alter-
ing the amplitudes themselves. Following Schaefer and co-
workers,82 we add and subtract the normalization condition
of Eq. (34),

∇Q

{
∑

kc

[

Aℓdkc − δkℓδcdEI − δkℓδcd

(

1−
∑

ia

(
t Ia
i

)2

)]

t Ic
k = 0

}

.

(A2)

Evaluating and rearranging the gradient, and canceling contri-
butions to EI from Hartree–Fock, we obtain the 3NA CPCIS
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equations,
∑

kc

[
/dkℓc + 2t Ic

k t Id
ℓ + δkℓδcd (εc − εk − ωI )

]
t
Ic[Q]
k

= −
∑

ia

[
/

[Q]
diℓa + δiℓF

[Q]
da − δadF

[Q]
ℓi − δiℓδadω

[Q]
I

]
t Ia
i .

(A3)

By introducing the supermatrix DI and the mixed-derivative
matrix M

I [Q]
, we write these equations compactly as

∑

kc

DI
ℓdkct

Ic[Q]
k = −M

I [Q]
dℓ . (A4)

The various terms appearing in the mixed-derivative matrix
will necessarily include contributions from orbital response,
justifying our assertion that the CPCIS equations should be
solved before CPHF. For a given state I, finding this solution
requires that we invert the supermatrix DI , which has (OV )2

elements. Storing an object of this size quickly becomes in-
convenient in larger basis sets and for larger molecules, and
inverting such an enormous matrix becomes unappealingly
costly. We will instead solve Eq. (A4) using a matrix turnover
(or z-vector) approach.81

We begin by defining a state-dependent, 3-vector La-
grangian,

L
J

ai ≡
∑

bµν

CµaµµνCνbt
Jb
i −

∑

jµν

tJa
j CµjµµνCνi , (A5)

where the overline indicates that this quantity is associated
with CPCIS. The relevant portions of Eq. (47) then become

CPCIS part of µ
[Q]
IJ =

∑

ia

L
J

ai t
Ia[Q]
i +

∑

ia

L
I

ai t
Ja[Q]
i . (A6)

Consider the partition of the (amplitude-dependent) La-
grangian L

J
into components parallel and perpendicular

to tI ,

L
J = L

J∥ + L
J⊥

, (A7a)

L
J∥ = (tI · L

J
)tI , (A7b)

L
J⊥ = L

J − L
J∥

. (A7c)

The gradient of the CIS normalization equation (Eq. (34)) is
simply tI · tI [Q] = 0, which implies L

J∥ · tI [Q] = 0. In other
words, the parallel component of the Lagrangian cannot con-
tribute to the final value of µ

[Q]
IJ ; it can, however, destabilize

the z-vector solution of the CPCIS equations. From this point
on, all CPCIS Lagrangians appearing in our equations have
implicitly been projected against the appropriate CIS ampli-
tudes.

Continuing on, we formally invert Eq. (A4) and insert the
result into Eq. (A6), thereby obtaining

CPCIS part of µ
[Q]
IJ = −

∑

iℓad

L
J

ai

(
DI

ℓdia

)−1
M

I [Q]
dℓ

−
∑

iℓad

L
I

ai

(
DJ

ℓdia

)−1
M

J [Q]
dℓ . (A8)

We may now define the CPCIS z-vector according to the usual
prescription,

∑

ℓd

DI
ℓdiazJI

dℓ ≡ L
J

ai, (A9)

such that we have

CPCIS part of µ
[Q]
IJ = −

∑

ℓd

zJI
dℓ M

I [Q]
dℓ −

∑

ℓd

zIJ
dℓ M

J [Q]
dℓ .

(A10)
In this way, we have converted the problem of inverting the
CPCIS supermatrix into one of constructing the z-vector.

