
ScienceDirect

Available online at www.sciencedirect.com

Procedia Engineering 201 (2017) 372–384

1877-7058 © 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 3rd International Conference “Information Technology and 
 Nanotechnology".
10.1016/j.proeng.2017.09.652

10.1016/j.proeng.2017.09.652

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 3rd International Conference “Information Technology and 
Nanotechnology”.

1877-7058

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia Engineering 00 (2017) 000–000  

  www.elsevier.com/locate/procedia 

 

1877-7058 © 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the scientific committee of the 3rd International Conference “Information Technology and Nanotechnology.  

3rd International Conference “Information Technology and Nanotechnology”, ITNT-2017, 25-27 
April 2017, Samara, Russia 

Systematic approach to nonlinear filtering associated with 
aggregation operators. Part 1. SISO-filters 

 
V. Labunetsa*,  E. Osthaimerb 

aUral State Forest Engineering University, 620100, Ekaterinbyrg, Russia  
bCapricat LLC, Pompano Beach, Florida, USA  

  

Abstract 

There are various methods to help restore an image from noisy distortions. Each technique has its advantages and disadvantages. 
Selecting the appropriate method plays a major role in getting the desired image. Noise removal or noise reduction can be done 
on an image by linear or nonlinear filtering.  The more popular linear technique is based on average (on mean) linear operators. 
Denoising via linear filters normally does not perform satisfactorily since both noise and edges contain high frequencies. 
Therefore, any practical denoising model has to be nonlinear. In this work, we introduce and analyze a new class of nonlinear 
SISO-filters that have their roots in aggregation operator theory. We show that a large body of non-linear filters proposed to date 
constitute a proper subset of aggregation filters.  
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1. Introduction 

The basic idea behind this paper is the estimation of the uncorrupted image from the distorted or noisy image, and 
is also referred to as image “denoising”. To denoise images is to filter out the noise. The challenge is to preserve and 
enhance important features during the denoising process. For images, for example, an edge is one of the most 
universal and crucial features. There are various methods to help restore an image from noisy distortions [1-11]. 
Each technique has its advantages and disadvantages. Selecting the appropriate method plays a major role in getting 
the desired image. Noise removal or noise reduction can be done on an image by linear or nonlinear filtering.  The 
more popular linear technique is based on average linear operators. Denoising via linear filters normally does not 
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perform satisfactorily since both noise and edges contain high frequencies. Therefore, any practical denoising model 
has to be nonlinear. In this paper, we propose a new type of nonlinear data-dependent denoising filter called the 
aggregation digital filter. 

2. The object of the study 

Let us introduce the observation model and notion used throughout the paper. We consider noise signals or 
images of the form ( ) ( ) ( ),f s x x x  where ( )s x  is the original signal, ( ) x  denotes the multichannel noise 
introduced into the signal ( )s x  to produce the corrupted signal ( )f x . Here 2,  ( , ) ,i i j   x Z x Z   or 

3( , , ) ,i j k x Z   are a 1D, 2D, or 3D coordinates, respectively, that belong to the signal (image) domain and 
represent the pixel location. If 2 3, ,x Z Z Z  then ( ), ( ),f sx x  ( ) x  are 1D, 2D and 3D multichannel signals, 
respectively. The aim of image enhancement is to reduce the noise as much as possible or to find a method which, 
given ( )s x , derives an image ˆ( ) ( )y sx x  as close as possible to the original ( )s x , subject to a suitable optimality 
criterion [1].  

  In 2D standard linear and median SISO-filters with a square window 
,
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m r n r

i j m r n r
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    of size 

   2 1 2 1r r    is located at ( , )i j  the arithmetic mean and median replace the central grey-level (scalar-valued) 
pixel 
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where ˆ( , )s i j  is the filtered image,  
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( , )
i jm n M

f m n


is image block of the fixed size ( , )i jN M M M     

   2 1 2 1r r     extracted from f  by moving window ( , )M i j  at the position ( , )i j .  Symbols Arithm  and 
Median are the arithmetic mean (average) and median operators, respectively. When those filters are modified as 
follows 

 
( , ) ( , )

ˆ( , ) ( , ) ,
m n M i j

i j m n


s Agg f    (1) 

it becomes an aggregation digital filter, where Agg  is a generalized average or an aggregation operator [12-13].  
  In the first part, we are going consider a general theory of nonlinear SISO-filters (single-input single-output) 

associated with aggregation operators of averaging types. We show that a large body of non-linear filters proposed 
to date constitute a proper subset of aggregation digital filters. 

