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Uniqueness and existence of viscosity solutions under a degenerate

dynamic boundary condition

Nao Hamamuki ∗
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Abstract

We consider the initial boundary value problem for a fully-nonlinear parabolic equation in a half
space. The boundary condition we study is a degenerate one in the sense that it does not depend on the
normal derivative on the boundary. A typical example is a stationary boundary condition prescribing
the value of the time derivative of the unknown function. Our setting also covers the classical Dirichlet
boundary condition. We establish a comparison principle for a viscosity sub- and supersolution under a
weak continuity assumption on the solutions on the boundary. We also prove existence of solutions and
give some examples of solutions under several boundary conditions. We show among other things that,
in the sense of viscosity solutions, the stationary boundary condition can be different from the Dirichlet
boundary condition which is obtained by integrating the stationary condition.
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1 Introduction

Equation and Goals. We consider the initial boundary value problem for a second order parabolic equa-
tion of the form

(IBV)


ut(x, t) + F (x, t, u(x, t),∇u(x, t),∇2u(x, t)) = 0 in Ω× (0, T ), (1.1)

B(x′, t, u(x, t),∇′u(x, t), ut(x, t)) = 0 on ∂Ω× (0, T ), (1.2)

u(x, 0) = u0(x) in Ω. (1.3)

Here u = u(x, t) : Ω× [0, T ) → R is an unknown function and ut = ∂tu, ∇u = (∂xi
u)ni=1, ∇2u = (∂xixj

u)ni,j=1

are its derivatives. Besides, T > 0 and Ω := {x = (x′, xn) ∈ Rn−1 ×R | xn > 0} is the half space of Rn.
Throughout this paper, the prime ′ and the index n denote the first (n − 1) components and the last
component of a vector in Rn, respectively. We write ∇′u = (∂xi

u)n−1
i=1 .

The goal of this paper is to establish a unique existence of viscosity solutions to (IBV), especially a
comparison principle for a viscosity subsolution and a viscosity supersolution to (IBV). A typical boundary
condition in our mind is a degenerate dynamic boundary condition:

ut(x, t) = g(x′, t) on ∂Ω× (0, T ), (1.4)

and its special case
ut(x, t) = c on ∂Ω× (0, T ), (1.5)

where c ∈ R is a constant. In this paper we call (1.5) a stationary boundary condition. If B is strictly
monotone with respect to the normal derivative −uxn of u on the boundary (see (1.12) below), the com-
parison principle is well-known in the literature ([2, 3]). Our boundary condition (1.2) does not satisfy this
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monotonicity. In this sense we say that (1.2) (and hence (1.4)) is degenerate. The known comparison results
cannot be applied to (IBV).

When the boundary condition is degenerate, the comparison principle does not hold for semicontinuous
viscosity solutions. This is known when the boundary condition is of the Dirichlet type:

u(x, t) = h(x′, t) on ∂Ω× (0, T ), (1.6)

which our boundary condition (1.2) covers. Our comparison result is thus established under a suitable (weak)
continuity of solutions on the boundary.

Background. 1. Asymptotic problem for a non-degenerate boundary condition. A typical non-degenerate
dynamic boundary condition is a linear one

ut(x, t)− βuxn(x, t) = 0 on ∂Ω× (0, T ) (1.7)

with β > 0. When β → 0, the boundary condition

ut(x, t) = 0 on ∂Ω× (0, T ) (1.8)

naturally appears. This is the stationary boundary condition (1.5) with c = 0. Thus the solutions for (1.7)
are expected to converge to the solution for (1.8). To make this convergence assertion rigorous, we need a
uniqueness result under (1.8). The comparison principle for (1.8) therefore plays an important role to study
the asymptotic analysis for a non-degenerate boundary condition. See Sections 4.4–4.6 for the details.

2. Crystal growth problem: The boundary condition of the type (1.4) is considered to describe the two-
dimensional nucleation in crystal growth ([5, Part III], [20, Section 2], [21]). This crystal growth is started
by external supply of crystal molecules at a step source. Let u(x, t) be the height of the crystal surface at a
position x and a time t. Suppose now that the step source is located on the boundary of Ω. For example,
in one-dimensional case where Ω = (0,∞), the step source is x = 0. If crystal molecules are supplied at a
rate of c > 0 on ∂Ω, then the height function u should satisfy (1.5). The height function u is thus obtained
by solving the initial value problem of an evolution equation in Ω under (1.5). In [22], instead of (1.5) the
Dirichlet boundary condition

u(x, t) = ct+ u0(x) in ∂Ω× (0, T ) (1.9)

is imposed when Ω = (0,∞).
In [12] another approach is presented to understand the two-dimensional nucleation. There, instead of

imposing the boundary condition, a source term is added into the equation. More precisely, the equation
studied in [12] is

ut(x, t) +H(x,∇u(x, t)) = cI(x) in Rn × (0, T ) (1.10)

when the step source is located at x = 0 and the supplying rate is c. Here I(x) is defined by

I(x) =

{
1 (x = 0),

0 (x ̸= 0).
(1.11)

Since (1.10) has a discontinuous source term, the classical viscosity solution theory cannot be applied; in fact,
solutions are not unique. We thus introduced a new notion of viscosity solutions called envelope solutions,
and proved the unique existence of envelope solutions when the Hamiltonian H is coercive. In Section 5,
we will give some examples of the solution u to (IBV) in the one-dimensional case and compare it with the
envelope solution û of (1.10). It turns out that they are the same solution in the sense that u(x, t) = û(|x|, t).
See Remarks 5.8 and 5.11. A natural question is whether these two solutions are the same for more general
setting, but the author does not know any nice answer so far.
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Literature overview. We below give some known results in the viscosity solution theory related to dy-
namic boundary value conditions such as (1.4) and (1.7). The list is not exhaustive at all.

1. Non-degenerate case: A unique existence result for a fully nonlinear parabolic equation with a general
dynamic boundary condition is established by Barles ([2, 3]). The boundary condition is of the form

ut(x, t) +B(x, t, u(x, t),∇u(x, t)) = 0 on ∂U × (0, T ),

where U is a bounded domain inRn with smooth boundary. The function B is assumed to be non-degenerate,
that is, for any R > 0 there exists µR > 0 such that

B(x, t, r, p+ λν(x))−B(x, t, r, p) >= µRλ (1.12)

for all x ∈ ∂U , t ∈ (0, T ), r ∈ R with |r| <= R, p ∈ Rn and λ > 0. Here ν(x) denotes the unit outward
normal vector to ∂U at x. The comparison principle is established for a upper semicontinuous subsolution
and a lower semicontinuous supersolution. Note that our boundary condition (1.2) does not satisfy (1.12)
since B is independent of uxn

.
In [1] the asymptotic behavior of solutions to the initial value problem of the eikonal equation

εut(x, t) + |∇u(x, t)| = 1 in U × (0,∞) (ε > 0)

is studied under a linear boundary condition

ut(x, t) + ⟨ν(x),∇u(x, t)⟩ = 0 on ∂U × (0,∞). (1.13)

Here | · | and ⟨·, ·⟩ denote the usual Euclidean norm and inner product, respectively. The comparison results
are presented not only for (1.13) but also for the stationary boundary condition

ut(x, t) = 0 on ∂U × (0,∞) (1.14)

provided that both a subsolution and a supersolution are Lipschitz continuous ([1, Lemma 3.2]). The idea
of the proof for (1.14) is to reduce it to (1.13) with a small coefficient on ⟨ν,∇u⟩. Since the same idea works
for our (IBV), we later give the comparison result for Lipschitz continuous solutions of (IBV) (Theorem 2.9).

Unfortunately, Lipschitz continuous solutions of (IBV) may not exist under (1.5) even if the initial datum
is zero. We give such an example in Section 5.3 for some first order equation with a non-coercive Hamiltonian.
For this problem, a continuous solution u exists but it is not Lipschitz continuous. Thus Theorem 2.9 does
not imply the uniqueness of u. We need our main comparison result, Theorem 3.2, to deduce the uniqueness
of such u.

Recently, in [13] the authors established a uniqueness and existence of viscosity solutions to possibly
singular geometric evolution equations such as the level-set mean curvature flow equation. There the linear
dynamic boundary condition (1.7) is imposed on the boundary of the half space Ω. Some convergence results
as β → +0 are also obtained.

In [14] the authors proposed deterministic discrete game-theoretic interpretations for fully nonlinear
equations with nonlinear dynamic boundary conditions. To study fast evolution asymptotics of solutions
to parabolic equations, a comparison principle for elliptic equations with dynamic boundary conditions is
established ([14, Theorems 2.5 and 5.5]). See also [15] for a game-theoretic approach to the level-set curvature
flow equation under dynamic boundary conditions.

2. Degenerate case: A typical boundary condition of degenerate type is the Dirichlet boundary condition.
For a stationary Hamilton-Jacobi equation

H(x, u(x),∇u(x)) = 0 in U, u(x) = h(x) on ∂U,

the comparison principle is established in [16] for a bounded U and [6] for a unbounded U . The continuity
of solutions is assumed in both the results.

In [9] the initial value problem for a Hamilton-Jacobi equation

ut(x, t)− F (x, t)
√

{ux(x, t)}2 + γ2 = 0 in (0, L)× (0, T )
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is studied under the degenerate boundary condition

ut(x, t)− F (x, t)α(x, t) = 0 on {0, L} × (0, T ).

The comparison principle is established with the aid of an equivalent notion of viscosity solutions. To prove
the equivalence, continuity of solutions on the boundary is used. More precisely, the continuity guarantees
that (xε, tε) → (L, t̂) as ε → 0 in the proof of [9, Lemma 2.5]. Although the continuity of solutions on the
boundary is not explicitly assumed in the statement of the comparison result [9, Theorem 3.1], it is implicitly
assumed due to this lemma.

The theory of viscosity solutions for junction (network) spaces was recently developed under possibly
degenerate dynamic boundary conditions. A typical junction problem is given by{

ut(x, t) +Hi(∂iu(x, t)) = 0 in J × (0, T ),

ut(x, t) + F (∂1u(x, t), . . . , ∂Nu(x, t)) = 0 on {0} × (0, T ).

Here J is a junction space defined as the union of the half-line Ji = [0,∞) (i = 1, . . . , N) whose boundaries
{0} are identified as a junction point. In [17] Hamiltonians Hi are assumed to be quasi-convex and coercive,
and F is non-increasing with respect to all variables. The comparison principle ([17, Theorem 1.5]) is
established when a subsolution u satisfies a weak continuity condition at the junction point given by

u(t, 0) = lim sup
(s,y)→(t,0), y∈Ji\{0}

u(s, y) for all i = 1, . . . , N .

The reader is also referred to [18] for multi-dimensional junction spaces and [10] for the case where H is
non-convex.

In [19] junction problems with Kirchhoff-type boundary conditions are studied without convexity as-
sumptions of Hamiltonians. It is shown that there is a unique viscosity solution in the class of bounded and
uniformly continuous functions ([19, Theorem 2.1]), and as stated in [19, Section 2], the arguments apply to
more general boundary conditions of the form G(∂1u, . . . , ∂Nu, u) which are strictly increasing with respect
to all the variables. In the proof of the theorem, solutions are regularized by the sup- and inf-convolutions.
The same regularization procedure also plays an important role in the proof of our main comparison theorem.

Relation to the Dirichlet boundary condition. One may think that the stationary boundary condition
(1.5) is equivalent to the Dirichlet boundary condition (1.9). However, they are not equivalent in the sense of
viscosity solutions. Namely, the unique solution of (IBV) with (1.5) can be different from that with (1.9). We
will give such an example in Section 5.2. See also [9, Section 5] and [12, Section 5.3] for such non-equivalence.

For the example presented in Section 5.2, from physical point of view, the solution u1 under (1.5) seems to
be properer than the solution u2 under (1.9) in the sense that solutions for (1.9) do not possess a semi-group
property. It also turns out that the solution uβ under (1.7) converges not to u2 but to u1 as β → 0.

Results. 1. Comparison principle: The main result of this paper is a comparison principle for a viscosity
subsolution u and a viscosity supersolution v to (IBV) being continuous on the boundary ∂Ω× (0, T ) in the
sense of (3.1) and (3.2). The idea of the proof is as follows:

Let us explain the idea when the boundary condition is the simplest one (1.5). First, we regularize a
subsolution u and a supersolution v by the sup- and inf-convolutions with respect to x′ and t. As is well
known, the regularized functions uε and vε solve (IBV) with a small error of ε, which we neglect here for
simplicity. Moreover uε and −vε are semiconvex. As in the standard proof of the comparison principle,
we suppose by contradiction that the function uε(x, t) − vε(x, t) (with additional terms) attains a positive
maximum at (x∗, t∗). Our main concern lies in the case where x∗ belongs to the boundary ∂Ω.

From the semiconvexity it follows that both uε and vε are differentiable at (x∗, t∗) with respect to t. By
maximality we then have uεt (x∗, t∗)−(vε)t(x∗, t∗) > 0. This in particular implies that either uε or vε does not
satisfy the boundary condition. In fact, otherwise we would have 0 < uεt (x∗, t∗)− (vε)t(x∗, t∗) <= c− c = 0, a
contradiction. Let us suppose that uε does not satisfy the boundary condition, i.e., uεt (x∗, t∗) > c. We now
double the variables to set Φ = uε(x, t)− vε(y, s)− ϕ(x, t, y, s) and let Ẑα = (x̂α, t̂α, ŷα, ŝα) be a maximum
point of Φ, where α is a coefficient of a penalty term of ϕ. The smooth function ϕ is chosen so that ŷα
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belongs to Ω. This is possible in a way similar to the case of the Dirichlet boundary condition. Since ŷα ∈ Ω,
we have a viscosity superinequality −ϕs(Ẑα) + F >= 0 for (1.1).

Using the continuity of the solutions on the boundary, we see that Ẑα converges to (x∗, t∗, x∗, t∗) as α→
∞. The point x̂α may lie on the boundary ∂Ω, but when there are infinitely many such α, it turns out that
the semiconvexity of uε implies that ϕt(Ẑα) converges to u

ε
t (x∗, t∗) as α→ ∞. This comes from the fact that

derivatives of semiconvex functions converge (Proposition 2.15 (3)). We thus have ϕt(Ẑα) ≈ uεt (x∗, t∗) > c,
i.e., the boundary condition is violated at (x̂α, t̂α). Accordingly, a viscosity subinequality ϕt(Ẑα) + F <= 0
holds. Finally, subtracting the two viscosity inequalities yields a contradiction.

2. Existence results: We also give some existence results of solutions. By the standard Perron’s method ([8,
Section 4]), we are able to construct viscosity solutions to

(IBV.n)

{
(1.1), (1.3),

B(x′, t, u(x, t),∇′u(x, t), ut(x, t))− βuxn
(x, t) = 0 on ∂Ω× (0, T ) (1.15)

with β >= 0. Thanks to the term −βuxn
(x, t), the boundary condition (1.15) is not degenerate if β > 0, so

that (IBV.n) admits a unique, continuous viscosity solution. When β = 0, to obtain the uniqueness and
continuity of solutions, we need to construct solutions being continuous on the boundary in order to apply
our comparison principle. To do this, we consider the limit of solutions uβ to (IBV.n) as β → +0 and prove
that the limit function possesses the desired continuity if there exist suitable barrier functions or if F is
a first order coercive operator. Barrier assumptions similar to the ones in this paper can be found in [13,
Section 6] and [14, Sections 4, 5], where the asymptotic behavior of solutions is studied.