Combining Eqs. (47) and (A10) yields an intermediate
expression for the dipole-matrix gradient,

µ
[Q]
IJ = δIJ µ

[Q]
HF +

∑

µν

µ[Q]
µν BIJS

µν −
∑

µναβ

S[Q]
µν P ′

µαµαβBIJS
νβ

+
∑

kc

[ ∑
iaµν

(
t Ic
i tJa

i + tJ c
i t Ia

i

)
CµaµµνCνk

+
∑

iaµν CµcµµνCνi

(
t Ia
i tJa

k + tJa
i t Ia

k

)
]

5
[Q]
ck

−
∑

ℓd

zJI
dℓ M

I [Q]
dℓ −

∑

ℓd

zIJ
dℓ M

J [Q]
dℓ . (A11)

We must now evaluate Tr zM
[Q]

. The results are transferable
between sets of state indices, so we begin by distributing the
zJI -vector among the terms of M

I [Q]
,

∑

ℓd

zJI
dℓ M

I [Q]
dℓ =

∑

iℓad

zJI
dℓ /

[Q]
diℓat

Ia
i +

∑

ℓad

zJI
dℓ F

[Q]
da tIa

ℓ

−
∑

iℓd

zJI
dℓ t Id

i F
[Q]
ℓi −

∑

ℓd

zJI
dℓ t Id

ℓ ω
[Q]
I .

(A12)

The somewhat complicated manipulations that follow have
been consigned to Appendix C; the result is
∑

ℓd

zJI
dℓ M

I [Q]
dℓ

= −
∑

µν

h[Q]
µν B

JIS
µν −

∑

µνλσ

(
R

JI

µλR
I
σν + B

JIS
µλ Pσν

)
/

[Q]
µνλσ

+
∑

µναβ

S[Q]
µν P ′

µαFαβB
JIS
νβ

+1
2

∑

µναβγ δ

S[Q]
µν P ′

µα

⎡

⎣ R
JI

νγ RI
δβ + RI

νγ R
JI

δβ

+R
JI

γ νR
I
βδ + RI

γ νR
JI

βδ

⎤

⎦ /αβγ δ

+
∑

µναβγ δ

S[Q]
µν P ′

µαPνγ /αβγ δB
JIS
δβ

+
∑

kc

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∑

µνλσ CµcCλk/µνλσ B
JIS
σν

+
∑

µνλσ

⎡

⎣
∑

a CµcCλatJIa

k

−
∑

i tJIc

i CµiCλk

⎤

⎦ /µνλσ RI
νσ

+
∑

µνλσ

[ ∑
a CµcCλat

Ia
k

−
∑

i t Ic
i CµiCλk

]

/µνλσ R
JI

νσ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

5
[Q]
ck ,

(A13)
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where we have introduced CPCIS-relaxed versions—to re-
peat, as indicated by the overline—of the CIS amplitudes,
transition density, and generalized difference density.

2. Orbital response from coupled-perturbed
Hartree–Fock

Inserting Eq. (A13) into Eq. (A11) gives us an expression
that fully accounts for amplitude response:

µ
[Q]
IJ = δIJ µ

[Q]
HF +

∑

µν

µ[Q]
µν BIJS

µν −
∑

µναβ

S[Q]
µν P ′

µαµαβBIJS
νβ

+
∑

µν

h[Q]
µν

(
B

IJS
µν + B

JIS
µν

)

+
∑

µνλσ

[
R

IJ

µλR
J
σν + R

JI

µλR
I
σν +

(
B

IJS
µλ + B

JIS
µλ

)
Pσν

]
/

[Q]
µνλσ

−
∑

µναβ

S[Q]
µν P ′

µαFαβ

(
B

IJS
νβ + B

JIS
νβ

)

− 1
2

∑

µναβγ δ

S[Q]
µν P ′

µα

⎡

⎢⎢⎢⎢⎢⎢⎣

R
IJ

νγ RJ
δβ + RJ

νγ R
IJ

δβ

+R
IJ

γ νR
J
βδ + RJ

γ νR
IJ

βδ

+R
JI

νγ RI
δβ + RI

νγ R
JI

δβ

+R
JI

γ νR
I
βδ + RI

γ νR
JI

βδ

⎤

⎥⎥⎥⎥⎥⎥⎦
/αβγ δ

−
∑

µναβγ δ

S[Q]
µν P ′

µαPνγ /αβγ δ

(
B

IJS
δβ + B

JIS
δβ

)