3. Methods 

3.1. Filters as discrete dynamic systems 

A discrete-time system (DTS) is a device or algorithm that, according to some well-defined input/output rule, 
operates on a discrete-time signal called the input signal ( )x   or excitation to produce another discrete-time signal 
called the output signal or response ( )y  . For a DTS the output ( )y n  at the discrete time-moment n  theoretically 
can depends on all earlier input values  ( ) .

m n
x m


Obviously, DTS must memorizes these values. It requests infinite 

volume of memory. In real, discrete-time systems have finite memory and for this reason can memorize only a finite 
set of earlier input values, for example,  ( 1), ( 2),..., ( 1) .x n x n x n N     This set of earlier input values is called the 

prehistory of the input sample ( )x n  and denotes as  Hist ( , 1) : ( 1), ( 2),..., ( 1) .in n N x n x n x n N       Hence, for a 
DTS the output ( )y n  can depends on only a finite set of earlier input values. The input signal ( )x n  is transformed 
by the DTS into a signal ( )y n , which we express mathematically as  

( ) ( ), ( 1),..., ( 1) ( ),Hist ( ; 1){ } { },iny n x n x n x n N x n n N    Agg Agg  (2) 
where {.}Agg  is some well-defined transformation input/output rule (a function of N  variables) of input samples 
into an output sample ( )y n  at the discrete time-moment n . Block diagram representation of similar discrete-time 
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system is illustrated in Fig.1a. It is called a non-recursive filter (NRF). 
        a)                                                                        b) 

     

Fig. 1. Discrete  (a) non-recursive and (b) recursive filters. 

    More “clever” system have to analyzes to self-behavior and memorizes a finite set of earlier output values 
 ( 1), ( 2),..., ( ) .y n y n y n M    This set is called the prehistory of the output sample ( )y n  and denotes as 

 Hist ( , ) : ( 1), ( 2),..., ( ) .out n M y n y n y n M     In this case DTS analyzes both a input and output prehistories and 
after that the input signal ( )x n  is transformed by the system into a signal ( )y n , which we express mathematically 
as 

( ) ( ), ( 1),..., ( 1); ( 1),..., ( ) ( ),Hist ( ; 1) Hist ( , ){ } { , },in outy n x n x n x n N y n y n M x n n N n M      Agg Agg   
where {.}Aggreg  is some well-defined transformation input/output rule (a function of N M  variables) of input 
and output samples into an output sample ( )y n  at the discrete moment n . Block diagram representation of similar 
discrete-time system is illustrated in Fig.1b. It is called the recursive filter (RF). 

    If {.}Aggreg  is a linear function, then NRF is an infinite-impulse response filter (IIF). In this case, we have  
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          WArithm WArithm   

where 0 1, ,..., Nw w w  и 1,..., Mv v  are weights. 

3.2. Aggregation operators 

The aggregation problem consist in aggregating N -tuples of objects  1 2, ,..., Nx x x  all belonging to a given 

set D , into a single object of the same set D , i.e., : ND DAgg . In fuzzy logic theory, the set D  is an interval of 
the real [0,1]D   R . In image processing theory [0,255]D   Z . In this setting, an aggregation operator is 

simply a function, which assigns a number y  to any N -tuple  1 2, ,..., Nx x x  of numbers that satisfies the 
following conditions [14]:  

1) 1 2( , ,..., )Nx x xAgg  is continuous and monotone in each variable; to be definite, we assume that Agg  is 
increasing in each variable. 

2)  The aggregation of identical numbers is equal to their common value: ( , , ..., )x x x xAgg . 
3)      1 1 1,..., ,..., ,..., .N N Nx x x x x x Min Agg Max Here  1 2, ,..., Nx x xMin  and  1 2, ,..., Nx x xMax  are the 
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minimum and the maximum values among the elements of  1 2, ,..., Nx x x .  

4)  1 2, ,..., Nx x xAgg  is a symmetric function:     (1) (2) ( ) 1 2, ,..., , ,..., ,N Nx x x x x x   Agg Agg N S  of 

 1,2,..., N , where NS  is the set of all permutations of  1,2,..., N . In this case  1,..., Nx xAgg  is invariant 

(symmetric) with respect to the permutations of the elements of  1 2, ,..., Nx x x .  
    Proposition 1 (Kolmogorov [14]). If conditions 1)–4) are satisfied, the aggregation 1 2( , ,..., )Nx x xAgg  of the 

average type are as of the forms:    

      1 1
1 2 1 2

1
,

1K | , ,..., K K K K( ),K( ),...,K( )
N

N i N
i

x x x x x x x
N

 



   
 
Kolm Arithm   (3) 

where K  is a strictly monotone continuous function in the extended real line.  
In (3) we can use an arbitrary aggregation operator instead of Arithm , that gives new the Kolmogorov 

aggregation operators  
    1

1 2 1 2 .K | , ,..., K K( ), K( ),..., K( )N Nx x x x x xKolmAgg Agg   (4) 
We list below a few particular cases of aggregation means. 
 