All of the results in this paper are presented for the half space Ω, and almost the same methods apply
to a domain of layer type {x = (x′, xn) ∈ Rn−1 ×R | 0 < xn < L} with L > 0. Extension of the results to
a domain with non-flat boundary is left for future work.

Organization. This paper is organized as follows. Section 2 is devoted to preliminaries. In Section 3 we
establish our main comparison result, while we prove existence of solutions in Section 4. Several examples
of solutions are given in Section 5.

2 Preliminaries

2.1 Assumptions

We list assumptions on the functions F = F (x, t, r, p,X) : Ω × (0, T ) × R × Rn × Sn → R in (1.1) and
B = B(x′, t, r, p′, τ) : Rn−1× (0, T )×R×Rn−1×R → R in (1.2). Here Sn stands for the space of real n×n
symmetric matrices with the usual ordering. Namely, for X,Y ∈ Sn we write X <= Y if ⟨(Y −X)ξ, ξ⟩ >= 0
for all ξ ∈ Rn. Also, set ∥X∥ := supp∈Rn, |p|<=1 |Xp| for X ∈ Sn. We define

M := {ω ∈ C([0,∞)) | ω(0) = 0, ω > 0 in (0,∞) and ω is non-decreasing in [0,∞)}.

Our assumptions on F are as follows:

(F1) (Continuity) F is continuous in Ω× (0, T )×R×Rn × Sn.

(F2) (Uniform continuity in (x, t, p,X)) For every R > 0 there exists ωR ∈ M such that

|F (x, t, r, p,X)− F (y, s, r, q, Y )| <= ωR(|x− y|+ |t− s|+ |p− q|+ ∥X − Y ∥)

for all x, y ∈ Ω, t, s ∈ (0, T ), r ∈ R with |r| <= R, p, q ∈ Rn and X,Y ∈ Sn.

(F3) (Monotonicity in r)
F (x, t, r, p,X) <= F (x, t, s, p,X)

for all x ∈ Ω, t ∈ (0, T ), r, s ∈ R with r < s, p ∈ Rn and X ∈ Sn.
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(F4) (Degenerate ellipticity)
F (x, t, r, p,X) >= F (x, t, r, p, Y )

for all x ∈ Ω, t ∈ (0, T ), r ∈ R, p ∈ Rn and X,Y ∈ Sn with X <= Y .

We assume that B satisfies

(B1) (Continuity) B is continuous in Rn−1 × (0, T )×R×Rn−1 ×R.

(B2) (Uniform continuity in (x′, t, p′)) For every R > 0 there exists ρR ∈ M such that

|B(x′, t, r, p′, τ)−B(y′, s, r, p′, τ)| <= ρR(|x′ − y′|+ |t− s|+ |p′ − q′|)

for all x′, y′ ∈ Rn−1, t, s ∈ (0, T ), r ∈ R with |r| <= R, p′, q′ ∈ Rn−1 and τ ∈ R.

(B3) (Strict monotonicity in r or τ) There exists some ζ ∈ M such that

ζ(min{s− r, σ − τ}) <= B(x′, t, s, p′, σ)−B(x′, t, r, p′, τ)

for all x′ ∈ Rn−1, t ∈ (0, T ), r, s ∈ R with r < s, p′ ∈ Rn−1 and τ, σ ∈ R with τ < σ.

Throughout this paper we assume all of the above conditions (F1)–(F4) and (B1)–(B3).

Remark 2.1. It is easy to see that the degenerate dynamic boundary condition (1.4) and the Dirichlet
boundary condition (1.6) satisfy (B3).

Remark 2.2. By (B1), sending σ → τ + 0 in (B3) implies

(B3)′ (Monotonicity in r)
B(x′, t, r, p′, τ) <= B(x′, t, s, p′, τ)

for all x′ ∈ Rn−1, t ∈ (0, T ), r, s ∈ R with r < s, p′ ∈ Rn−1 and τ ∈ R.

2.2 Definition of viscosity solutions

Let K ⊂ RN be a subset. For a function h : K → R, we define the upper semicontinuous envelope h∗ and
the lower semicontinuous envelope h∗ by

h∗(x) := lim
r→+0

sup
y∈K∩Br(x)

h(y), h∗(x) := lim
r→+0

inf
y∈K∩Br(x)

h(y) (x ∈ K).

Here Br(x) denotes the open ball of radius r centered at x.
We next introduce a notion of the parabolic semi-jets ([8, Section 8], [11, Chapter 3.2.1]). For u :

Ω× (0, T ) → R and (x0, t0) ∈ Ω× (0, T ), we define

P2,+u(x0, t0) := {(∇ϕ(x0, t0), ϕt(x0, t0),∇2ϕ(x0, t0)) ∈ Rn ×R× Sn |
ϕ ∈ C2,1(Ω× (0, T )), u− ϕ attains a maximum at (x0, t0) over Ω× (0, T )},

where C2,1(Ω × (0, T )) is the set of functions of C2-class in x and C1-class in t over Ω × (0, T ). Similarly,
P2,−u(x0, t0) is defined by replacing “maximum” by “minimum” in the above. The following extended
parabolic semi-jets will also be used:

P2,±
u(x0, t0) := {(p, τ,X) ∈ Rn ×R× Sn | there exist {(xm, tm)}∞m=1 ⊂ Ω× (0, T ) and

{(pm, τm, Xm)}∞m=1 ⊂ Rn ×R× Sn such that (pm, τm, Xm) ∈ P2,±u(xm, tm) and

(xm, tm) → (x0, t0), (pm, τm, Xm) → (p, τ,X) and u(xm, tm) → u(x0, t0) as m→ ∞}.
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Definition 2.3 (Viscosity solution). Let u : Ω × [0, T ) → R be bounded from above (resp. from below).
We say that u is a viscosity subsolution (resp. viscosity supersolution) of (1.1) and (1.2) if for all (x0, t0) ∈
Ω× (0, T ) and (p, τ,X) ∈ P2,+u∗(x0, t0) (resp. (p, τ,X) ∈ P2,−u∗(x0, t0)), we have

(∗)


τ + F (x0, t0, u

∗(x0, t0), p,X) <= 0 (2.1)

(resp. τ + F (x0, t0, u∗(x0, t0), p,X) >= 0) if x0 ∈ Ω, (2.2)

τ + F (x0, t0, u
∗(x0, t0), p,X) <= 0 or B(x0, t0, u

∗(x0, t0), p
′, τ) <= 0 (2.3)

(resp. τ + F (x0, t0, u∗(x0, t0), p,X) >= 0 or B(x0, t0, u∗(x0, t0), p
′, τ) >= 0) if x0 ∈ ∂Ω. (2.4)

If u further satisfies u∗(·, 0) <= u0 (resp. u∗(·, 0) >= u0) in Ω, then we say that u is a viscosity subsolution (resp.
viscosity supersolution) of (IBV). A viscosity solution is a function which is both a viscosity subsolution and
a viscosity supersolution.

We often call the inequality in (2.1) (resp. (2.2)) a viscosity subinequality (resp. viscosity superinequality)
for the equation (1.1). Similarly, the second inequality in (2.3) (resp. (2.4)) is called a viscosity subinequality
(resp. viscosity superinequality) for the boundary condition (1.2).

Remark 2.4. By definition, a viscosity solution is always supposed to be bounded in Ω× [0, T ) in this paper.
In Section 3 we establish a comparison principle for a bounded viscosity sub- and supersolution, and hence
it follows that bounded viscosity solutions are unique. In the literature, however, comparison results in
unbounded domain often apply to possibly unbounded solutions such as solutions with linear growth. It is
a possible extension of our result for (IBV), but we do not pursue the issue of unbounded solutions in this
paper.

Remark 2.5. From the continuity assumptions (F1), (B1) and the definitions of P2,±
, the following fact

immediately follows: Assume that u is a viscosity subsolution (resp. viscosity supersolution) of (1.1) and (1.2).

Then (∗) holds for any (p, τ,X) ∈ P2,+
u∗(x0, t0) (resp. (p, τ,X) ∈ P2,−

u∗(x0, t0)) with (x0, t0) ∈ Ω× (0, T ).

Example 2.6. Viscosity solutions can be discontinuous and may not be unique under the stationary bound-
ary condition and the Dirichlet boundary condition. Let us give such an example. In Section 5, we again
give examples of discontinuous solutions and non-uniqueness, but we now provide a very simple one.

Let n = 1 and consider the equation

ut(x, t) + F (ux(x, t)) = 0 in Ω× (0, T ) (2.5)

with the initial condition
u(x, 0) = 0 in Ω. (2.6)

Here we assume that F is uniformly continuous in R, F (0) = 0 and F >= 0 in (−∞, 0]. Let c > 0 be a
constant, and we consider the stationary boundary value problem

(2.5), ut(0, t) = c on ∂Ω× (0, T ), (2.6), (St0)

and the Dirichlet boundary value problem

(2.5), u(0, t) = ct on ∂Ω× (0, T ), (2.6). (Di0)

Let us define

u(x, t) :=

{
0 (x > 0),

f(t) (x = 0),

where f ∈ C([0, T )) ∩ C1((0, T )) satisfies f(0) = 0 and

0 <= f(t) <= ct, f ′(t) <= c for all t ∈ (0, T ). (2.7)

Then u is a solution to both (St0) and (Di0) whatever f satisfying (2.7) is chosen. To check this, we first
note that u∗ = u and u∗ = 0. Since u∗ = u∗ = 0 in Ω × (0, T ) and F (0) = 0, we see that u is a solution of
(2.5). At the initial time, we have u∗(x, 0) = u∗(x, 0) = 0 in Ω, and so (2.6) is satisfied. On the boundary
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∂Ω × (0, T ), we have u∗(0, t) = f(t) <= ct and u∗(0, t) = 0. If u∗ − ϕ attains its maximum at (0, t) for
ϕ ∈ C1(Ω × (0, T )), then ϕt(0, t) = f ′(t) <= c and u∗(0, t) <= ct. Namely, the viscosity subinequality for the
boundary condition is satisfied for both (St0) and (Di0). Assume next that u∗ − ϕ attains its minimum at
(0, t) for ϕ ∈ C1(Ω× (0, T )). Then ϕt(0, t) = 0 and ϕx(0, t) <= 0, and thus we have ϕt(0, t) +F (ϕx(0, t)) >= 0.

We therefore conclude that solutions are not unique for both (St0) and (Di0). By Corollary 3.3 established
later, we see that u ≡ 0 is a unique continuous solution of (St0) and (Di0). However, the solution does not
satisfy the boundary condition in the classical sense. Namely, ut(0, t) ̸= c and u(0, t) ≠ ct for t ∈ (0, T ).
When F takes negative values in (−∞, 0), there is a chance that the unique continuous solution satisfies
u(0, t) = ct+ u0(0) for t ∈ (0, T ). See Section 5.1 for the details.

2.3 Some relevant comparison results

We first state a comparison and uniqueness result for (IBV.n) with β > 0. The unique, continuous solution
uβ of (IBV.n) is used in Section 4 to construct solutions of (IBV).

Theorem 2.7 (Comparison principle for (IBV.n)). Let β > 0. Assume that u and v are respectively a
viscosity subsolution of (IBV.n) and a viscosity subsolution of (IBV.n). If u∗(·, 0) <= v∗(·, 0) in Ω, then
u∗ <= v∗ in Ω× [0, T ).

When Ω is a bounded domain, this comparison result is established in [2, Theorem II.1], whose proof is
essentially given in [2, Proof of Theorem I.2]. Here we only state how to modify the argument in [2] so that
it applies to a unbounded domain Ω.

Sketch of proof. We argue by contradiction. The argument of [2, Proof of Theorem I.2] (adapted for the
case of [2, Theorem II.1]), where Ω is a bounded set, begins with taking a maximum point (x0, t0) of

M = max
Ω×[0,T ]

(u∗(x, t)− v∗(x, t)) > 0.

Due to the classical comparison principle ([8, Theorem 3.3, Theorem 8.2]), we may assume that the maximum
is achieved only at a point on the boundary. Namely, (x0, t0) ∈ ∂Ω×(0, T ). We then introduce a suitable test
function ϕ(x, t, y, s) with the doubled variables and study a maximum point of u∗(x, t)−v∗(y, s)−ϕ(x, t, y, s).
The maximum point approaches to (x0, t0, x0, t0), and so the proof reduces to the one in a bounded set around
(x0, t0). We obtain a contradiction by subtracting two viscosity inequalities for the equation (1.1).

When Ω is the half-space, instead of the above M , we consider

M = max
Ω×[0,T ]

(
u∗(x, t)− v∗(x, t)−

σ

T − t
− γf(x)

)
,

where σ, γ > 0 are small constants and f(x) =
√
1 + |x|2. This maximum is attained, and again we may

suppose (x0, t0) ∈ ∂Ω×(0, T ). Since the argument is local near (x0, t0), we can discuss as if Ω were bounded.
After subtracting two viscosity inequalities for (1.1), we get a contradiction for σ, γ small enough.

Theorem 2.7 immediately gives the following uniqueness result:

Corollary 2.8 (Uniqueness of solutions for (IBV.n)). Let β > 0. Then (IBV.n) admits at most one viscosity
solution. If u is a viscosity solution of (IBV.n), then it is continuous in Ω× [0, T ).

Proof. Assume that u and v are viscosity solutions of (IBV.n). Then Theorem 2.7 implies that u∗ <= v∗ and
v∗ <= u∗ in Ω × [0, T ). Combining these, we obtain u∗ <= v∗ <= v∗ <= u∗ <= u∗ in Ω × [0, T ), and so every
inequality should be an equality. We thus conclude that u and v are continuous and u = v.

Following the same argument as [1, Lemma 3.2], we next prove that Lipschitz continuous solutions of
(IBV) are unique. Our main result, Theorem 3.2, generalizes the following theorem except that Theorem
3.2 requires extra conditions (3.3) and (3.4) near the initial time. We assume (B5) given in Section 4.1.

Theorem 2.9 (Comparison principle for Lipschitz continuous solutions). Assume (B5). Let u, v : Ω ×
[0, T ) → R be Lipschitz continuous functions in Ω× [0, T ). Assume that u is a viscosity subsolution of (IBV)
and v is a viscosity supersolution of (IBV). If u(·, 0) <= v(·, 0) in Ω, then u <= v in Ω× [0, T ).
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Proof. Fix β > 0. Let M be the maximum of the Lipschitz constants of u and v, and define uβ(x, t) =
u(x, t)− (βMt)/k and vβ(x, t) = v(x, t) + (βMt)/k. It is then easy to see that uβ and vβ are respectively a
subsolution and a supersolution of (IBV.n). Here we only check the boundary condition for uβ . Assume that
(p, τ,X) ∈ P2,+uβ(x, t) for (x, t) ∈ ∂Ω × (0, T ). Then (p, τ + (βM/k), X) ∈ P2,+u(x, t). If τ + (βM/k) +
F (x, t, u(x, t), p,X) <= 0 holds, it is clear that τ +F (x, t, u(x, t), p,X) <= 0. We consider the other case. Note
that the Lipschitz continuity of u implies |pn| <=M . Then, by (B3)′ and (B5) we have

B(x′, t, uβ(x, t), p′, τ)− βpn <= B(x′, t, u(x, t), p′, τ) + βM

<= −βM +B(x′, t, u(x, t), p′, τ + (βM/k)) + βM <= 0.

Thus uβ satisfies the boundary condition (1.15).
Theorem 2.7 implies that uβ <= vβ in Ω× [0, T ). The proof is complete if we send β → +0.

We therefore conclude that Lipschitz continuous solutions of (IBV) are unique. Unfortunately, Lipschitz
continuous solutions may not exist even if the initial datum is Lipschitz continuous. We give such an example
in Section 5.3. In order to deduce the uniqueness of solutions to such problems, we need our comparison
result, Theorem 3.2.