−
∑

kc

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∑

µνλσ CµcCλk/µνλσ

(
B

IJS
σν + B

JIS
σν

)

+
∑

µνλσ

⎡

⎣
∑

a CµcCλatJIa

k

−
∑

i tJIc

i CµiCλk

⎤

⎦ /µνλσ RI
νσ

+
∑

µνλσ

⎡

⎣
∑

a CµcCλatIJa

k

−
∑

i tIJ c

i CµiCλk

⎤

⎦ /µνλσ RJ
νσ

+
∑

µνλσ

[ ∑
a CµcCλat

Ja
k

−
∑

i tJ c
i CµiCλk

]

/µνλσ R
IJ

νσ

+
∑

µνλσ

[ ∑
a CµcCλat

Ia
k

−
∑

i t Ic
i CµiCλk

]

/µνλσ R
JI

νσ

−
∑

iaµν

(
t Ic
i tJa

i + tJ c
i t Ia

i

)
CµaµµνCνk

−
∑

iaµν CµcµµνCνi

(
t Ia
i tJa

k + tJa
i t Ia

k

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
︸ ︷︷ ︸

L̃IJ
ck

5
[Q]
ck .

(A14)

As indicated by the presence of ![Q] and our implicit defi-
nition in the underbrace of the CPHF Lagrangian—denoted
with a wide tilde—we must still incorporate the effects of or-
bital response. L̃JI = L̃IJ , such that we can use them inter-
changeably; it is also true that z̃JI = z̃IJ . Note, however, that
z̃JI
µν ̸= z̃JI

νµ.
The CPHF equations are derived from the gradient of the

Hartree–Fock variational condition,78, 79

∇Q

(
∂E

∂5ai

= −Fai − Fia = 0
)

. (A15)

Inserting the Fock-matrix derivative of Eq. (B2), collecting
terms, and permuting indices, we obtain the 3NA CPHF equa-
tions,

∑

kc

2 [/caki + /cika + δikδac (εc − εk)] 5
[Q]
ck

= −
∑

µν

h[Q]
µν (CµaCνi + CµiCνa)

−
∑

µνλσ

(CµaCλi + CµiCλa)/[Q]
µνλσPσν

+
∑

µναβ

S[Q]
µν P ′

µαFαβ(CβaCνi + CβiCνa)

+
∑

µναβγ δ

S[Q]
µν P ′

µαPνγ /αβγ δ (CδaCνi + CδiCνa) .

(A16)

This equation can be rewritten to obtain the standard form
in terms of the usual CPHF supermatrix (∂2E/∂!2) and the
corresponding mixed-derivative matrix M[Q],

∑

kc

(
∂2E

∂5ai∂5ck

)
5

[Q]
ck = −M

[Q]
ai . (A17)

As in the CPCIS case, we invoke the formal inversion of
Eq. (A17); define the z̃-vector in terms of a CPHF Lagrangian,

∑

ia

(
∂2E

∂5ai∂5ck

)
z̃IJ
ai ≡ L̃IJ

ck ; (A18)

and make the identification

CPHF part of µ
[Q]
IJ = −

∑

kc

L̃IJ
ck 5

[Q]
ck =

∑

ia

z̃IJ
ai M

[Q]
ai .

(A19)
Simple manipulations involving the symmetry rules of Eq. (6)
quickly lead us to an explicit expression for the CPHF contri-
bution to the dipole-matrix gradient,

CPHF part of µ
[Q]
IJ

= −2
∑

µν

h[Q]
µν z̃IJS

µν − 2
∑

µνλσ

z̃IJS
µλ /

[Q]
µνλσPσν

+ 2
∑

µναβ

S[Q]
µν P ′

µαFαβ z̃IJS
νβ

+ 2
∑

µναβγ δ

S[Q]
µν P ′

µαPνγ /αβγ δ̃zIJS
δβ . (A20)