1) Arithmetic and weighted means ( K( )x x ): 
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where 
1

1.
N

i
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w


  Classical operator  1 2, ,..., Nx x xArithm  is interesting because it gives an aggregated value that is 

smaller than the greatest argument and bigger than the smallest one. Therefore, the resulting aggregation is "a 
middle value".  

2) Another operator that follows the idea obtaining "a middle value" is the median. It consists in ordering the 
arguments from the smallest one to the biggest one 
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where taking the element in the middle: 
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x N m
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Med  (6) 

This aggregation operator satisfies the boundary conditions, the monotonicity, the symmetry, the idempotence and 
evidently the compensation behavior.  

3) There exists a generalization of this operator: the k -order statistic, with which we can choose the element on 
the k th position on the ordered list (from the smallest to the biggest element): 

   1 2 (1) (2) ( ) ( ) ( ), ,..., ,..., , ,..., ,..., .k k N k k N kx x x x x x x x x OS OS  (7) 

4) Two remarkable particular cases of the k -order statistic are the minimum and the maximum: 
   1 2 (1) 1 2 ( ), ,..., ,    , ,..., .N N Nx x x x x x x x Min Max  (8) 

The minimum gives the smallest value of a set, while the maximum gives the greatest one. They are aggregation 
operators since they satisfy the axioms of the definition.  

5) Geometric and weighted geometric means ( K( ) ln( )x x ):  

  1
1/
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11 1

1, ,..., exp ln ,   ( , ,..., ) .

N

i
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 Geo WGeo  (9) 

6) Harmonic and weighted harmonic means ( 1K( )x x ):  



 V. Labunets  et al. / Procedia Engineering 201 (2017) 372–384 375
 V. Labunets et al / Procedia Engineering 00 (2017) 000–000 3 

system is illustrated in Fig.1a. It is called a non-recursive filter (NRF). 
        a)                                                                        b) 

     

Fig. 1. Discrete  (a) non-recursive and (b) recursive filters. 

    More “clever” system have to analyzes to self-behavior and memorizes a finite set of earlier output values 
 ( 1), ( 2),..., ( ) .y n y n y n M    This set is called the prehistory of the output sample ( )y n  and denotes as 

 Hist ( , ) : ( 1), ( 2),..., ( ) .out n M y n y n y n M     In this case DTS analyzes both a input and output prehistories and 
after that the input signal ( )x n  is transformed by the system into a signal ( )y n , which we express mathematically 
as 

( ) ( ), ( 1),..., ( 1); ( 1),..., ( ) ( ),Hist ( ; 1) Hist ( , ){ } { , },in outy n x n x n x n N y n y n M x n n N n M      Agg Agg   
where {.}Aggreg  is some well-defined transformation input/output rule (a function of N M  variables) of input 
and output samples into an output sample ( )y n  at the discrete moment n . Block diagram representation of similar 
discrete-time system is illustrated in Fig.1b. It is called the recursive filter (RF). 

    If {.}Aggreg  is a linear function, then NRF is an infinite-impulse response filter (IIF). In this case, we have  

   
1

0 1
( ) ( ) ( ) ( ),..., ( 1) ( 1),..., ( ) .

N M

k k
k k

y n w x n k v y n k x n x n N y n y n M


 

          WArithm WArithm   

where 0 1, ,..., Nw w w  и 1,..., Mv v  are weights. 

3.2. Aggregation operators 

The aggregation problem consist in aggregating N -tuples of objects  1 2, ,..., Nx x x  all belonging to a given 

set D , into a single object of the same set D , i.e., : ND DAgg . In fuzzy logic theory, the set D  is an interval of 
the real [0,1]D   R . In image processing theory [0,255]D   Z . In this setting, an aggregation operator is 

simply a function, which assigns a number y  to any N -tuple  1 2, ,..., Nx x x  of numbers that satisfies the 
following conditions [14]:  

1) 1 2( , ,..., )Nx x xAgg  is continuous and monotone in each variable; to be definite, we assume that Agg  is 
increasing in each variable. 