Remark 2.10. The Lipschitz continuity of solutions assumed in Theorem 2.9 can be relaxed. In fact, it is
enough to assume that there is M > 0 such that, for every t ∈ (0, T ),

(p, τ,X) ∈ P2,+u∗(0, t) implies pn >= −M, (p, τ,X) ∈ P2,−v∗(0, t) implies pn <=M.

2.4 Tangential sup-/inf-convolution

We next introduce a sup-convolution and inf-convolution ([4, Chapter II, Section 4.2], [7, Section 3.5]),
which will be used to regularize solutions to (IBV). Usually, the convolution is taken with respect to all the
variables of a function, but we here exclude the normal variable xn and define the convolutions as follows.
For a function u : Ω× [0, T ] → R and ε > 0, we define a sup-convolution uε and a inf-convolution uε as

uε(x′, xn, t) := sup
y′∈Rn−1,s∈[0,T ]

{
u(y′, xn, s)−

1

2ε
|x′ − y′|2 − 1

2ε
(t− s)2

}
, (2.8)

uε(x
′, xn, t) := inf

y′∈Rn−1,s∈[0,T ]

{
u(y′, xn, s) +

1

2ε
|x′ − y′|2 + 1

2ε
(t− s)2

}
(2.9)

for (x, t) ∈ Ω× [0, T ]. If u is bounded, i.e., ∥u∥ := supΩ×[0,T ] |u| <∞, then uε and uε are real-valued and

−∥u∥ <= uε <= u <= uε <= ∥u∥ in Ω× [0, T ].

We will give some properties of these convolutions. In what follows, we only consider uε since statements
for uε are parallel. First, the following facts are well-known:

Proposition 2.11. Let ε > 0 and u : Ω × [0, T ] → R be bounded and upper semicontinuous. Set C0 :=
2
√
∥u∥.

(1) For every xn >= 0, the function (x′, t) 7→ uε(x′, xn, t) is semiconvex and Lipschitz continuous in Rn−1×
[0, T ]; more precisely,

(x′, t) 7→ uε(x′, xn, t) +
1

2ε
|x′|2 + 1

2ε
t2 is convex in Rn−1 × [0, T ]

and

|uε(x′, xn, t)− uε(y′, xn, s)| <=
C0√
ε
(|x′ − y′|+ |t− s|)

for all (x′, t), (y′, s) ∈ Rn−1 × [0, T ].
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(2) For every (x, t) ∈ Ω × [0, T ], there exists some (y′0, s0) ∈ Rn−1 × [0, T ] such that |x′ − y′0| <= C0
√
ε,

|t− s0| <= C0
√
ε and

uε(x′, xn, t) = u(y′0, xn, s0)−
1

2ε
|x′ − y′0|2 −

1

2ε
(t− s0)

2.

For the proofs, see, e.g., [4, Lemmas II.4.11, II.4.12]. The same proofs as in [4] work even if the xn-variable
is fixed.

We next show that the convolutions keep viscosity properties. Although the assertions of this type are
known ([4, Proposition II.4.13]), we provide the proofs in order to show that fixing the variable does not
cause any problems for the proofs.

Proposition 2.12. Let ε > 0 and u : Ω × [0, T ] → R be bounded and upper semicontinuous. Set C0 :=
2
√
∥u∥, R := ∥u∥ and Iε := (C0

√
ε, T − C0

√
ε). We suppose that ε satisfies 2C0

√
ε < T so that Iε ̸= ∅.

(1) Assume that
max

Ω×(0,T )
(uε − ϕ) = (uε − ϕ)(x̂′, x̂n, t̂)

for some (x̂, t̂) ∈ Ω× Iε and ϕ ∈ C2,1(Ω× (0, T )). Then

max
Ω×Iε

(u− ϕ̃) = (u− ϕ̃)(x̂′ + εp′, x̂n, t̂+ ετ), (2.10)

where (p′, τ) := (∇′ϕ, ϕt)(x̂, t̂) and ϕ̃(x
′, xn, t) := ϕ(x′ − εp′, xn, t− ετ). Moreover,

uε(x̂′, x̂n, t̂) = u(x̂′ + εp′, x̂n, t̂+ ετ)− ε

2
|p′|2 − ε

2
τ2. (2.11)

(2) If u is a viscosity subsolution of (1.1) and (1.2), then uε is a viscosity subsolution of

ut(x, t) + F (x, t, u(x, t),∇u(x, t),∇2u(x, t)) = ωR(2C0

√
ε) in Ω× Iε, (2.12)

B(x′, t, u(x, t),∇′u(x, t), ut(x, t)) = ρR(2C0

√
ε) on ∂Ω× Iε, (2.13)

where ωR and ρR are respectively the functions in (F2) and (B2).

Proof. (1) Set m := (uε − ϕ)(x̂′, x̂n, t̂). By assumption we have

u(y′, xn, s)−
1

2ε
|x′ − y′|2 − 1

2ε
(t− s)2 − ϕ(x′, xn, t) <= m (2.14)

for all (x, t) ∈ Ω×(0, T ) and (y′, s) ∈ Rn−1×[0, T ]. By Proposition 2.11 (2) there exists (y′0, s0) ∈ Rn−1×[0, T ]
such that

uε(x̂′, x̂n, t̂) = u(y′0, x̂n, s0)−
1

2ε
|x̂′ − y′0|2 −

1

2ε
(t̂− s0)

2. (2.15)

Since the maximum of the left-hand side on (2.14) is attained at (x̂, t̂, y′0, s0), we see that the map

(x′, t) 7→ u(y′0, x̂n, s0)−
1

2ε
|x′ − y′0|2 −

1

2ε
(t− s0)

2 − ϕ(x′, x̂n, t) (2.16)

attains a maximum at (x̂′, t̂). This shows that

− x̂
′ − y′0
ε

−∇′ϕ(x̂′, x̂n, t̂) = 0, − t̂− s0
ε

− ϕt(x̂
′, x̂n, t̂) = 0,

that is, y′0 = x̂′ + εp′ and s0 = t̂+ ετ . Substituting these for (2.15) implies (2.11). Also, since the maximum
value of (2.16) is m, we have

m = u(y′0, x̂n, s0)−
1

2ε
|x̂′ − y′0|2 −

1

2ε
(t̂− s0)

2 − ϕ(x̂′, x̂n, t̂)

= u(y′0, x̂n, s0)−
ε

2
|p′|2 − ε

2
τ2 − ϕ(x̂′, x̂n, t̂).
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Using this equality, we see

(u− ϕ̃)(x̂′ + εp′, x̂n, t̂+ ετ) = u(x̂′ + εp′, x̂n, t̂+ ετ)− ϕ(x̂′, x̂n, t̂)

= u(y′0, x̂n, s0)− ϕ(x̂′, x̂n, t̂)

= m+
ε

2
|p′|2 + ε

2
τ2. (2.17)

We also note that the result of Proposition 2.11 (1) implies that

|p′| <=
C0√
ε
, |τ | <=

C0√
ε
. (2.18)

Let us fix (z, r) ∈ Ω× Iε, and then choose x′ = z′ − εp′, xn = zn, y
′ = z′, t = r− ετ and s = r in (2.14).

Here, since |ετ | <= C0
√
ε by (2.18), we have t = r − ετ ∈ (0, T ). Then

m >= u(z′, zn, r)−
ε

2
|p′|2 − ε

2
τ2 − ϕ(z′ − εp′, zn, r − ετ)

= (u− ϕ̃)(z′, zn, r)−
ε

2
|p′|2 − ε

2
τ2.

Hence, we conclude by (2.17) that (u− ϕ̃)(z′, zn, r) <= (u− ϕ̃)(x̂′ + εp′, x̂n, t̂+ ετ).

(2) Assume that maxΩ×(0,T )(u
ε − ϕ) = (uε − ϕ)(x̂, t̂) for some (x̂, t̂) ∈ Ω × Iε and ϕ ∈ C2,1(Ω × (0, T )).

Set (p′, τ) := (∇′ϕ, ϕt)(x̂, t̂). Since u is a viscosity subsolution of (1.1) and (1.2), it follows from (2.10) that,
if x̂n > 0,

τ + F (x̂′ + εp′, x̂n, t̂+ ετ, u(x̂′ + εp′, x̂n, t̂+ ετ),∇ϕ(x̂, t̂),∇2ϕ(x̂, t̂)) <= 0, (2.19)

while, if x̂n = 0, then we have (2.19) or

B(x̂′ + εp′, t̂+ ετ, u(x̂′ + εp′, x̂n, t̂+ ετ), p′, τ) <= 0. (2.20)

By (2.11) and the monotonicities (F3) and (B3)′, we see that (2.19) and (2.20) respectively yield

τ + F (x̂′ + εp′, x̂n, t̂+ ετ, uε(x̂, t̂),∇ϕ(x̂, t̂),∇2ϕ(x̂, t̂)) <= 0,

B(x̂′ + εp′, t̂+ ετ, uε(x̂, t̂), p′, τ) <= 0.

Since |uε(x̂, t̂)| <= ∥u∥ = R and |εp′|+ |ετ | <= 2C0
√
ε by (2.18), we conclude the proof.

We next study (semi)continuity with respect to xn. Since the definitions of our convolutions exclude
xn-variable, such a continuity is not a direct consequence of well-known results in the literature. For this
reason, we give the proofs again.

Proposition 2.13. Let ε > 0 and u : Ω× [0, T ] → R be bounded and upper semicontinuous.

(1) uε is upper semicontinuous in Ω× [0, T ].

(2) Let (x′, t) ∈ Rn−1 × [0, T ] and assume that

u(x′, 0, t) <= lim inf
xn→+0

u(x′, xn, t). (2.21)

Then
uε(x′, 0, t) <= lim inf

xn→+0
uε(x′, xn, t), (2.22)

and hence
uε(x′, 0, t) = lim

xn→+0
uε(x′, xn, t).
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Proof. (1) Fix (x, t) ∈ Ω× [0, T ], and let {(xj , tj)}∞j=1 ⊂ Ω× [0, T ] be a sequence such that (xj , tj) → (x, t),
(xj , tj) ̸= (x, t) and uε(xj , tj) → α as j → ∞ for some α ∈ R. We have to show that α <= uε(x, t).

For every j we see by Proposition 2.11 (2) that there is (y′j , sj) ∈ Rn−1× [0, T ] such that |x′j−y′j | <= C0
√
ε

with C0 = 2
√
∥u∥ and

uε(x′j , (xj)n, tj) = u(y′j , (xj)n, sj)−
1

2ε
|x′j − y′j |2 −

1

2ε
(tj − sj)

2. (2.23)

Since {y′j}j is bounded, it contains a convergent subsequence. We let y′j(k) → ȳ′ and sj(k) → s̄ as k → ∞.

Then, taking lim sup in (2.23) along this subsequence, we get

lim sup
k→∞

uε(x′j(k), (xj(k))n, tj(k)) <= u(ȳ′, xn, s̄)−
1

2ε
|x′ − ȳ′|2 − 1

2ε
(t− s̄)2,

where the upper semicontinuity of u has been applied. The left-hand side equals α while the right-hand side
is dominated by uε(x′, xn, t) by its definition. Thus we obtain α <= uε(x′, xn, t).

(2) We only need to prove (2.22) since uε is upper semicontinuous. Fix (x′, t) ∈ Rn−1 × [0, T ] and let
xn > 0. Again, by Proposition 2.11 (2) there is (y′0, s0) ∈ Rn−1 × [0, T ] such that

uε(x′, 0, t) = u(y′0, 0, s0)−
1

2ε
|x′ − y′0|2 −

1

2ε
(t− s0)

2. (2.24)

By the definition of uε(x′, xn, t), we have

uε(x′, xn, t) >= u(y′0, xn, s0)−
1

2ε
|x′ − y′0|2 −

1

2ε
(t− s0)

2.

Taking lim infxn→+0, we see by (2.21) that

lim inf
xn→+0

uε(x′, η, t) >= u(y′0, 0, s0)−
1

2ε
|x′ − y′0|2 −

1

2ε
(t− s0)

2.

Since the right-hand side is equal to uε(x′, 0, t) by (2.24), we conclude the proof.

The next proposition shows the behavior of uε(x, t) near t = 0. In what follows, BUC (K) denotes the
set of bounded and uniformly continuous functions in K ⊂ RN .

Proposition 2.14. Let u : Ω× [0, T ] → R be bounded and upper semicontinuous. Let ε > 0, u0 ∈ BUC (Ω),
a ∈ M and define

uε0(x) := sup
y′∈Rn−1

{
u0(y

′, xn)−
1

2ε
|x′ − y′|2

}
.

(1) uε0 converges to u0 uniformly in Ω as ε→ 0.

(2) Assume that, for some T ′ ∈ (0, T ],

u(x, t) <= u0(x) + a(t) for all (x, t) ∈ Ω× [0, T ′]. (2.25)

Then, for all θ > 0, there exist ε0 > 0 and κ > 0 such that

uε(x, t) <= u0(x) + θ for all ε ∈ (0, ε0) and (x, t) ∈ Ω× [0, κ].

Proof. (1) Let ω ∈ M be a modulus of continuity of u0, i.e, |u0(x) − u0(y)| <= ω(|x − y|) (x, y ∈ Ω). Set
C0 := 2

√
∥u0∥. By Proposition 2.11 (2), for all x ∈ Ω,

0 <= uε0(x)− u0(x) = sup
y′∈Rn−1

|x′−y′|<=C0
√
ε

{
u0(y

′, xn)− u0(x
′, xn)−

1

2ε
|x′ − y′|2

}

<= sup
y′∈Rn−1

|x′−y′|<=C0
√
ε

{ω(|x′ − y′|)− 0} = ω
(
C0

√
ε
)
.
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This shows the uniform convergence.

(2) By changing a in an appropriate way, we may assume that T ′ = T . Taking the sup-convolution of
both the sides of (2.25), we have

uε(x, t) <= uε0(x) + aε(t) for all (x, t) ∈ Ω× [0, T ], (2.26)

where

aε(t) = sup
s∈[0,T ]

{
a(s)− 1

2ε
(t− s)2

}
.

Fix θ > 0. By (1) there is ε1 > 0 such that uε0 − u0 <= θ/3 in Ω for all ε ∈ (0, ε1). Similarly, for some ε2 > 0,
we have aε − a <= θ/3 in [0, T ] whenever ε ∈ (0, ε2). Thus (2.26) implies that

uε(x, t) <= u0(x) + a(t) +
2θ

3
for all (x, t) ∈ Ω× [0, T ].

Since a(0) = 0 and a is continuous at 0, the above inequality shows the desired result.

Finally, we recall some properties of sub-/superdifferentials of semiconvex functions. For K ⊂ RN ,
f : K → R and x0 ∈ K, we define

D+f(x0) := {∇ϕ(x0) ∈ RN | ϕ ∈ C1(K), f − ϕ attains a maximum at x0 over K},
D−f(x0) := {∇ϕ(x0) ∈ RN | ϕ ∈ C1(K), f − ϕ attains a minimum at x0 over K}.

Proposition 2.15. Let U ⊂ RN be an open set and f : U → R be a semiconvex function. Let x ∈ U and
p ∈ RN . Then

(1) D−f(x) ̸= ∅.

(2) Either D+f(x) = ∅ or f is differentiable at x.

(3) Let {(xn, pn)}∞n=1 ⊂ U ×RN . If pn ∈ D+f(xn), (xn, pn) → (x, p) as n→ ∞ and f is differentiable at
x, then p = ∇f(x).