Referring to Eq. (A14), we find that we subtract z̃IJS = z̃JIS

from each instance of B
S
. We therefore define a fully relaxed

(and totally symmetric) version of the difference density,

B̃JI
µν = B

JIS
µν − z̃JIS

µν . (A21)

Applying Eqs. (A19)–(A21) gives us the final analytic expres-
sion for the CIS dipole-matrix gradient, namely, Eq. (49).
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APPENDIX B: CONSTITUENTS OF THE CPCIS
MIXED-DERIVATIVE MATRIX

The CPCIS mixed-derivative matrix (initially defined in
Eq. (A4)) is given by

M
I [Q]
dℓ =

∑

ia

[
/

[Q]
diℓa + δiℓF

[Q]
da − δadF

[Q]
ℓi − δiℓδadω

[Q]
I

]
t Ia
i .

(B1)
In this Appendix, we provide expressions for the bracketed
gradients, as well as for the adiabatic CIS derivative cou-
plings. We conclude with a brief discussion of translational-
symmetry breaking in the derivative couplings and how it can
be corrected.

We begin by quoting /
[Q]
diℓa and F [Q]

pq directly from Eqs.
(A15) and (A16) of our previous work,54 rewriting them as
necessary to fit our current notational conventions:

F [Q]
pq =

∑

µν

Cµph[Q]
µν Cνq +

∑

µνλσ

CµpCλq/
[Q]
µνλσPσν

− 1
2

∑

µναβ

S[Q]
µν P ′

µαFαβ(CβpCνq + CβqCνp)

− 1
2

∑

µναβγ δ

S[Q]
µν P ′

µαPνγ /αβγ δ(CδpCβq + CδqCβp)

−
∑

kc

(/pcqk + /qcpk)5[Q]
ck − (εp − εq)5[Q]

pq ,

(B2)

where we discard the last term if p and q are drawn from the
same subspace, and

/
[Q]
diℓa

=
∑

µνλσ

CµdCλℓ/
[Q]
µνλσCσaCνi

− 1
2

∑

sµν

CµsS
[Q]
µν [Cνd/siℓa + Cνi/dsℓa

+Cνℓ/disa + Cνa/diℓs]

+
∑

kc

[δcd/kiℓa − δik/dcℓa − δkℓ/dica + δac/diℓk]5[Q]
ck .

(B3)

Reference 54 introduced a new derivation of the (adi-
abatic) CIS derivative couplings. Starting from the
premise that the CIS states satisfy the time-independent
Schrödinger equation for the singles-projected Hamiltonian
H ′ =

∑
kℓcd |$d

ℓ ⟩Aℓdkc⟨$c
k|,

H ′ |"I ⟩ = EI |"I ⟩ , (B4)

the Hellmann–Feynman theorem was invoked to obtain an ex-
pression of form

d[Q]
IJ = 1

EJ − EI

[
〈
"I |H [Q]|"J

〉
−

∑

kc

Y IJ
ck 5

[Q]
ck

]

+
∑

µν

SA[Q]
µν DIJ

µν . (B5)

Exactly the same reasoning—apart from the fact that the
Schrödinger equation is now written as (H′ − E)|"I⟩
= ωI|"I⟩—may be used to write down the CIS excitation-
energy gradient,

ω
[Q]
I = ⟨"I |H [Q]|"I ⟩ −

∑

kc

Y II
ck 5

[Q]
ck . (B6)

In Eqs. (B5) and (B6), the (bare) Hamiltonian derivative is

⟨"I |H [Q]|"I ⟩

=
∑

µν

h[Q]
µν BII

µν +
∑

µνλσ

(
RI

µλR
I
σν + BII

µλPσν

)
/

[Q]
µνλσ

−
∑

µναβ

S[Q]
µν P ′

µαFαβBII
νβ

−
∑

µναβγ δ

S[Q]
µν P ′

µα

(
RI

νγ RI
δβ + RI

γ νR
I
βδ

)
/αβγ δ

−
∑

µναβγ δ

S[Q]
µν P ′

µαPνγ /αβγ δB
II
δβ , (B7)

and the Lagrangian for the orbital response is

Y IJ
ck = 2

∑

µνλσ

CµcCλk/µνλσBIJS
σν

+
∑

µνλσ

[
∑

a

CµcCλat
Ja
k −

∑

i

tJ c
i CµiCλk

]

/µνλσRI
νσ

+
∑

µνλσ

[
∑

a

CµcCλat
Ia
k −

∑

i

t Ic
i CµiCλk

]

/µνλσRJ
νσ .