2)  The aggregation of identical numbers is equal to their common value: ( , , ..., )x x x xAgg . 
3)      1 1 1,..., ,..., ,..., .N N Nx x x x x x Min Agg Max Here  1 2, ,..., Nx x xMin  and  1 2, ,..., Nx x xMax  are the 

4 V. Labunets et al / Procedia Engineering 00 (2017) 000–000 

minimum and the maximum values among the elements of  1 2, ,..., Nx x x .  

4)  1 2, ,..., Nx x xAgg  is a symmetric function:     (1) (2) ( ) 1 2, ,..., , ,..., ,N Nx x x x x x   Agg Agg N S  of 

 1,2,..., N , where NS  is the set of all permutations of  1,2,..., N . In this case  1,..., Nx xAgg  is invariant 

(symmetric) with respect to the permutations of the elements of  1 2, ,..., Nx x x .  
    Proposition 1 (Kolmogorov [14]). If conditions 1)–4) are satisfied, the aggregation 1 2( , ,..., )Nx x xAgg  of the 

average type are as of the forms:    

      1 1
1 2 1 2

1
,

1K | , ,..., K K K K( ),K( ),...,K( )
N

N i N
i

x x x x x x x
N

 



   
 
Kolm Arithm   (3) 

where K  is a strictly monotone continuous function in the extended real line.  
In (3) we can use an arbitrary aggregation operator instead of Arithm , that gives new the Kolmogorov 

aggregation operators  
    1

1 2 1 2 .K | , ,..., K K( ), K( ),..., K( )N Nx x x x x xKolmAgg Agg   (4) 
We list below a few particular cases of aggregation means. 
 

1) Arithmetic and weighted means ( K( )x x ): 
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  Arithm WArithm   (5) 

where 
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i
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  Classical operator  1 2, ,..., Nx x xArithm  is interesting because it gives an aggregated value that is 

smaller than the greatest argument and bigger than the smallest one. Therefore, the resulting aggregation is "a 
middle value".  

2) Another operator that follows the idea obtaining "a middle value" is the median. It consists in ordering the 
arguments from the smallest one to the biggest one 
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where taking the element in the middle: 
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This aggregation operator satisfies the boundary conditions, the monotonicity, the symmetry, the idempotence and 
evidently the compensation behavior.  

3) There exists a generalization of this operator: the k -order statistic, with which we can choose the element on 
the k th position on the ordered list (from the smallest to the biggest element): 

   1 2 (1) (2) ( ) ( ) ( ), ,..., ,..., , ,..., ,..., .k k N k k N kx x x x x x x x x OS OS  (7) 

4) Two remarkable particular cases of the k -order statistic are the minimum and the maximum: 
   1 2 (1) 1 2 ( ), ,..., ,    , ,..., .N N Nx x x x x x x x Min Max  (8) 

The minimum gives the smallest value of a set, while the maximum gives the greatest one. They are aggregation 
operators since they satisfy the axioms of the definition.  

5) Geometric and weighted geometric means ( K( ) ln( )x x ):  
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 Geo WGeo  (9) 

6) Harmonic and weighted harmonic means ( 1K( )x x ):  
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    7) Very notable particular case corresponds to the function K( ) .px x  We obtain then power mean:  
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Power                                                                                                          (11) 

In mathematics, the power mean, also known as Hölder mean (named after Otto Holder), is an abstraction of the 
Pythagorean mean including arithmetic, geometric, and harmonic means.  

3.3. Ordinary aggregation 2D SISO-filters 

The simplest and most common way to aggregate input data in 2D SISO-filter is to use a simple arithmetic and 
weighted mean: 
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 Arithm WArithm  (12) 

Some extensions of the simple arithmetic filters (12) have been introduced as geometric and harmonic filters 
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3.4. Kolmogorov aggregation 2D SISO-filters  

Many extensions of the simple ordinary linear filters are defined as Kolmogorov filters 
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Kolm Arithm  (15) 

and as dual Kolmogorov filters 
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If K( ) px x  and 1K ( ) px x   then we have the Hölder (or power) and the dual Hölder filters of the following 
forms: 
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This family is particularly interesting, because it generalizes a group of common filters, only by changing the value 
of p : 
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In particular, using Hölder filters we can construct new Kolmogorov-Lehmer filters as: 
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The next extensions of the Kolmogorov filters (15 and (16) are based on (4): 
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KolmAgg Agg

KolmAgg Agg
 (21) 

3.5. The Heronian aggregation filters  

The classical Heronian mean definition of two positive real numbers a  and b  are  

     , / 3 / 3.        a b a ab b aa ab bb     ArithHeron  (22) 

Hero of Alexandria is the Greek mathematician [15].  Along with the Heronian mean, we introduce the Heronian 
median as follows  

   , , , .a b aa ab bbMedHeron Med                                                                                              (23) 

      Let 1 2( , , ..., )Nx x x  be an N -tuple of positive real numbers. An obvious way to generalize Eqs. (22)-(23) is by 
including inside the parentheses the square roots of all possible products of two elements. 
      Definition 1. The 2-generalized Heronian mean and median of an N -tuple of positive real numbers 

1 2( , , ..., )Nx x x  are defined as  
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In mathematics, the power mean, also known as Hölder mean (named after Otto Holder), is an abstraction of the 
Pythagorean mean including arithmetic, geometric, and harmonic means.  