The proofs of (1) and (2) are given in [4, Proposition II.4.7 (a), (b)] while (3) is found in the argument
in [4, Proof of Proposition 4.8]. Obviously, similar assertions hold for a semiconcave function f when D±

are replaced by D∓.

3 Comparison principle

For the comparison principle, we will assume that a viscosity subsolution u and a viscosity supersolution v
of (IBV) are continuous in xn-direction on the boundary. More precisely,

u∗(x′, 0, t) <= lim inf
xn→+0

u∗(x′, xn, t) for all (x′, t) ∈ Rn−1 × (0, T ), (3.1)

v∗(x
′, 0, t) >= lim sup

xn→+0
v∗(x

′, xn, t) for all (x′, t) ∈ Rn−1 × (0, T ). (3.2)

These conditions are weaker than the usual continuity. We also impose conditions which control the behaviors
of u and v near the initial time:

There exist a ∈ M and T ′ ∈ (0, T ] such that u∗(x, t) <= u0(x) + a(t) for all (x, t) ∈ Ω× [0, T ′], (3.3)

There exist a ∈ M and T ′ ∈ (0, T ] such that v∗(x, t) >= u0(x)− a(t) for all (x, t) ∈ Ω× [0, T ′]. (3.4)

These are not restrictive conditions in the sense that, when u0 ∈ BUC (Ω), there always exist barrier
functions satisfying (3.3) and (3.4). Thus we are able to construct viscosity solutions satisfying (3.3) and
(3.4) by Perron’s method; see Section 4 for the details.
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We define

X− :=
{
u
∣∣ u : Ω× [0, T ) → R is a viscosity subsolution of (IBV) satisfying (3.1) and (3.3)

}
,

X+ :=
{
v
∣∣ v : Ω× [0, T ) → R is a viscosity supersolution of (IBV) satisfying (3.2) and (3.4)

}
,

and X := X− ∩X+.

Remark 3.1. One of typical classes of functions satisfying (3.1)–(3.4) is BUC (Rn × [0, T )).

Theorem 3.2 (Comparison principle). Let u, v : Ω× [0, T ) → R be bounded. If u ∈ X− and v ∈ X+, then
u∗ <= v∗ in Ω× [0, T ).

Proof. 1. Preliminary arguments. To simplify notation we write u for u∗ and v for v∗. Also, we define
R := max{∥u∥, ∥v∥}, f(x) :=

√
1 + |x|2 and l := supx∈Rn ∥∇2f(x)∥ <∞.

Suppose by contradiction that M0 := u(x0, t0) − v(x0, t0) > 0 for some (x0, t0) ∈ Ω × (0, T ). Let σ > 0
be a constant satisfying

0 < σ <
M0(T − t0)

4
,

and then choose γ ∈ (0, 1) such that

0 < γ <
M0

4f(x0)
, ρR(γ) < ζ

( σ

T 2
·min {T, 1}

)
, ωR(γ(1 + l + l2)) <

σ

T 2
,

where ρR, ζ and ωR are the functions in (B2), (B3) and (F2), respectively. By (3.3), (3.4) and Proposition
2.14 (2), there are ε0 > 0 and κ > 0 such that

uε(x, t) <= u0(x) +
σ

2T
, vε(x, t) >= u0(x)−

σ

2T
for all ε ∈ (0, ε0) and (x, t) ∈ Ω× [0, κ].

Here uε and vε are the convolutions defined by (2.8) and (2.9), respectively. In particular, for such ε and
(x, t), we have

uε(x, t)− vε(x, t) <=
σ

T
. (3.5)

Hereafter we take ε ∈ (0, ε0) small so that

C1

√
ε < min

{
T

2
, κ,

σ

∥u∥+ ∥v∥

}
,

2ρR(2C1

√
ε) < ζ

( σ

T 2
·min {T, 1}

)
− ρR(γ), 2ωR(2C1

√
ε) <

σ

T 2
− ωR(γ(1 + l + l2)),

where C1 := 2
√
R.

Let us recall Proposition 2.12 (2), which guarantees that uε is a viscosity subsolution of (2.12), (2.13)
with C1 instead of C0 and Iε = (C1

√
ε, T − C1

√
ε) ̸= ∅. Similarly, vε is a viscosity supersolution of

vt(x, t) + F (x, t, v(x, t),∇v(x, t),∇2v(x, t)) = −ωR(2C1

√
ε) in Ω× Iε, (3.6)

B(x′, t, v(x, t),∇′v(x, t), vt(x, t)) = −ρR(2C1

√
ε) on ∂Ω× Iε.

We now set

M := max
Ω×[0,T ]

(
uε(x, t)− vε(x, t)−

σ

T − t
− γf(x)

)
. (3.7)

Here we interpret σ/(T − t) = ∞ for t = T . By the boundedness of uε and vε, the maximum is attained and
M is finite. Also, the choices of σ and γ implies that

uε(x0, t0)− vε(x0, t0)−
σ

T − t0
− γf(x0) > M0 −

M0

4
− M0

4
=
M0

2
,

and so M > 0. From this positivity of M it follows that the maximum in (3.7) is attained over Ω× [κ, T−],
where

T− := T − σ

∥u∥+ ∥v∥
.
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Indeed, if 0 <= t <= κ, then (3.5) is valid and

uε(x, t)− vε(x, t)−
σ

T − t
− γf(x) <=

σ

T
− σ

T
− 0 = 0.

For T− <= t < T , we see that

uε(x, t)− vε(x, t)−
σ

T − t
− γf(x) <= ∥u∥+ ∥v∥ − σ

T − T− − 0 = 0.

Thus the maximizer of (3.7) lies in Ω × [κ, T−]. Recall that the convolutions uε and vε possess viscosity
properties in Ω × (C1

√
ε, T − C1

√
ε) in view of Proposition 2.12 (2), and by the choice of ε, we now have

[κ, T−] ⊂ (C1
√
ε, T −C1

√
ε). This guarantees that we are able to apply the definitions of viscosity sub- and

supersolutions to uε and vε near the maximum point of (3.7).
If

max
∂Ω×[0,T ]

(
uε(x, t)− vε(x, t)−

σ

T − t
− γf(x)

)
< M, (3.8)

the proof is classical. In fact, in this case we use a test function ϕ in (3.16) with δ = 0. It then follows
that a maximum point Ẑα = (x̂α, t̂α, ŷα, ŝα) of Φ converges to some (x̄, t̄, x̄, t̄) with (x̄, t̄) ∈ Ω× [κ, T−]. The
fact x̄ ∈ Ω is a consequence of (3.8), and by this we do not need to take the boundary condition (1.2) into
account when we apply the definitions of viscosity sub- and supersolutions after penalization.

For this reason, we have to consider the case where the maximum in (3.8) is equal to M . We let
(x∗, t∗) = (x′∗, 0, t∗) ∈ ∂Ω× [κ, T−] be a point attaining the maximum, i.e.,

M = max
∂Ω×[0,T ]

(
uε(x, t)− vε(x, t)−

σ

T − t
− γf(x)

)
= uε(x∗, t∗)− vε(x∗, t∗)−

σ

T − t∗
− γf(x∗). (3.9)

Note that
uε(x∗, t∗)− vε(x∗, t∗) >

σ

T − t∗
+ γf(x∗). (3.10)

We also remark that, by Proposition 2.13 (2) and (3.2),

vε(x
′, 0, t) = lim

xn→+0
vε(x

′, xn, t). (3.11)

2. Differentiablity of uε and vε at (x∗, t∗). Let us define

U(x′, t) := uε(x′, 0, t), Ũ(x′, t) := U(x′, t)− σ

T − t
− γf(x′, 0)−M, V (x′, t) := vε(x

′, 0, t).

Then, by Proposition 2.11 (1), U and Ũ are semiconvex and V is semiconcave in Rn−1 × [0, T ]. Also,

max
Rn−1×[0,T ]

(Ũ − V ) = (Ũ − V )(x′∗, t∗) = 0. (3.12)

We claim that Ũ and V are differentiable at (x′∗, t∗). First, it follows from (3.12) that 0 ∈ D+(Ũ−V )(x′∗, t∗).
Since Ũ −V is semiconvex, Proposition 2.15 (2) guarantees that Ũ −V is differentiable at (x′∗, t∗). By (3.12)
again, we see that V touches Ũ from above at (x′∗, t∗), which shows that D−Ũ(x′∗, t∗) ⊂ D−V (x′∗, t∗). Recall
D−Ũ(x′∗, t∗) ̸= ∅ by Proposition 2.15 (1), and therefore D−V (x′∗, t∗) ̸= ∅. Proposition 2.15 (2) thus implies
that V is differentiable at (x′∗, t∗), and so the sum (Ũ − V ) + V = Ũ is differentiable at (x′∗, t∗) too. The
proof of the claim is now complete.

The claim implies that uε and vε are differentiable at (x∗, t∗) in the directions of x′ and t. Since
(∇′, ∂t)(Ũ − V )(x′∗, t∗) = (0, 0), we have

∇′uε(x∗, t∗)−∇′vε(x∗, t∗) = γ∇′f(x∗), (3.13)

uεt (x∗, t∗)− (vε)t(x∗, t∗) =
σ

(T − t∗)2
. (3.14)
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Since |∇f | <= 1, we deduce from (3.13) that

|∇′uε(x∗, t∗)−∇′vε(x∗, t∗)| <= γ. (3.15)

We now divide the situation into the following three cases:

(i) B(x′∗, t∗, u
ε(x∗, t∗),∇′uε(x∗, t∗), u

ε
t (x∗, t∗)) > ρR(2C1

√
ε);

(ii) B(x′∗, t∗, vε(x∗, t∗),∇′vε(x∗, t∗), (vε)t(x∗, t∗)) < −ρR(2C1
√
ε);

(iii) Neither (i) nor (ii) holds.

Among these three possibilities, the case (iii) is easy to derive a contradiction. In fact, if (iii) were true, we
would have

L := B(x′∗, t∗, u
ε(x∗, t∗),∇′uε(x∗, t∗), u

ε
t (x∗, t∗))−B(x′∗, t∗, vε(x∗, t∗),∇′vε(x∗, t∗), (vε)t(x∗, t∗))

<= 2ρR(2C1

√
ε).

Let us estimate L. First, by (B2) and (3.15) we have

L >= B(x′∗, t∗, u
ε(x∗, t∗),∇′uε(x∗, t∗), u

ε
t (x∗, t∗))−B(x′∗, t∗, vε(x∗, t∗),∇′uε(x∗, t∗), (vε)t(x∗, t∗))− ρR(γ).

Next, from (B3), (3.10) and (3.14) it follows that

L >= ζ

(
min

{
σ

T − t∗
+ γf(x∗),

σ

(T − t∗)2

})
− ρR(γ) >= ζ

(
min

{ σ
T
,
σ

T 2

})
− ρR(γ).

We therefore have
0 < ζ

( σ

T 2
·min {T, 1}

)
− ρR(γ) <= 2ρR(2C1

√
ε),

which contradicts the choice of ε.
Hereafter we discuss the case (i); the proof for the case (ii) is parallel.

3. Doubling the variables. Assume (i). Let us define a function Φ : (Ω× [0, T ])2 → R ∪ {−∞} by

Φ(x, t, y, s) := uε(x, t)− vε(y, s)− ϕ(x, t, y, s)

with

ϕ(x, t, y, s) := α

{∣∣∣∣x− y +
δ√
α
en

∣∣∣∣2 + (t− s)2

}

+ δ

{
|x− x∗|2 +

∣∣∣∣y − x∗ −
δ√
α
en

∣∣∣∣2 + (t− t∗)
2

}
+

σ

T − t
+ γf(x), (3.16)

where α > 1, 0 < δ < min{
√
M/2, 1} are constants and en = (0, . . . , 0, 1) ∈ Rn. This choice of δ guarantees

that

Φ(x∗, t∗, x∗, t∗) >=
M

2
. (3.17)

Indeed, by the definition of Φ

Φ(x∗, t∗, x∗, t∗) = uε(x∗, t∗)− vε(x∗, t∗)− ϕ(x∗, t∗, x∗, t∗)

=M − δ2 − δ3

α
> M − δ2 − δ2

1
=M − 2δ2 > M − M

2
=
M

2
,

which gives (3.17).
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Let Ẑα = (x̂α, t̂α, ŷα, ŝα) be a maximum point of Φ over (Ω× [0, T ])2. Since uε and vε are bounded, the
maximum is attained on a compact set (Bd(0) × [0, T ])2 with some large d > 0 independent of α. We thus
have x̂α, ŷα ∈ Bd(0) and t̂α, ŝα ∈ [0, T ). Note also that (3.17) gives

Φ(Ẑα) >= Φ(x∗, t∗, x∗, t∗) >=
M

2
. (3.18)

For later use we compute the derivatives of ϕ:

∇xϕ(x, t, y, s) = 2α(x− y) + 2
√
αδen + 2δ(x− x∗) + γ∇f(x), (3.19)

∇yϕ(x, t, y, s) = −2α(x− y)− 2
√
αδen + 2δ

(
y − x∗ −

δ√
α
en

)
, (3.20)

ϕt(x, t, y, s) = 2α(t− s) + 2δ(t− t∗) +
σ

(T − t)2
, (3.21)

ϕs(x, t, y, s) = −2α(t− s), (3.22)

∇2
(x,y)ϕ(x, t, y, s) =

(
2αI + 2δI + γ∇2f(x) −2αI

−2αI 2αI + 2δI

)
. (3.23)

In particular, by (3.21) and (3.22),

ϕt(x, t, y, s) + ϕs(x, t, y, s) = 2δ(t− t∗) +
σ

(T − t)2
>= 2δ(t− t∗) +

σ

T 2
. (3.24)

4. Behavior of the maximum point Ẑα. Let us prove that

Ẑα = (x̂α, t̂α, ŷα, ŝα) → (x∗, t∗, x∗, t∗) as α→ ∞. (3.25)

First, since x̂α, ŷα ∈ Bd(0) and t̂α, ŝα ∈ [0, T ), it follows that, up to a subsequence

(x̂α, t̂α, ŷα, ŝα) → (x̄, t̄, ȳ, s̄) as α→ ∞

for some x̄, ȳ ∈ Bd(0) and t̄, s̄ ∈ [0, T ]. Next, rearranging the inequality Φ(Ẑα) >= Φ(x∗, t∗, x∗+(δ/
√
α)en, t∗),

we have

α

{∣∣∣∣x̂α − ŷα +
δ√
α
en

∣∣∣∣2 + (t̂α − ŝα)
2

}

<= uε(x̂α, t̂α)− vε(ŷα, ŝα)− δ

{
|x̂α − x∗|2 +

∣∣∣∣ŷα − x∗ −
δ√
α
en

∣∣∣∣2 + (t̂α − t∗)
2

}

− σ

T − t̂α
− γf(x̂α)− uε(x∗, t∗) + vε

(
x∗ +

δ√
α
en, t∗

)
+

σ

T − t∗
+ γf(x∗). (3.26)

Since the right-hand side is bounded from above as α → ∞, we see that x̄ = ȳ and t̄ = s̄. Then we take
lim supα→∞ in (3.26) to see that, by (3.11), (3.7) and (3.9)

0 <= lim sup
α→∞

α

{∣∣∣∣x̂α − ŷα +
δ√
α
en

∣∣∣∣2 + (t̂α − ŝα)
2

}
<= uε(x̄, t̄)− vε(x̄, t̄)− δ

{
2|x̄− x∗|2 + (t̄− t∗)

2
}

− σ

T − t̄
− γf(x̄)− uε(x∗, t∗) + vε (x∗, t∗) +

σ

T − t∗
+ γf(x∗)

<= −δ
{
2|x̄− x∗|2 + (t̄− t∗)

2
}
.