(B8)

The antisymmetric form of the overlap matrix appearing only
in Eq. (B5) is defined as

SA[Q]
µν ≡ 1

2

(〈
ϕµ|ϕ[Q]

ν

〉
−

〈
ϕν |ϕ[Q]

µ

〉)
. (B9)

As discussed in our previous papers,54, 77 the associated term
arises from the failure of adiabatic eigenstates to account
for tandem motion of the electrons and nuclei, and it breaks
the translational symmetry and momentum conservation re-
quired of the corresponding dynamics. (The unitarity-gradient
term in Eq. (11), by contrast, respects translational symme-
try.) Our method of perturbative electron-translation factors
(ETFs) rectifies this unphysical behavior at no additional
computational expense; the operational prescription for ob-
taining ETF-corrected derivative couplings is simply to dis-
card the term containing SA[Q] from Eq. (B5). In other words,

dETF[Q]
IJ = d[Q]

IJ −
∑

µν

SA[Q]
µν DIJ

µν . (B10)

In validating our implementation against LiH finite-difference
results in Section IV, we naturally used the analytical deriva-
tive couplings given by Eq. (B5). As a general rule, how-
ever, we recommend the use of the ETF-corrected couplings,
which ensure physical behavior in the associated dynamics.
For the distorted p-benzoquinone system of Section IV, the
ETF-corrected adiabatic derivative couplings are identical to
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their uncorrected counterparts within fractions of a percent.
But because the associated diabatic derivative couplings are
themselves quite small, the effect of the correction is qualita-
tively apparent. Hence, we label the p-benzoquinone deriva-
tive couplings with a superscript ETF.

APPENDIX C: DERIVATION OF Tr zM
[Q]

FOR µ
[Q]
IJ

In this Appendix, we evaluate the trace of the CPCIS z-
vector against the mixed-derivative matrix M

[Q]
, starting from

Eq. (A12) (which we repeat here):
∑

ℓd

zJI
dℓ M

I [Q]
dℓ =

∑

iℓad

zJI
dℓ /

[Q]
diℓat

Ia
i +

∑

ℓad

zJI
dℓ F

[Q]
da tIa

ℓ

−
∑

iℓd

zJI
dℓ t Id

i F
[Q]
ℓi −

∑

ℓd

zJI
dℓ t Id

ℓ ω
[Q]
I . (C1)

In doing so, we will draw expressions for the various con-
stituent pieces of M

[Q]
from Appendix B. First, we plug in the

Fock-matrix and two-electron-integral derivatives (Eqs. (B2)
and (B3)) to yield a rather complicated equation,

∑

ℓd

zJI
dℓ M

I [Q]
dℓ =

∑

iℓadµνλσ

CµdzJI
dℓ Cλℓ/

[Q]
µνλσCσat

Ia
i Cνi

− 1
2

∑

iℓsadµν

CµsS
[Q]
µν zJI

dℓ

[
Cνd/siℓa + Cνi/dsℓa

+Cνℓ/disa + Cνa/diℓs

]
t Ia
i

+
∑

kc

[ ∑
iℓa zJI

cℓ /kiℓat
Ia
i −

∑
ℓad zJI

dℓ /dcℓat
Ia
k

−
∑

iad zJI
dk /dicat

Ia
i +

∑
iℓd zJI

dℓ /diℓkt
Ic
i

]

5
[Q]
ck

+
∑

ℓadµν

h[Q]
µν CµdzJI

dℓ t Ia
ℓ Cνa +

∑

ℓadµνλσ

CµdzJI
dℓ t Ia

ℓ Cλa/
[Q]
µνλσPσν

− 1
2

∑

ℓadµναβ

S[Q]
µν P ′

µαFαβzJI
dℓ

(
CβdCνa + CβaCνd

)
t Ia
ℓ

− 1
2

∑

ℓadµναβγ δ

S[Q]
µν P ′

µαPνγ /αβγ δzJI
dℓ

(
CδdCβa + CδaCβd

)
t Ia
ℓ

−
∑

kc

(
∑

ℓad

zJI
dℓ /dcakt

Ia
ℓ +

∑

ℓad

zJI
dℓ /acdkt

Ia
ℓ

)

5
[Q]
ck

−
∑

iℓdµν

h[Q]
µν CµℓzJI

dℓ t Id
i Cνi −

∑

iℓdµνλσ

CµℓzJI
dℓ t Id

i Cλi/
[Q]
µνλσPσν

+1
2

∑

iℓdµναβ

S[Q]
µν P ′

µαFαβzJI
dℓ

(
CβℓCνi + CβiCνℓ

)
t Id
i

+1
2

∑

iℓdµναβγ δ

S[Q]
µν P ′

µαPνγ /αβγ δzJI
dℓ

(
CδℓCβi + CδiCβℓ

)
t Id
i

+
∑

kc

(
∑

iℓd

zJI
dℓ /ℓcikt

Id
i +

∑

iℓd

zJI
dℓ /icℓkt

Id
i

)

5
[Q]
ck

−
∑

ℓd

zJI
dℓ t Id

ℓ ω
[Q]
I . (C2)

We can sift through its various terms in order to identify a
few helpful definitions, all of which involve the z-vector in
combination with CIS amplitudes and/or MO coefficients:

zJI
µν ≡

∑

ℓd

CµdzJI
dℓ Cνℓ, (C3a)

ζ JI
µν ≡

∑

ℓad

CµdzJI
dℓ t Ia

ℓ Cνa, (C3b)

ζ ′JI
µν ≡

∑

iℓd

CµℓzJI
dℓ t Id

i Cνi , (C3c)

ηJI ≡
∑

ℓd

zJI
dℓ t Id

ℓ . (C3d)

A point that deserves emphasis is that ηJI is a spin-
less 3-vector in Cartesian space—we must trace the spin
blocks of zJI and tI separately and add the results to
obtain ηJI .

We now insert as many definitions as we can from
Eq. (C3) in order to simplify Eq. (C2), collecting terms and
permuting indices so that we obtain as compact an expression
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as possible. In particular, we aim to have P ′
µα and CµcCλk (or

the equivalent combination of C, zJI , and tI ) throughout. The
result is
∑

ℓd

zJI
dℓ M

I [Q]
dℓ

= −
∑

µν

h[Q]
µν

(
−ζ JI

µν + ζ ′JI
µν

)

−
∑

µνλσ

[
−zJI

µλR
I
σν +

(
−ζ JI

µλ + ζ ′JI
µλ

)
Pσν

]
/

[Q]
µνλσ

+
∑

µναβ

S[Q]
µν P ′

µαFαβ

(
−ζ JIS

νβ + ζ ′JIS
νβ

)

− 1
2

∑

iℓsadµν

CµsS
[Q]
µν zJI

dℓ

[
Cνd/siℓa + Cνi/sdaℓ

+Cνℓ/sadi + Cνa/sℓid

]

t Ia
i

+
∑

µναβγ δ

S[Q]
µν P ′

µαPνγ /αβγ δ

(
−ζ JIS

δβ + ζ ′JIS
δβ

)

+
∑

kc

⎡

⎢⎢⎢⎢⎢⎣

∑
iℓa zJI

cℓ /ℓaki t
Ia
i −

∑
ℓad tIa

k /cdaℓzJI
dℓ

−
∑

ℓad /cdkazJI
dℓ t Ia

ℓ −
∑

ℓad /cakd t
Ia
ℓ zJI

dℓ

−
∑

iad zJI
dk /cadi t

Ia
i +

∑
iℓd tIc

i /idkℓzJI
dℓ

+
∑

iℓd /cℓkizJI
dℓ t Id

i +
∑

iℓd /cikℓt
Id
i zJI

dℓ

⎤

⎥⎥⎥⎥⎥⎦
5

[Q]
ck

−ηJIω
[Q]
I . (C4)