This shows that x̄ = x∗, t̄ = t∗ and

α

∣∣∣∣x̂α − ŷα +
δ√
α
en

∣∣∣∣2 → 0, α(t̂α − ŝα)
2 → 0 as α→ ∞. (3.27)
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(3.25) has therefore been proved.
By the first fact in (3.27), we see that

√
α((x̂α)n− (ŷα)n)+δ → 0 as α→ ∞. Accordingly, (x̂α)n < (ŷα)n

for α large enough. Since (x̂α)n >= 0, we have (ŷα)n > 0, i.e.,

ŷα ∈ Ω. (3.28)

We furthermore claim that

uε(x̂α, t̂α) → uε(x∗, t∗), vε(ŷα, ŝα) → vε(x∗, t∗) as α→ ∞. (3.29)

By (3.26) we have

uε(x∗, t∗)− vε

(
x∗ +

δ√
α
en, t∗

)
<= uε(x̂α, t̂α)− vε(ŷα, ŝα)− δ

{
|x̂α − x∗|2 +

∣∣∣∣ŷα − x∗ −
δ√
α
en

∣∣∣∣2 + (t̂α − t∗)
2

}
− σ

T − t̂α
− γf(x̂α) +

σ

T − t∗
+ γf(x∗).

Taking lim infα→∞ implies that uε(x∗, t∗)− vε(x∗, t∗) <= lim infα→∞{uε(x̂α, t̂α)− vε(ŷα, ŝα)}. Since uε − vε
is upper semicontinuous, this shows that

lim
α→∞

{uε(x̂α, t̂α)− vε(ŷα, ŝα)} = uε(x∗, t∗)− vε(x∗, t∗). (3.30)

Then,

lim inf
α→∞

uε(x̂α, t̂α) = lim inf
α→∞

[{uε(x̂α, t̂α)− vε(x̂α, t̂α)}+ vε(x̂α, t̂α)]

>= {uε(x∗, t∗)− vε(x∗, t∗)}+ vε(x∗, t∗) = uε(x∗, t∗).

Thus limα→∞ uε(x̂α, t̂α) = uε(x∗, t∗). This and (3.30) give (3.29). Also, by (3.10) and (3.29), we have

uε(x̂α, t̂α) > vε(ŷα, ŝα) for α > 0 large enough. (3.31)

5. Dividing the situation about x̂α. Either (a) or (b) below or both occurs:

There is a sequence {αj}j∈N such that αj → ∞ as j → ∞ and

(a) x̂αj
∈ Ω for all j ∈ N;

(b) x̂αj
∈ ∂Ω for all j ∈ N.

In what follows we write α for αj to simplify notation. The case (a) is an easier case since we always have a
viscosity subinequality for the equation (2.12) at x̂α ∈ Ω.

Let us discuss the case (b). We want to prove that

B(x̂′α, t̂α, u
ε(x̂α, t̂α),∇x′ϕ(Ẑα), ϕt(Ẑα)) > ρR(2C1

√
ε) for α > 0 large enough, (3.32)

that is, the boundary condition (2.13) is violated. Recall the function U(x′, t) = uε(x′, 0, t) introduced in
Step 2. Considering a map

(x′, t) 7→ Φ(x′, 0, t, ŷα, ŝα) = U(x′, t)− vε(ŷα, ŝα)− ϕ(x′, 0, t, ŷα, ŝα),

we see that
(∇x′ϕ(Ẑα), ϕt(Ẑα)) ∈ D+U(x̂′α, t̂α).
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We also recall that U(x′, t) is Lipschitz continuous. Thus, taking a subsequence of α if necessary, we may
assume that (∇x′ϕ(Ẑα), ϕt(Ẑα)) → (p̄′, τ̄) as α → ∞ for some (p̄′, τ̄) ∈ Rn−1 ×R. Since (x̂′α, t̂α) → (x′∗, t∗)
as α→ ∞ and U is differentiable at (x′∗, t∗), Proposition 2.15 (3) implies that

(p̄′, τ̄) = (∇x′U(x′∗, t∗), Ut(x
′
∗, t∗)) = (∇′uε(x′∗, t∗), u

ε
t (x

′
∗, t∗)).

By this and (3.29), we see that, as α→ ∞,

B(x̂′α, t̂α, u
ε(x̂α, t̂α),∇x′ϕ(Ẑα), ϕt(Ẑα)) → B(x′∗, t∗, u

ε(x∗, t∗),∇′uε(x′∗, t∗), u
ε
t (x

′
∗, t∗)).

Since we now discuss the case (i) in Step 2, the above fact shows (3.32).

6. Use of Crandall-Ishii lemma. We now apply Crandall-Ishii lemma ([8, Theorem 3.2, Theorem
8.3]) to the function Φ at Ẑα. Then there exist Xα, Yα ∈ Sn such that

(∇xϕ(Ẑα), ϕt(Ẑα), Xα) ∈ P2,+
uε(x̂α, t̂α), (3.33)

(−∇yϕ(Ẑα),−ϕs(Ẑα),−Yα) ∈ P2,−
vε(ŷα, ŝα), (3.34)(

Xα O
O Yα

)
<= A+A2 (3.35)

with A = ∇2
(x,y)ϕ(Ẑα). Since A is of the form (3.23), operating (ξ, ξ) ∈ Rn ×Rn to (3.35) implies that

Xα + Yα <= (4δ + 8δ2)I + {γ(1 + 4δ)∇2f(x̂α) + γ2(∇2f(x̂α))
2} =: δ′I +Gδ(x̂α). (3.36)

Note that, since ∥∇2f(x̂α)∥ <= l, we have

∥Gδ(x̂α)∥ <= γ(1 + 4δ)l + γ2l2. (3.37)

Set pα := 2α(x̂α − ŷα) + 2
√
αδen, so that (3.19) and (3.20) at Ẑα are represented as

∇xϕ(Ẑα) = pα + 2δ(x̂α − x∗) + γ∇f(x̂α), ∇yϕ(Ẑα) = −pα + 2δ

(
ŷα − x∗ −

δ√
α
en

)
.

In Step 5, we have proved that the viscosity subinequality for (2.12) holds even if x̂α ∈ ∂Ω since the boundary
condition (2.13) breaks for ϕ. Also, ŷα never lies on the boundary by (3.28). Therefore we deduce from
(3.33) and (3.34) that

ϕt(Ẑα) + F (x̂α, t̂α, u
ε(x̂α, t̂α), pα + 2δ(x̂α − x∗) + γ∇f(x̂α), Xα) <= ωR(2C1

√
ε),

−ϕs(Ẑα) + F

(
ŷα, ŝα, vε(ŷα, ŝα), pα − 2δ

(
ŷα − x∗ −

δ√
α
en

)
,−Yα

)
>= −ωR(2C1

√
ε).

Due to (3.31) and (F3), we are able to replace vε(ŷα, ŝα) in the second inequality by uε(x̂α, t̂α). Then,
subtracting the two inequalities, we see that, by (3.24), (3.36) and (F4),

2ωR(2C1

√
ε) >= ϕt(Ẑα) + ϕs(Ẑα) + F (x̂α, t̂α, u

ε(x̂α, t̂α), pα + 2δ(x̂α − x∗) + γ∇f(x̂α), Xα)

− F

(
ŷα, ŝα, u

ε(x̂α, t̂α), pα − 2δ

(
ŷα − x∗ −

δ√
α
en

)
,−Yα

)
>= 2δ(t̂α − t∗) +

σ

T 2
+ F (x̂α, t̂α, u

ε(x̂α, t̂α), pα + 2δ(x̂α − x∗) + γ∇f(x̂α), Xα)

− F

(
ŷα, ŝα, u

ε(x̂α, t̂α), pα − 2δ

(
ŷα − x∗ −

δ√
α
en

)
, Xα − δ′I −Gδ(x̂α)

)
.

We next apply (F2) to obtain

2ωR(2C1

√
ε)

>= 2δ(t̂α − t∗) +
σ

T 2

− ωR

(
|x̂α − ŷα|+ |t̂α − ŝα|+ 2δ|x̂α − x∗|+ γ + 2δ

∣∣∣∣ŷα − x∗ −
δ√
α
en

∣∣∣∣+ δ′∥I∥+ γ(1 + 4δ)l + γ2l2
)
,
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where we have used the fact that |∇f | <= 1 and (3.37). Sending α→ ∞, we obtain

2ωR(2C1

√
ε) >=

σ

T 2
− ωR(γ + δ′∥I∥+ γ(1 + 4δ)l + γ2l2),

and then letting δ → 0 yields

2ωR(2C1

√
ε) >=

σ

T 2
− ωR(γ + γl + γ2l2) >=

σ

T 2
− ωR(γ(1 + l + l2)).

This is a contradiction to the choice of ε.

In the same manner as the proof of Corollary 2.8, we obtain

Corollary 3.3 (Uniqueness of solutions for (IBV)). (IBV) admits at most one viscosity solution belonging
to X. If u ∈ X is a viscosity solution of (IBV), then it is continuous in Ω× [0, T ).

4 Existence of continuous solutions

We construct the unique solution u ∈ X of (IBV), especially as the limit of the solution uβ to (IBV.n).
Application and examples will be given in Section 5.

4.1 Assumptions

In addition to (F1)–(F4) and (B1)–(B3), we further impose the following conditions on F and B:

(F5) (Boundedness in (x, t, p))

FL(r, µ) := sup{|F (x, t, r, p, µI)| | x ∈ Ω, t ∈ (0, T ), p ∈ Rn with |p| <= L} <∞

for all L > 0, r ∈ R and µ ∈ R.

(B4) (Boundedness in (x′, t, p′))

BL(r) := sup{|B(x′, t, r, p′, 0)| | x′ ∈ Rn−1, t ∈ (0, T ), p′ ∈ Rn−1 with |p′| <= L} <∞

for all L > 0 and r ∈ R.

(B5) (Strict monotonicity in τ) There exists some k > 0 such that

k(σ − τ) <= B(x′, t, r, p′, σ)−B(x′, t, r, p′, τ)

for all x′ ∈ Rn−1, t ∈ (0, T ), r ∈ R, p′ ∈ Rn−1 and τ, σ ∈ R with τ < σ.

Throughout this section we assume (F5), (B4) and (B5). Furthermore we fix a constant β0 > 0 as an upper
bound of β in (IBV.n). Also, assume that u0 ∈ BUC (Ω).

We prepare stability results for viscosity sub- and supersolutions. See, e.g., [8, Lemma 4.2] and [11,
Lemma 2.4.1] for the proof.

Proposition 4.1 (Stability). Let S be a family of viscosity subsolutions (resp. viscosity supersolutions)
of (1.1) and (1.2) which are uniformly bounded from above (resp. below) in Ω × (0, T ). Set u(x, t) :=
sup{w(x, t) | w ∈ S} (resp. u(x, t) := inf{w(x, t) | w ∈ S}). Then u is a viscosity subsolution (resp. viscosity
supersolution) of (1.1) and (1.2).
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4.2 Initial barriers

To carry out Perron’s method, we first construct barrier functions satisfying the initial condition. To do this,
we regularize the initial datum u0 ∈ BUC (Ω) by the standard sup-convolution uε0 and the inf-convolution
u0ε, which are defined as

uε0(x) := sup
y∈Ω

{
u0(y)−

1

2ε
|x− y|2

}
, u0ε(x) := inf

y∈Ω

{
u0(y) +

1

2ε
|x− y|2

}
. (4.1)

They are Lipschitz continuous in Ω. Besides uε0 and u0ε are respectively semiconvex and semiconcave in Ω
(Proposition 2.11). Namely, for C0 = 2

√
∥u0∥,

(p,X) ∈ J2,+uε0(x) implies

{
|p| <= C0/ε and X >= −(1/ε)I if x ∈ Ω,

|p′| <= C0/ε and pn >= −C0/ε if x ∈ ∂Ω,
(4.2)

(p,X) ∈ J2,−u0ε(x) implies

{
|p| <= C0/ε and X <= (1/ε)I if x ∈ Ω,

|p′| <= C0/ε and pn <= C0/ε if x ∈ ∂Ω.
(4.3)

Here, for v0 : Ω → R, we denote by J2,+v0(x) (resp. J
2,−v0(x)) the set of (∇ϕ(x),∇2ϕ(x)) ∈ Rn × Sn such

that v0 − ϕ attains a maximum (resp. minimum) at x over Ω for ϕ ∈ C2(Ω).

Proposition 4.2 (Initial barriers). Let ε > 0 and define

M±
ε := max

{
FC0/

√
ε(∓∥u0∥,±1/ε),

1

k

{
BC0/

√
ε(∓∥u0∥) + (β0C0/

√
ε)
}}

,

where C0 = 2
√
∥u0∥ and k is the constant in (B5).

(1) Define

w−
ε (x, t) = −∥uε0−u0∥−M−

ε t+u
ε
0(x), w+

ε (x, t) = ∥u0ε−u0∥+M+
ε t+u0ε(x) for (x, t) ∈ Ω× [0, T ).

Then w−
ε is a viscosity subsolution and w+

ε is a viscosity supersolution of (IBV.n) for every β ∈ [0, β0].

(2) Define
v−(x, t) := sup

ε>0
w−

ε (x, t), v+(x, t) := inf
ε>0

w+
ε (x, t) for (x, t) ∈ Ω× [0, T ),

and
α−(r) := inf

ε>0
(M−

ε r + ∥uε0 − u0∥), α+(r) := inf
ε>0

(M+
ε r + ∥u0ε − u0∥) for r > 0.

Then v− is a viscosity subsolution and v+ is a viscosity supersolution of (IBV.n) for every β ∈ [0, β0].
Moreover, α± ∈ M and

u0(x)− α−(t) <= v−(x, t) <= u0(x) <= v+(x, t) <= u0(x) + α+(t) for all (x, t) ∈ Ω× [0, T ). (4.4)

Proof. (1) We only prove that w−
ε is a subsolution since the proof for w+

ε is parallel. First, observe that

w−
ε (x, t) <= −∥uε0 − u0∥+ uε0(x) <= −{uε0(x)− u0(x)}+ uε0(x) = u0(x). (4.5)

In particular, w−
ε (·, 0) <= u0 in Ω. In what follows, we prove that w−

ε is a subsolution of (1.1) and (1.15).
Let (p, τ,X) ∈ P2,+w−

ε (x, t) for (x, t) ∈ Ω × (0, T ). Then τ = −M−
ε and (p,X) ∈ J2,+uε0(x). If x ∈ Ω,

then we have |p| <= C0/
√
ε and X >= −(1/ε)I by (4.2). Applying (F3) and (F4), we see

F (x, t, w−
ε (x, t), p,X) <= F (x, t, ∥u0∥, p,−(1/ε)I) <= FC0/

√
ε(∥u0∥,−1/ε).

Therefore
τ + F (x, t, w−

ε (x, t), p,X) <= −M−
ε + FC0/

√
ε(∥u0∥,−1/ε) <= 0.
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Next, assume that x ∈ ∂Ω. We then have |p′| <= C0/
√
ε and pn >= −C0/

√
ε by (4.2). From (B3)′ and (B5),

we deduce

B(x′, t, w−
ε (x, t), p

′, τ) <= B(x′, t, ∥u0∥, p′,−M−
ε ) <= −kM−

ε +B(x′, t, ∥u0∥, p′, 0) <= −kM−
ε + BC0/

√
ε(∥u0∥).

This shows
B(x′, t, w−

ε (x, t), p
′, τ)− βpn <= −kM−

ε + BC0/
√
ε(∥u0∥) + β0 · (C0/

√
ε) <= 0.