We must now find the atomic-orbital representation of the var-
ious contractions appearing in Eq. (C4). After applying the
identity

/pqst =
∑

µνλσ

CµpCνq/µνλσCλsCσ t , (C5)

we once again invoke definitions from Eq. (C3), collect terms,
and permute indices, yielding
∑

ℓd

zJI
dℓ M

I [Q]
dℓ = −

∑

µν

h[Q]
µν

(
−ζ JI

µν + ζ ′JI
µν

)

−
∑

µνλσ

[
−zJI

µλR
I
σν +

(
−ζ JI

µλ + ζ ′JI
µλ

)
Pσν

]
/

[Q]
µνλσ

+
∑

µναβ

S[Q]
µν P ′

µαFαβ

(
−ζ JIS

νβ + ζ ′JIS
νβ

)

− 1
2

∑

µναβγ δ

S[Q]
µν P ′

µα

[
zJI
νγ RI

δβ + RI
νγ zJI

δβ

+zJI
γ νR

I
βδ + RI

γ νzJI
βδ

]

/αβγ δ

+
∑

µναβγ δ

S[Q]
µν P ′

µαPνγ /αβγ δ

(
−ζ JIS

δβ + ζ ′JIS
δβ

)

+
∑

kc

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∑

µνλσ CµcCλk/µνλσ

(
−ζ JIS

σν + ζ ′JIS
σν

)

−
∑

µνλσ

[ ∑
a CµcCλazJI

ak

−
∑

i zJI
ci CµiCλk

]

/µνλσRI
νσ

−
∑

µνλσ

[ ∑
a CµcCλat

Ia
k

−
∑

i t
Ic
i CµiCλk

]

/µνλσ zJI
νσ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

5
[Q]
ck

−ηJIω
[Q]
I . (C6)

We could consider Eq. (C6) final and use it as the basis
for our working expressions; after all, quantum-chemistry
packages are typically capable of efficiently calculating the
CIS excitation-energy gradient ω

[Q]
I . What would be gained

in simple expressions would be lost, however, in unneces-
sary contractions—especially the costly contractions involv-
ing $[Q]. As such, we press on and substitute Eqs. (B6)–(B8)
for the excitation-energy gradient into Eq. (C6), then collect
terms once again. We thereby obtain a complete expression,
∑

ℓd

zJ I
dℓ M

I [Q]
dℓ

= −
∑

µν

h[Q]
µν

(
ηJ IBII

µν − ζ J I
µν + ζ ′J I

µν

)

−
∑

µνλσ

[ (
ηJ IRI

µλ − zJ I
µλ

)
RI

σν

+
(
ηJ IBII

µλ − ζ J I
µλ + ζ ′J I

µλ

)
Pσν

]

/
[Q]
µνλσ

+
∑

µναβ

S[Q]
µν P ′

µαFαβ

(
ηJ IBII

νβ − ζ J IS
νβ + ζ ′J IS

νβ

)

+1
2

∑

µναβγ δ

S[Q]
µν P ′

µα

[
2ηJ IRI

νγ RI
δβ − zJ I

νγ RI
δβ − RI

νγ zJ I
δβ

+2ηJ IRI
γ νR

I
βδ − zJ I

γ νR
I
βδ − RI

γ νzJ I
βδ

]

/αβγ δ

+
∑

µναβγ δ

S[Q]
µν P ′

µαPνγ /αβγ δ

(
ηJ IBII

δβ − ζ J IS
δβ + ζ ′J IS

δβ

)

+
∑

kc

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∑

µνλσ CµcCλk/µνλσ

(
ηJ IBII

σν − ζ J IS
σν + ζ ′J IS

σν

)

+2ηJ I
∑

µνλσ

[ ∑
a CµcCλat

Ia
k

−
∑

i t
Ic
i CµiCλk

]

/µνλσ RI
νσ

−
∑

µνλσ

[ ∑
a CµcCλazJ I

ak

−
∑

i zJ I
ci CµiCλk

]

/µνλσ RI
νσ

−
∑

µνλσ

[ ∑
a CµcCλat

Ia
k

−
∑

i t
Ic
i CµiCλk

]

/µνλσ zJ I
νσ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

5
[Q]
ck .