We thus conclude that w−
ε is a viscosity subsolution of (IBV.n).

(2) The viscosity properties for v± follow from the stability (Proposition 4.1). Since ∥uε0 − u0∥, ∥u0ε −
u0∥ → 0 as ε→ 0, we see that α± ∈ M. Taking supε>0 in the inequality w−

ε (x, t) >= −∥uε0−u0∥−M−
ε t+u0(x)

implies that v−(x, t) >= −α−(t) + u0(x). The inequality v−(x, t) <= u0(x) is a consequence of (4.5). The
remaining inequalities in (4.4) for v+ can be obtained in the same manner.

Remark 4.3. The functions α± depend on β0, but they are independent of β.

We are now in a position to give the existence result of viscosity solutions to (IBV.n) by Perron’s method.
Set

Sβ :=

{
w

∣∣∣∣ w : Ω× [0, T ) → R is a viscosity subsolution of (IBV.n)
such that v− <= w <= v+ in Ω× [0, T )

}
,

where v± are the functions in Proposition 4.2. Note that Sβ is not empty since v− ∈ Sβ .

Theorem 4.4 (Existence of solutions to (IBV.n)). Define uβ(x, t) = sup{w(x, t) | w ∈ Sβ} for β ∈ [0, β0].
Then uβ is a viscosity solution of (IBV.n) satisfying

u0(x)− α−(t) <= uβ(x, t) <= u0(x) + α+(t) for all (x, t) ∈ Ω× [0, T ), (4.6)

where α± ∈ M are the functions in Proposition 4.2. If β ∈ (0, β0], then uβ ∈ C(Ω × [0, T )) and it is the
unique viscosity solution of (IBV.n).

Proof. First, the estimate (4.6) immediately follows from (4.4). In particular, the initial condition (1.3) is
satisfied. Next, the stability result (Proposition 4.1) implies that uβ is a viscosity subsolution of (1.1) and
(1.2). If uβ were not a supersolution of (1.1) and (1.2), there would exist w ∈ Sβ such that uβ(x0, t0) <
w(x0, t0) for some (x0, t0) ∈ Ω× (0, T ), which is a contradiction to the definition of uβ . For the details of this
argument, see [8, Lemma 4.4] and [11, Lemma 2.4.2]. The continuity and uniqueness of uβ with β ∈ (0, β0]
are consequences of Corollary 2.8.

4.3 Boundary barriers (I)

If we know a subsolution and a supersolution which are continuous and share the same boundary value on
∂Ω× (0, T ), then Perron’s method directly gives a solution of (IBV) in X. Our assumption is

(Br1) There exist ϕ− ∈ X−, ϕ+ ∈ X+ and ψ ∈ C(∂Ω× (0, T )) such that

(i) ϕ± are continuous at every (x, t) ∈ ∂Ω× (0, T );

(ii) ϕ±(x′, 0, t) = ψ(x′, t) for all (x′, t) ∈ Rn−1 × (0, T ).

We first prepare

Proposition 4.5 (Initial-boundary barriers). Assume (Br1). Let v± be the functions in Proposition 4.2.
Define

ṽ−(x, t) = max{v−(x, t), ϕ−(x, t)}, ṽ+(x, t) = min{v+(x, t), ϕ+(x, t)} for (x, t) ∈ Ω× [0, T ).

Then ṽ− is a viscosity subsolution and ṽ+ is a viscosity supersolution of (IBV), and ṽ− <= ṽ+ in Ω× [0, T ).
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Proof. Proposition 4.1 guarantees that ṽ− and ṽ+ are respectively a subsolution and a supersolution of
(IBV). Let us prove that ṽ− <= ṽ+. Since v− <= v+ by (4.4), it is enough to prove

v− <= ϕ+, ϕ− <= v+ in Ω× [0, T ). (4.7)

To show the first one, let ε > 0 and w−
ε be the function in Proposition 4.2. Since w−

ε ∈ X− and ϕ+ ∈ X+,
the comparison principle (Theorem 3.2) implies that w−

ε
<= (ϕ+)∗ <= ϕ+ in Ω × [0, T ). Taking supε>0, we

obtain v− <= ϕ+ in Ω× [0, T ). Similarly, one can prove the second inequality in (4.7).

Proposition 4.5 enables us to define a non-empty set

S̃ :=

{
w

∣∣∣∣ w : Ω× [0, T ) → R is a viscosity subsolution of (IBV)
such that ṽ− <= w <= ṽ+ in Ω× [0, T )

}
.

Theorem 4.6 (Existence of solutions to (IBV) in X under barriers (I)). Assume (Br1). Define u(x, t) =
sup{w(x, t) | w ∈ S̃}. Then u is the unique viscosity solution of (IBV) in X, and u ∈ C(Ω× [0, T )).

Proof. For the same reason as in the proof of Theorem 4.4, u is a viscosity solution of (IBV). We check that
u belongs to X. Note that, by the definition of u,

ϕ− <= ṽ− <= u <= ṽ+ <= ϕ+ in Ω× [0, T ).

Since ϕ− satisfies (3.4), so does u∗. Similarly, u∗ fulfills (3.3). Next, taking the semicontinuous envelopes in
the above inequalities, we obtain (ϕ−)∗ <= u∗ <= u∗ <= (ϕ+)∗ in Ω× [0, T ). On the boundary ∂Ω× (0, T ), by
(Br1) we have ψ = ϕ− = (ϕ−)∗ <= u∗ <= u∗ <= (ϕ+)∗ = ϕ+ = ψ. This shows that u∗ = u∗ = ψ on ∂Ω× (0, T );
in particular, u is continuous on ∂Ω× (0, T ). From this we deduce that, for any (x, t) ∈ ∂Ω× (0, T ),

u∗(x, t) = u(x, t) = lim inf
(y,s)→(x,t)

u(y, s) <= lim inf
(y,s)→(x,t)

u∗(y, s),

which implies that u∗ is continuous on ∂Ω × (0, T ). For the same reason, u∗ is continuous on ∂Ω × (0, T ),
and hence u ∈ X. The continuity of u follows from Corollary 3.3.

4.4 Half-relaxed limits

We next study the asymptotic behavior of solutions uβ to (IBV.n) as β → +0 in order to construct a solution
u of (IBV) in X. For this purpose, we consider the upper half-relaxed limit u and the lower half-relaxed limit
u of uβ . The definitions are as follows: for (x, t) ∈ Ω× [0, T )

u(x, t) = lim sup
β→0

∗uβ(x, t) := lim
δ→0

sup{uβ(y, s) | (y, s) ∈ Ω× [0, T ), |x− y| < δ, |t− s| < δ, 0 < β < δ},

u(x, t) = lim inf
β→0

∗u
β(x, t) := lim

δ→0
inf{uβ(y, s) | (y, s) ∈ Ω× [0, T ), |x− y| < δ, |t− s| < δ, 0 < β < δ}.

From definitions it follows that u is upper semicontinuous and u is lower semicontinuous in Ω × [0, T ). By
(4.6) we have

u0(x)− α−(t) <= u(x, t) <= u(x, t) <= u0(x) + α+(t) for all (x, t) ∈ Ω× [0, T ). (4.8)

In particular, u and u are continuous on Ω×{0} and satisfy u(·, 0) = u(·, 0) = u0 in Ω. Thus, from stability
results under the half-relaxed limits ([8, Lemma 6.1, Remarks 6.2 and 6.3]), it follows that u and u are
respectively a viscosity subsolution and a viscosity supersolution of (IBV). If u = u =: u in Ω× [0, T ), then
we conclude that uβ converges to u locally uniformly in Ω× [0, T ); see [8, Remark 6.4]. Under appropriate
assumptions, we will prove that u = u in Ω× [0, T ) by applying the comparison principle to them.
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4.5 Boundary barriers (II)

Assuming the existence of sub- and supersolutions approximating a common boundary value, we prove the
convergence of uβ to the unique solution u of (IBV) in X. We assume

(Br2) There exist a family of upper semicontinuous viscosity subsolutions {ϕ−η }η>0 of (IBV), a family of
lower semicontinuous viscosity supersolutions {ϕ+η }η>0 of (IBV) and ψ ∈ C(∂Ω× (0, T )) such that, for
every η > 0,

(i) ϕ±η are continuous at every (x, t) ∈ ∂Ω× (0, T );

(ii) limη→+0 ϕ
±
η (x

′, 0, t) = ψ(x′, t) for all (x′, t) ∈ Rn−1 × (0, T );

(iii) there exist some Mη > 0 such that, for every (x, t) ∈ ∂Ω× (0, T ),

(p, τ,X) ∈ P2,+ϕ−η (x, t) implies pn >= −Mη, (p, τ,X) ∈ P2,−ϕ+η (x, t) implies pn <=Mη.

Theorem 4.7 (Existence of solutions to (IBV) in X under barriers (II)). Assume (Br2). Let uβ be the
unique viscosity solution of (IBV.n) with β ∈ (0, β0]. Then uβ converges to the unique viscosity solution u
of (IBV) in X locally uniformly in Ω× [0, T ) as β → +0, and u ∈ C(Ω× [0, T )).

Proof. 1. Let us fix η > 0 and take the functions ϕ±η in (Br2). For ε > 0 we define V ±(x, t) := ±εt+ϕ±η (x, t).
We claim that V − and V + are respectively a viscosity subsolution and a viscosity supersolution of (IBV.n)
when 0 < β <= min{kε/Mη, β0}. Here k is the constant in (B5) and Mη is the constant in (Br2)-(iii).

At the initial time, we have V −(·, 0) = ϕ−η (·, 0) <= u0 <= ϕ+η (·, 0) = V +(·, 0) in Ω. Next, let (p, τ,X) ∈
P2,+V −(x, t) for (x, t) ∈ Ω× (0, T ). Then (p, τ + ε,X) ∈ P2,+ϕ−η (x, t). If x ∈ Ω, we have

τ + ε+ F (x, t, ϕ−η (x, t), p,X) <= 0. (4.9)

Since V −(x, t) <= ϕ−η (x, t), the monotonicity (F3) yields the desired viscosity subinequality:

τ + F (x, t, V −(x, t), p,X) <= 0. (4.10)

We next consider the case x ∈ ∂Ω. If (4.9) holds, then (4.10) is derived in the same manner. Assume that

B(x′, t, ϕ−η (x, t), p
′, τ + ε) <= 0.

Applying (B3)′, (B5) and (Br2)-(iii), we observe

B(x′, t, V −(x, t), p′, τ)− βpn <= B(x′, t, ϕ−η (x, t), p
′, τ)− βpn

<= −kε+B(x′, t, ϕ−η (x, t), p
′, τ + ε) + βMη

<= −kε+ βMη.

By the choice of β, the right-hand side is non-positive. We thus conclude that V − is a subsolution of (IBV.n).
The proof for V + is similar.

2. The comparison principle for (IBV.n) (Theorem 2.7) implies that V − <= uβ <= V + in Ω×(0, T ). Taking
lim sup∗β→0, we get V

− <= u <= (V +)∗ = εt+(ϕ+η )
∗ in Ω× (0, T ). Then, sending ε→ 0 gives ϕ−η <= u <= (ϕ+η )

∗,

and so (ϕ−η )∗ <= (u)∗ <= u <= (ϕ+η )
∗ in Ω × (0, T ). In particular, from the continuity (Br2)-(i) of ϕ±η on

the boundary, we deduce that ϕ−η <= (u)∗ <= u <= ϕ+η on ∂Ω × (0, T ). By (Br2)-(ii), letting η → +0 yields
u = (u)∗ = ψ on ∂Ω× (0, T ). Similarly, one can prove that u = (u)∗ = ψ on ∂Ω× (0, T ). Thus both u and
u are continuous on ∂Ω× (0, T ).

Since (4.8) holds, we see that u ∈ X− and u ∈ X+, and so u <= u in Ω× [0, T ) by the comparison principle
(Theorem 3.2). Hence uβ converges to u := u = u ∈ C(Ω × [0, T )) ∩ X as β → +0 locally uniformly in
Ω× [0, T ). The proof is complete.
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4.6 Coercive equations

We next consider first order equations with coercive F , instead of assuming the existence of barrier functions
from the boundary. The coercivity (F6) below guarantees that continuities of solutions uβ to (IBV.n) are
uniform in β. Accordingly, a continuous solution of (IBV) is obtained as β → +0.

In this subsection, we assume

(FB1) F is independent of (t,X), and B is independent of t.

(F6) For every R > 0
lim

L→∞
inf{F (x, r, p) | x ∈ Ω, r ∈ [−R,R], p ∈ BL(0)} = ∞ (4.11)

or
lim

L→∞
sup{F (x, r, p) | x ∈ Ω, r ∈ [−R,R], p ∈ BL(0)} = −∞. (4.12)

Let us denote by BLip(K) the set of bounded and Lipschitz continuous functions in K ⊂ RN . Our result
is

Theorem 4.8 (Existence in X under coercivity). Let uβ be the unique viscosity solution of (IBV.n) with
β ∈ (0, β0]. Then u

β converges to the unique viscosity solution u of (IBV) in X locally uniformly in Ω× [0, T )
as β → +0, and u ∈ BUC (Ω× [0, T )). Moreover, if u0 ∈ BLip(Ω), then u ∈ BLip(Ω× [0, T )).

To prove Theorem 4.8 we prepare some notations and facts. For R > 0 and m > 0 we define

C+
R (m) := sup{|p| | F (x, r, p) <= m for some (x, r) ∈ Ω× [−R,R]},

C−
R (m) := sup{|p| | F (x, r, p) >= −m for some (x, r) ∈ Ω× [−R,R]}.

Then
(4.11) ⇐⇒ C+

R (m) <∞ for all m > 0, (4.12) ⇐⇒ C−
R (m) <∞ for all m > 0.

For L > 0 let us define

M±[L] := max

{
FL(∓∥u0∥),

1

k
{BL(∓∥u0∥) + β0L}

}
.

Here we denote FL(r, µ) in (F5) simply by FL(r) since F is independent of X.
The following lemma is given in [12, Lemma A.2].

Lemma 4.9. Let u : Ω× (0, T ) → R be a bounded and continuous function.

(1) For any t0 ∈ (0, T ),

sup
x,y∈Ω
x ̸=y

|u(x, t0)− u(y, t0)|
|x− y|

= sup
x0∈Ω

p∈D+(u|t=t0 )(x0)

|p|.

(2) Assume that u satisfies

sup
x∈Ω

sup
t,s∈(0,T )

t̸=s

|u(x, t)− u(x, s)|
|t− s|

<∞.

Then
sup

(x0,t0)∈Ω×(0,T )

(p,τ)∈D+u(x0,t0)

|p| = sup
t0∈(0,T )

sup
x0∈Ω

p∈D+(u|t=t0
)(x0)

|p|.

Thanks to the estimate (4.6), the solutions uβ of (IBV.n) are bounded uniformly in β ∈ (0, β0]. Namely,

R := sup
β∈(0,β0]

∥uβ∥ (4.13)

is finite.
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Proposition 4.10 (Regularity results for solutions to (IBV.n)). Let uβ be the unique viscosity solution of
(IBV.n) with β ∈ (0, β0].

(1) Assume that u0 ∈ BLip(Ω). Let L0 be the Lipschitz constant of u0, and define

Lt = max{M+[L0], M
−[L0]}, Lx =

{
C+
R (Lt) if (4.11) holds,

C−
R (Lt) if (4.12) holds,

where R is the constant in (4.13). Then,

|uβ(x, t)− uβ(x, s)| <= Lt|t− s| for all x ∈ Ω and t, s ∈ [0, T ), (4.14)

|uβ(x, t)− uβ(y, t)| <= Lx|x− y| for all x, y ∈ Ω and t ∈ [0, T ). (4.15)

(2) Assume that u0 ∈ BUC (Ω). Let ε > 0 and uε0 be the sup-convolution of u0 define by (4.1). Define

Lε
t = max{M+[2

√
∥u0∥/ε], M−[2

√
∥u0∥/ε]}, Lε

x =

{
C+
R (Lε

t) if (4.11) holds,

C−
R (Lε

t) if (4.12) holds

and
αt(r) = inf

ε>0
{Lε

tr + ∥uε0 − u0∥}, αx(r) = inf
ε>0

{Lε
xr + ∥uε0 − u0∥} for r >= 0.

Then, αt, αx ∈ M and

|uβ(x, t)− uβ(x, s)| <= αt(|t− s|) for all x ∈ Ω and t, s ∈ [0, T ), (4.16)

|uβ(x, t)− uβ(y, t)| <= αx(|x− y|) for all x, y ∈ Ω and t ∈ [0, T ). (4.17)

Proof. (1) 1. Let us define w± : Ω× [0, T ) → R by w±(x, t) = ±Ltt+ u0(x). Then, by the same argument
as in the proof of Proposition 4.2, we see that w− and w+ are respectively a viscosity subsolution and a
viscosity supersolution of (IBV.n). Thus, the comparison principle for (IBV.n) (Theorem 2.7) implies that
w− <= uβ <= w+ in Ω× [0, T ).

Let h ∈ (0, T ), and define

w̃±(x, t) =

{
w±(x, t) if (x, t) ∈ Ω× [0, h],

uβ(x, t− h)± Lth if (x, t) ∈ Ω× [h, T ),

which is continuously connected at t = h. Note that, for (x, t) ∈ Ω× [h, T ), we have

w̃−(x, t)− w−(x, t) = uβ(x, t− h)− Lth− (w−(x, t− h)− Lth) = uβ(x, t− h)− w−(x, t− h) >= 0.

We now claim that w̃− is a viscosity subsolution of (IBV.n). We only need to check the viscosity subinequal-
ities at the time t = h since both w−(x, t) and uβ(x, t− h)−Lth are subsolutions. Let (p, τ) ∈ D+w̃−(x, h).
Then, since w̃− = w− in Ω× [0, h] and w̃− >= w− in Ω× [h, T ), we have (p, τ) ∈ D+w−(x, h). Thus the claim
follows since w− is a subsolution. For the same reason, w̃+ is a viscosity supersolution of (IBV.n).

By comparison we have w̃− <= uβ <= w̃+ in Ω× [0, T ). In particular, for t ∈ [0, T − h)

uβ(x, t)− Lth = w̃−(x, t+ h) <= uβ(x, t+ h) <= w̃+(x, t+ h) = uβ(x, t) + Lth,

which shows (4.14).

2. Let us next prove (4.15). We assume that (4.11) holds in (F6). Let (x0, t0) ∈ Ω× (0, T ) and take any
(p, τ) ∈ D+uβ(x0, t0). By (4.14) we have |τ | <= Lt, and so

F (x0, u
β(x0, t0), p) <= −τ <= Lt.
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The definition of C+
R thus implies that |p| <= C+

R (Lt). Therefore

sup
(x0,t0)∈Ω×(0,T )

(p,τ)∈D+uβ(x0,t0)

|p| <= C+
R (Lt).

By Lemma 4.9 we conclude (4.15) for x, y ∈ Ω and t ∈ (0, T ), and it is extended for x, y ∈ Ω and t ∈ [0, T )
since uβ is continuous in Ω× [0, T ). The same proof works for the case of (4.12).

(2) Let uβ,ε be the solution of (IBV.n) with the initial datum uε0. Since uε0 is Lipschitz continuous with
the Lipschitz constant less than or equal to 2

√
∥u0∥/ε, the result of (1) guarantees that uβ,ε satisfies the

estimates (4.14) and (4.15) with Lε
t and Lε

x instead of Lt and Lx, respectively. We also note that

0 <= uβ,ε − uβ <= ∥uε0 − u0∥ in Ω× [0, T ),

which is due to the fact that uβ,ε −∥uε0 − u0∥ and uβ are respectively a viscosity subsolution and a viscosity
supersolution of (IBV.n).

Let us prove (4.16). Fix x ∈ Ω, t, s ∈ [0, T ) and ε > 0. We may assume that uβ(x, t) >= uβ(x, s). Then

|uβ(x, t)− uβ(x, s)| = uβ(x, t)− uβ(x, s) <= uβ,ε(x, t)− uβ(x, s)

= {uβ,ε(x, t)− uβ,ε(x, s)}+ {uβ,ε(x, s)− uβ(x, s)}
<= Lε

t |t− s|+ ∥uε0 − u0∥ <= αt(|t− s|).

Similarly, one can prove (4.17).

Remark 4.11. The constants Lt, Lx and the functions αt, αx do not depend on β.

Proof of Theorem 4.8. Assume that u0 ∈ BUC (Ω). Since αt and αx are independent of β, the half-relaxed
limits u and u also satisfy (4.16) and (4.17). Accordingly, u ∈ X−∩BUC (Ω× [0, T )) and u ∈ X+∩BUC (Ω×
[0, T )). The comparison principle (Theorem 3.2) thus implies that u <= u in Ω× [0, T ), and so uβ converges
to u := u = u ∈ X ∩BUC (Ω× [0, T )) as β → +0 locally uniformly in Ω× [0, T ). If u0 ∈ BLip(Ω), the limits
u and u satisfy (4.14) and (4.15). Therefore u := u = u ∈ BLip(Ω× [0, T )). The proof is complete.

5 Examples

In this section we let the spatial dimension n be one, so that Ω = (0,∞), and give several examples of
solutions to (IBV). We mainly study the stationary boundary condition

ut(0, t) = c on ∂Ω× (0, T ) (5.1)

and the Dirichlet boundary condition

u(0, t) = ct+ u0(0) on ∂Ω× (0, T ). (5.2)

We are especially interested in whether the solution u satisfies

u(0, t) = ct+ u0(0) for all t ∈ [0, T ), (5.3)

which is the Dirichlet condition in the classical sense. Throughout this section we assume that c > 0.

5.1 Hamilton-Jacobi equations

We apply the existence result, Theorem 4.6, to simple Hamilton-Jacobi equations. We consider

ut(x, t)− h(|ux(x, t)|) = 0 in Ω× (0, T ). (5.4)

Here h : [0,∞) → R satisfies
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(h1) h is uniformly continuous in [0,∞), h(0) = 0 and h∞ := lim infr→∞ h(r) ∈ (0,∞].

We remark thatH(p) := −h(|p|) is uniformly continuous inRn under (h1), and thus the comparison principle
(Theorem 3.2) can be applied to (5.4). For d ∈ [0, h∞) we define π(d) := max{r >= 0 | h(r) = d} ∈ [0,∞).
Note that h(π(d)) = d and h(r) > d for all r > π(d). We consider the stationary boundary value problem

(5.4), (5.1), u(x, 0) = u0(x) in Ω. (HJ)

Theorem 5.1. Assume (h1).

(1) Assume that c < h∞ <= ∞. Then, for any u0 ∈ BUC (Ω) satisfying

u0(x) <= u0(0) + π(c)x for all x ∈ Ω, (5.5)

there exists a unique solution u ∈ C(Ω× [0, T )) of (HJ) in X. Moreover, u satisfies (5.3).

(2) Assume that c = h∞ = limr→∞ h(r) <∞. Then, for any u0 ∈ BUC (Ω), there exists a unique solution
u ∈ C(Ω× [0, T )) of (HJ) in X. Moreover, u satisfies (5.3).

Proof. (1) We construct barrier functions ϕ± in (Br1). First, by the definition of π and (5.5), we see that
ϕ+1 (x, t) := ct+ u0(0) + π(c)x is a supersolution of (HJ). Next, define

ω(r) := sup{|u0(x)− u0(y)| | x, y ∈ Ω, |x− y| <= r},

and choose ω∞ ∈ M such that

ω∞ ∈ C∞((0,∞)), ω∞ >= ω0 in [0,∞).

See, e.g., [11, Lemma 2.1.9 (i)] for the existence of such ω∞. We then set ω̃∞(r) = ω∞(r) + π(c)r for r >= 0,
so that ω̃′

∞ >= π(c) in (0,∞). From this we deduce that ϕ−1 (x, t) := ct + u0(0) − ω̃∞(x) is a subsolution of
(HJ). In fact, for (x, t) ∈ Ω× (0, T ), we have

(ϕ−1 )t(x, t)− h(|(ϕ−1 )x(x, t)|) = c− h(ω̃′
∞(x)) <= c− c = 0,

and (ϕ−1 )t(0, t) = c on the boundary. When t = 0, we have

ϕ−1 (x, 0) = u0(0)− ω̃∞(x) <= u0(0)− ω∞(x) <= u0(0)− ω0(x) <= u0(x).

Accordingly, ϕ−1 is a subsolution of (HJ).
We further prepare bounded functions ϕ±2 (x, t) = ct±∥u0∥. It is easily seen that ϕ−2 is a subsolution and

ϕ+2 is a supersolution of (HJ). Thus ϕ− = max{ϕ−1 , ϕ
−
2 } and ϕ+ = min{ϕ+1 , ϕ

+
2 } are respectively a bounded

subsolution and a bounded supersolution of (HJ). The functions ϕ± above satisfies the conditions in (Br1)
with ψ(t) = ct+ u0(0), and therefore Theorem 4.6 gives the desired conclusion.

(2) We modify the functions ϕ±1 in (1). Fix ε ∈ (0, c) and choose Rε > 0 such that |h(r)−h∞| < ε for all
r >= Rε. Using this constant Rε, we define ω̃∞,ε(r) = ω∞(r)+Rεr and ϕ

±
1,ε(x, t) = (c±ε)t+u0(0)± ω̃∞,ε(x),

where ω∞ is the function in the proof of (1). Then, as in the proof of (1), we see that ϕ−1,ε and ϕ+1,ε are
respectively a subsolution and a supersolution of (HJ).

We now define ϕ−1 = supε∈(0,c) ϕ
−
1,ε and ϕ+1 = infε∈(0,c) ϕ

+
1,ε. Then ϕ±1 (0, t) = ct + u0(0), and it follows

from stability that ϕ−1 and ϕ+1 are respectively a subsolution and a supersolution of (HJ). Moreover, they
are continuous on ∂Ω× (0, T ). In fact, for a fixed ε0 ∈ (0, c), we have

ct+ u0(0) + ω∞(x) <= ϕ+1 (x, t) <= (c+ ε0)t+ u0(0) + ω̃∞,ε0(x).

Thus
ct+ u0(0) <= lim inf

x→+0
ϕ+1 (x, t) <= lim sup

x→+0
ϕ+1 (x, t) <= (c+ ε0)t+ u0(0).

Since ε0 ∈ (0, c) is arbitrary, this shows the continuity. Similarly, ϕ−1 is continuous on ∂Ω× (0, T ). The rest
of the proof is the same as (1).
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Remark 5.2. In both (1) and (2), the solutions satisfy (5.3). Thus they solve the Dirichlet problem

(5.4), (5.2), u(x, 0) = u0(x) in Ω

and they are the unique solutions in X. If the assumptions in the theorem does not hold, then the solution
of (HJ) may not satisfy (5.3) and it can be different from the solution of the above Dirichlet problem. We
give such an example in Section 5.2 for the initial datum u0 not satisfying (5.5) in the case c < h∞. Also,
the case c > h∞ is discussed in Section 5.3, where the solution does not satisfy (5.3).

Eikonal equation. As an example, let us consider the eikonal equation

ut(x, t)− |ux(x, t)| = 0 in Ω× (0, T ), (5.6)

for which h(r) = r, h∞ = ∞ and π(d) = d. Since ut/|ux| represents the normal velocity of the level set of
u(·, t), the equation (5.6) describes a growth model where the height function u spreads at a uniform speed
one in the horizontal direction.

We assume that the initial datum u0 is zero. Namely, our problem is

(5.6), (5.1), u(x, 0) = 0 in Ω. (St1)

Since the initial datum satisfies (5.5) for any c > 0, Theorem 5.1 (1) can be applied. Therefore, by Remark
5.2, the unique solution of (St1) in X is also the unique solution in X of the Dirichlet problem

(5.6), (5.2), u(x, 0) = 0 in Ω.

We here prove that the unique solution of (St1) is

U0(x, t) = c(t− x)+, (5.7)

where a+ = max{a, 0} denotes the positive part of a ∈ R. The proof is straightforward, but we give it
since the solution U0 also plays an important role in an example of the next subsection, where the difference
between (5.1) and (5.2) is shown.

Theorem 5.3. U0 is the unique solution of (St1) in X.

To prove this we prepare

Lemma 5.4. Let f1, f2 ∈ C1(U) for U ⊂ RN open, and define g := min{f1, f2}. Assume that f1(z) = f2(z)
at z ∈ U .

(1) Let ϕ ∈ C1(U). If g − ϕ attains a local maximum at z, then ∇ϕ(z) = λ∇f1(z) + (1 − λ)∇f2(z) for
some λ ∈ [0, 1].

(2) If ∇f1(z) ̸= ∇f2(z), then there does not exist ϕ ∈ C1(U) such that g−ϕ attains a local minimum at z.

Proof. Set Y (z) := {∇f1(z), ∇f2(z)}. By [4, Proposition II.2.13], the superdifferential D+g(z) of g at z is
equal to the convex hull of Y (z), which proves (1). If ∇f1(z) ̸= ∇f2(z), the same proposition implies that
the subdifferential D−g(z) of g at z is empty since Y (z) is not a singleton. Accordingly, (2) holds.

Proof of Theorem 5.3. It is easy to see that U0 fulfills (3.1)–(3.4). At the initial time, we have U0(x, 0) = 0
in Ω. Moreover, since U0(0, t) = ct, the boundary condition (5.1) is satisfied.

We check that U0 is a solution of (5.6) in Ω× (0, T ). In {(x, t) ∈ Ω× (0, T ) | t ̸= x}, U0 is differentiable
and {

(U0)t(x, t) = c, (U0)x(x, t) = −c (t < x),

(U0)t(x, t) = 0, (U0)x(x, t) = 0 (t > x).

Thus (U0)t(x, t)− |(U0)x(x, t)| = 0 if t ̸= x.
Let (x̂, x̂) ∈ Ω × (0, T ) and ϕ ∈ C1(Ω × (0, T )). We assume that U0 − ϕ attains its maximum at (x̂, x̂).

Then, since U0(x, t) = max{c(t − x), 0} near (x̂, x̂), it follows from Lemma 5.4 (2) that there is no such ϕ.
Next, suppose that U0 − ϕ attains its minimum at (x̂, x̂). In this case, Lemma 5.4 (1) implies that

(ϕt(x̂, t̂), ϕx(x̂, t̂)) = λ(c,−c) + (1− λ)(0, 0) = λ(c,−c)

for some λ ∈ [0, 1]. Therefore ϕt(x̂, t̂)− |ϕx(x̂, t̂)| = 0.
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Remark 5.5. Let us compare the solution U0 with envelope solutions ([12]) of

ut(x, t)− |ux(x, t)| = cI(x) in R× (0, T ), u(x, 0) = u0(x) in R. (5.8)

Here I(x) is the function given in (1.11). Define û(x, t) = U0(|x|, t) = c(t−|x|)+ for (x, t) ∈ R× [0, T ), which
is obtained by reflecting U0 through {x = 0}. By [12, Example 3.16], û is the unique envelope solution of
(5.8) with u0 = 0.