(C7)

While the above expression is complete, it is not especially
intuitive. To reveal more of its physical content, we define
three new quantities—the CPCIS-relaxed amplitudes, transi-
tion density, and difference density:

tJIc

k ≡ ηJI t Ic
k − zJI

ck , (C8a)

R
JI

µν ≡ ηJIRI
µν − zJI

µν, (C8b)

B
JI

µν ≡ ηJIBII
µν − ζ JI

µν + ζ ′JI
µν . (C8c)

In this context, it becomes apparent that ζ JI and ζ ′JI can be
understood as separately relaxing the rescaled attachment and
detachment densities.

There are two other simplifications that we can identify:
First, h[Q] is symmetric, such that we can replace B

JI
with

B
JIS

in that term. Second, the symmetry of P allows us to
make the same replacement in the B

JI · /[Q] · P term. Insert-
ing Eq. (C8) and exploiting these symmetries, we arrive at the
final expression resulting from the introduction of the CPCIS
z-vector, i.e., Eq. (A13).
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APPENDIX D: OVERLAP BETWEEN SINGLES DETERMINANTS AT DIFFERENT GEOMETRIES

As shown by Löwdin,60 the overlap between Slater determinants with nonorthogonal molecular orbitals can be written
as a determinant of overlap integrals between individual MOs from each set. For nonorthogonal singles determinants, we
obtain

〈
$a

i |$b′

j

〉
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j th column

⟨φ1|φ′
1⟩ · · · ⟨φ1|φ′

b⟩ · · · ⟨φ1|φ′
No

⟩
...

...
...

i th row ⟨φa|φ′
1⟩ · · · ⟨φa|φ′

b⟩ · · · ⟨φa|φ′
No

⟩
...

...
...

⟨φNo |φ′
1⟩ · · · ⟨φNo |φ′

b⟩ · · · ⟨φNo |φ′
No

⟩

i = j

i th column j th column

⟨φ1|φ′
1⟩ · · · ⟨φ1|φ′

i⟩ · · · ⟨φ1|φ′
b⟩ · · · ⟨φ1|φ′

No
⟩

...
...

...
...

i th row ⟨φa|φ′
1⟩ · · · ⟨φa|φ′

i⟩ · · · ⟨φa|φ′
b⟩ · · · ⟨φa|φ′

No
⟩

...
...

...
...

j th row ⟨φj |φ′
1⟩ · · · ⟨φj |φ′

i⟩ · · · ⟨φj |φ′
b⟩ · · · ⟨φj |φ′

No
⟩

...
...

...
...

⟨φNo |φ′
1⟩ · · · ⟨φNo |φ′

i⟩ · · · ⟨φNo |φ′
b⟩ · · · ⟨φNo |φ′

No
⟩

i ̸= j,

(D1)

Eqs. (86) and (87) of Ref. 54 correspond to retaining only the
diagonal parts of these determinants.

APPENDIX E: CARTESIAN COORDINATES
OF DISTORTED p-BENZOQUINONE

See Table IX.

TABLE IX. Cartesian coordinates of distorted p-benzoquinone; due to the
sensitivity of the coupled-perturbed CIS equations to the values of the ampli-
tudes near a conical intersection, all digits provided are necessary to replicate
the results presented in Sections IV B and IV C. All x-coordinates are zero.

atom y (Å) z (Å)

C − 1.6282 0.531824
C 0.000000215445 0.850617
C 1.6282 0.531826
C 1.6282 − 0.531828
C − 0.0000014475 − 0.850618
C − 1.62821 − 0.531829
H − 2.31725 − 1.45939
O 0.000000107777 − 2.2785
H 2.31725 − 1.4594
H 2.31724 1.4594
O − 0.000000107777 2.2785
H − 2.31725 1.45939
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