5.2 Stationary condition v.s. Dirichlet condition

We continue to study the eikonal equation (5.6). Now, impose the initial condition

u(x, t) = u0(x) := 2cmin{x, 1} =

{
2cx (0 <= x <= 1),

2c (x >= 1)
in Ω. (5.9)

This u0 does not satisfy (5.5). We show that the unique solution under (5.1) is different from the unique
solution under (5.2).

Let T > 2. In addition to (5.1) and (5.2), we study the Neumann boundary condition

−ux(0, t) = 0 on ∂Ω× (0, T ), (5.10)

and the dynamic boundary condition

ut(0, t)− βux(0, t) = c on ∂Ω× (0, T ) (β > 0). (5.11)

In particular, we are interested in the asymptotic behavior of the solution for (5.11) with respect to β. Set

(5.6), (5.1), (5.9), (St2)

(5.6), (5.2), (5.9), (Di2)

(5.6), (5.10), (5.9), (Ne2)

(5.6), (5.11), (5.9). (Dy2)

Let us define ui : Ω× [0, T ) → R (i = 1, 2, 3) and u4 = uβ4 : Ω× [0, T ) → R by

u1(x, t) :=

{
2cmin{x+ t, 1} (0 <= t <= 1),

U0(x, t− 1) + 2c (t >= 1),
u2(x, t) :=


2cmin{x+ t, 1} (0 <= t <= 1),

2c (1 <= t <= 2),

U0(x, t− 2) + 2c (t >= 2),

u3(x, t) :=

{
2cmin{x+ t, 1} (0 <= t <= 1),

2c (t >= 1),
u4(x, t) :=

2cmin{x+ t, 1} (0 <= t <= 1),
1

1 + β
U0(x, t− 1) + 2c (t >= 1).

Here U0 is the function give by (5.7). Note that u1 = u04 if we let β = 0. Moreover, uβ4 → u1 uniformly

in Ω × [0, T ) as β → +0 and uβ4 → u3 uniformly in Ω × [0, T ) as β → ∞. We prove that u1, u2, u3, u4 are,
respectively, the unique solution of (St2), (Di2), (Ne2), (Dy2). See Figure 1 for the graphs of these solutions.

Theorem 5.6. (1) u1 is the unique solution of (St2) in X.

(2) u2 is the unique solution of (Di2) in X.

(3) u3 is the unique solution of (Ne2).

(4) uβ4 is the unique solution of (Dy2) for any β > 0.

In particular, we see by this theorem that the solution u1 of (St2) is different from the solution u2 of

(Di2). Moreover, u1(0, t) ̸= ct for t ∈ (0, T ) and u2(0, t) ̸= ct for t ∈ (0, 2). Also, the limit of the solution uβ4
of (Dy2) as β → +0 is characterized not by (Di2) but by (St2).
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(a) The solution u1 of (St2) (b) The solution u2 of (Di2)

(c) The solution u3 of (Ne2) (d) The solution u4 of (Dy2)

Figure 1: Solutions of (5.6) with (5.9).
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Proof. By definitions we have ui(x, 0) = u0(x) in Ω for all i = 1, 2, 3, 4. Besides, it is easily seen that u1 and
u2 satisfy (3.1)–(3.4). and so the uniqueness of them is a consequence of Corollary 3.3. The uniqueness of
u3 and u4 follows from the classical comparison result, Corollary 2.8. Let us check that ui is a solution for
every i = 1, 2, 3, 4. Since the assertion for u1 is included in (4) by allowing β = 0, we give the proofs of (2),
(3) and (4) with β >= 0. Moreover, in a similar way to the proof of Theorem 5.3, one can check that ui is a
solution of (5.6) in Ω× (0, T ). Thus we only check the boundary condition.

1. ui is a subsolution on ∂Ω× (0, T ). Assume that ui −ϕ attains its maximum at (0, t̂) ∈ ∂Ω× (0, T )
for ϕ ∈ C1(Ω× (0, T )). Set τ = ϕt(0, t̂) and p = ϕx(0, t̂).

Case 1: t̂ ∈ (0, 1]. We prove that the equation (5.6) is satisfied in this case. Suppose first that t̂ ∈ (0, 1).
Since ui(x, t) = 2c(x+ t) near (0, t̂) for every i = 2, 3, 4, we have τ = 2c and p >= 2c. This implies that

τ − |p| <= 2c− 2c = 0.

Next, let t̂ = 1. For h > 0 small enough, we have

ϕ(h, 1− h)− ϕ(0, 1)√
2h

>=
ui(h, 1− h)− ui(0, 1)√

2h
=

2c− 2c√
2h

= 0 (i = 2, 3, 4).

Sending h → +0 implies that p − τ >= 0. Now, as ui(x, 1) = 2c for x >= 0, we have p >= 0. Consequently,
τ − |p| = τ − p <= 0.

Case 2: t̂ ∈ (1, T ). By the definitions of u2, u3, u4 we have

(2)


τ = 0, p >= 0 if 1 < t̂ < 2,

there is no such ϕ if t̂ = 2,

u2(0, t̂) = ct̂ if t̂ > 2

(3) τ = 0, p >= 0 (4) τ =
c

1 + β
, p >= − c

1 + β
.

Therefore

(2) τ − |p| <= 0 if 1 < t̂ < 2 (3) τ − |p| <= 0 (4) τ − βp <=
c

1 + β
− β · −c

1 + β
= c.

2. ui is a supersolution on ∂Ω×(0, T ). Assume that ui−ϕ attains its minimium at (0, t̂) ∈ ∂Ω×(0, T )
for ϕ ∈ C1(Ω × (0, T )). Set τ = ϕt(0, t̂) and p = ϕx(0, t̂). Then, for i = 2, the boundary condition (5.2) is
satisfied wherever t̂ lies since we have u2(0, t̂) >= ct̂. Let us discuss the cases of i = 3, 4.

Case 1: t̂ ∈ (0, 1]. It is easily seen that there is no such ϕ when t̂ = 1. Thus we may let t̂ ∈ (0, 1). For
both i = 3, 4 we have ui(x, t) = 2c(x+ t) near (0, t̂). This implies that τ = 2c and p <= 2c, and so

(3)

{
τ − |p| >= 2c− 2c = 0 if 0 <= p <= 2c,

−p >= 0 if p <= 0
(4)

{
τ − |p| >= 2c− 2c = 0 if 0 <= p <= 2c,

τ − βp >= 2c+ 0 >= c if p <= 0.

Case 2: t̂ ∈ (1, T ). In this case

(3) τ = 0, p <= 0 (4) τ =
c

1 + β
, p <= − c

1 + β
,

and thus

(3) − p >= 0 (4) τ − βp >=
c

1 + β
− β · −c

1 + β
= c.

Namely, the boundary condition is satisfied. The proof is complete.

Remark 5.7. The behaviors of u1 and u2 and their difference can be understood as follows: Since the equation
(5.6) requires that the horizontal growth speed of the solution should be one, both u1 and u2 grow in the
horizontal direction until they become flat at t = 1. During the period 0 <= t <= 1, the value of them at x = 0
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is 2ct and the vertical growth speed is 2c. They are beyond the prescribed boundary conditions. After they
get flat, the behaviors are different. Since the value of the solution u2 is larger than the Dirichlet boundary
value at x = 0, the solution waits until it recovers the boundary condition. Once it is recovered at t = 2, the
solution starts to grow again with the shape U0 as in the previous example (Theorem 5.3). Different from
u2, the solution u1 of the stationary problem does not need to wait since the prescribed condition is not the
value but the speed. Thus u1 immediately starts to grow after t = 1.

This difference is caused by the steep slope of the initial datum near x = 0. As we have already proven in
Theorem 5.1 (1), if the initial slope is small compared with c, then the stationary condition and the Dirichlet
condition give the same solution.

This example also shows that solutions for the Dirichlet boundary problem do not possess a semi-group
property. In fact, as we observed in the previous example, if the initial datum is constant, the solution
immediately grows. However, the solution u2 does not grow during 1 <= t <= 2 in spite that it is flat at t = 1.

Remark 5.8. Let us define û(x, t) = u1(|x|, t) for (x, t) ∈ R × [0, T ), which is the reflection of the solution
u1 of (St2). As shown in [12, Example 5.7 (2)], û is the unique envelope solution of (5.8) with u0 given by
(5.9).

In [12, Section 5.3], we also studied the problem

ut(x, t)− |ux(x, t)| = 0 in (R \ {0})× (0, T ), u(x, 0) = u0(x) in R, ut(0, t) = c. (5.12)

The above û is a viscosity solution of (5.12) but it is not a unique solution. The problem (5.12) has infinitely
many continuous viscosity solutions.

Non-uniqueness of discontinuous solutions. There are infinitely many discontinuous solutions of (St2)
and (Di2). This shows that solutions may lose continuity even if a Hamiltonian is coercive. Such discontin-
uous solutions are obtained by modifying u1 and u2 on ∂Ω× (0, T ). Let us define

ũ1(x, t) :=

{
u1(x, t) (x > 0),

f1(t) (x = 0),
ũ2(x, t) :=

{
u2(x, t) (x > 0),

f2(t) (x = 0)

with functions f1 ∈ C([0, T )) ∩ C1((0, T )) and f2 ∈ C([0, T )) satisfying f1(0) = f2(0) = 0 and

0 <= f1(t) <= u1(0, t), f ′1(t) >= c for all t ∈ (0, T ),

ct <= f2(t) <= u2(0, t) for all t ∈ (0, T ).

There are infinitely many choices of such f1 and f2, and examples include f1(t) = f2(t) = ct. Unless
fi(t) = ui(0, t) for all t ∈ [0, T ), the function ũi has discontinuity on ∂Ω× (0, T ) for i = 1, 2. Also, it is easily
seen that

(ũi)
∗ = ui in Ω× [0, T ), (ũi)∗ =

{
ui in Ω× [0, T ),

fi on ∂Ω× [0, T )
(i = 1, 2). (5.13)

Proposition 5.9. ũ1 is a solution of (St2) and ũ2 is a solution of (Di2). Therefore, solutions are not
unique for these problems.

Proof. By Theorem 5.6 and (5.13), we only need to check that (ũi)∗ is a supersolution on the boundary for
i = 1, 2. Assume first that u1 − ϕ attains its minimum at (0, t̂) for ϕ ∈ C1(Ω× (0, T )) and t̂ ∈ (0, T ). Then,
ϕt(0, t̂) = f ′1(0, t̂) >= c. Let us next assume that u2 − ϕ attains its minimum at (0, t̂) for ϕ ∈ C1(Ω× (0, T ))
and t̂ ∈ (0, T ). Then we have (ũ2)∗(0, t̂) = f2(t̂) >= ct̂.

5.3 Non-existence of Lipschitz continuous solutions

Even if the initial datum is zero, the unique continuous solution may immediately lose the Lipschitz continuity
when the equation is not coercive. We below give such an example. For such problems we cannot apply
Theorem 2.9 to show the uniqueness.
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We consider a problem similar to [12, Example 5.15]. We study the equation

ut(x, t)−
|ux(x, t)|

1 + |ux(x, t)|
= 0 in Ω× (0, T ). (5.14)

Here h(r) = r/(1+ r) and h∞ = 1. Also, note that the corresponding F (p) = −h(|p|) = −|p|/(1+ |p|) is not
coercive. For c > 0 we consider the stationary boundary problem

(5.14), (5.1), u(x, 0) = 0 in Ω. (St3)

Let us define

U(x, t) =

{(√
t−

√
x
)
+

}2

,

and

uc(x, t) =

{
ct− c

1− c
x (x <= (1− c)2t),

U(x, t) (x >= (1− c)2t)
if 0 < c < 1, uc(x, t) = U(x, t) if c >= 1.

In Ω× [0, T ), the above uc is Lipschitz continuous if 0 < c < 1, while it is not Lipschitz continuous if c >= 1.
The latter fact follows from

lim
h→+0

U(h, t)− U(0, t)

h
= −∞ for t ∈ (0, T ). (5.15)

See Figure 2 for the graphs of uc.

(a) The solution uc with 0 < c < 1 (b) The solution uc with c ≧ 1

Figure 2: Solutions of (5.14) with u(x, 0) = 0.

When c > 1, let us define

ũc(x, t) :=

{
U(x, t) (x > 0),

f(t) (x = 0)

with a function f ∈ C([0, T )) ∩ C1((0, T )) satisfying f(0) = 0 and

t <= f(t), f ′(t) <= c for all t ∈ (0, T ). (5.16)

Note that ũc is continuous in Ω× [0,∞) if and only if f(t) = t.

Theorem 5.10. (1) uc is the unique solution of (St3) in X for every c > 0.
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(2) Let c > 1. Then ũc is a solution of (St3).

Thus the unique solution uc in X is not Lipschitz continuous when c >= 1. If c > 1 = h∞ (i.e, the
assumptions of Theorem 5.1 are not fulfilled), the solution uc does not satisfy (5.3) since uc(0, t) = t for
t ∈ (0, T ). Theorem 5.10 (2) asserts that there are infinitely many discontinuous solutions.

Proof. (1) It is easily seen that uc satisfies (3.1)–(3.4) and uc(x, 0) = 0 in Ω for every c > 0.

Case 1: 0 < c < 1. Let a(x, t) := ct− cx/(1− c). Differentiating a and U , we find

at(x, t) = c, ax(x, t) = − c

1− c
, Ut(x, t) =

(√
t−

√
x
)
+√

t
, Ux(x, t) = −

(√
t−

√
x
)
+√

x
.

This shows that both a and U solve (5.14) in Ω× (0, T ). Moreover, they are smoothly connected on the line
{x = (1 − c)2t}. Namely, uc ∈ C1(Ω × (0, T )), and thus uc is a classical (and hence viscosity) solution of
(5.14). Since uc(0, t) = ct, the boundary condition is also satisfied.

Case 2: c >= 1. We have already checked that uc = U solves (5.14) in Ω × (0, T ). On the boundary
∂Ω × (0, T ), we have uc(0, t) = U(0, t) = t <= ct, and so uc is a subsolution of (St3). Furthermore, due to
(5.15), there is no test functions ϕ touching uc from below at (0, t). Thus uc is a supersolution of (St3).

(2) Since t <= f(t) for t ∈ [0, T ), we have

(ũc)
∗ =

{
U in Ω× [0, T ),

f on ∂Ω× [0, T ),
(ũc)∗ = U in Ω× [0, T ).

These and the second assumption f ′(t̂) <= c in (5.16) give the desired conclusion.

Remark 5.11. Set ûc(x, t) = uc(|x|, t) for (x, t) ∈ R× [0, T ). In [12, Example 5.15] we studied

ut(x, t)−
|ux(x, t)|

1 + |ux(x, t)|
= cI(x) in R× (0, T ), u(x, 0) = 0 in R (5.17)

and proved that ûc is the unique envelope solution of (5.17) when 0 < c <= 1. If c > 1, envelope solutions
are not unique.
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MA, 2004.

[8] M. G. Crandall, H. Ishii, P.-L. Lions, User’s guide to viscosity solutions of second order partial differential
equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1–67.

[9] C. M. Elliott, Y. Giga, S. Goto, Dynamic boundary conditions for Hamilton-Jacobi equations, SIAM J.
Math. Anal. 34 (2003), 861–881.

[10] J. Guerand, Effective nonlinear Neumann boundary conditions for 1D nonconvex Hamilton-Jacobi equa-
tions, J. Differential Equations 263 (2017), 2812–2850.

[11] Y. Giga, Surface evolution equations: A level set approach, Monographs in Mathematics 99, Birkhäuser
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