3.3. Ordinary aggregation 2D SISO-filters 

The simplest and most common way to aggregate input data in 2D SISO-filter is to use a simple arithmetic and 
weighted mean: 
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Some extensions of the simple arithmetic filters (12) have been introduced as geometric and harmonic filters 
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3.4. Kolmogorov aggregation 2D SISO-filters  

Many extensions of the simple ordinary linear filters are defined as Kolmogorov filters 
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and as dual Kolmogorov filters 
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If K( ) px x  and 1K ( ) px x   then we have the Hölder (or power) and the dual Hölder filters of the following 
forms: 
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This family is particularly interesting, because it generalizes a group of common filters, only by changing the value 
of p : 
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In particular, using Hölder filters we can construct new Kolmogorov-Lehmer filters as: 

 
 

 
( , )

( , )

( , )

( , )

1( , )
( , )

( , )
( , ) .

( , )
i j

i j

i j

p

m n Mp
pm n M

m n M

f m n
f m n

f m n






Hold

Lehm
Hold

                                                                                                         (20) 

The next extensions of the Kolmogorov filters (15 and (16) are based on (4): 
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3.5. The Heronian aggregation filters  

The classical Heronian mean definition of two positive real numbers a  and b  are  

     , / 3 / 3.        a b a ab b aa ab bb     ArithHeron  (22) 

Hero of Alexandria is the Greek mathematician [15].  Along with the Heronian mean, we introduce the Heronian 
median as follows  

   , , , .a b aa ab bbMedHeron Med                                                                                              (23) 

      Let 1 2( , , ..., )Nx x x  be an N -tuple of positive real numbers. An obvious way to generalize Eqs. (22)-(23) is by 
including inside the parentheses the square roots of all possible products of two elements. 
      Definition 1. The 2-generalized Heronian mean and median of an N -tuple of positive real numbers 

1 2( , , ..., )Nx x x  are defined as  
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      Now we can generalize this definition using k -th roots of all possible distinct products of k  elements of 
1 2( , ,..., )Nx x x , again with repetition. The number of all such products corresponds to extracting k  elements from a 

bag of N , with replacement, where 1
k
N kC    is the binomial coefficient. This determines the normalization factor.  

Definition 2. The Heronian k -mean and k -median of an N -tuple of positive real numbers 1 2( , ,..., )Nx x x  
are defined as  
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   ArithHeron  (25) 

 1 2
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k
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MedHeron Med  (26) 

Obviously, 1 (1,1,...,1)k
N k kC    ArithHeron . 

      As we see, two types of aggregation operators ( Arith  and Med ) are used in (25) and (26). We can use an 
arbitrary aggregation operator 
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   AggHeron Agg   (27)  

that gives a wide family of Heronian filters.  
 
      Indeed, in the standard linear and nonlinear 2D-filters the square window 

,
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    of size 

N M M       2 1 2 1s s     is used, where 2 1M s  .  Obviously,  ( , ) ( . ) ( , )
( , )i j n m M i j
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 is an image block 

of the fixed size N M M   extracted from f  by moving window ( , )M i j  at the position ( , )i j . Our idea consists in 
ordering the pixels according to Radix- s  number system:  
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 . Using this product we define the generalized aggregation 

Heronian filter as 
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In particular cases, we have the following Heronian filters.  
1) The arithmetic k -Heronian filter 
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         ArithHeron Arith    (29) 
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2) The median k -Heronian filter 
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3) The Kolmogorov-Heronian filter 
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4) The Kolmogorov-Aggregation-Heronian filter 
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It is easy to see that 
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k
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k
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    is a symmetric polynomial in the variables 1,..., Nx x . There are a few 

types of symmetric polynomials in variables 1,..., Nx x  , which that are associated new symmetric means. 

3.6. Symmetric aggregation filters  

Any monomial in 1 2, ,..., Nx x x  can be written as 1 2
1 2 ... Npp p

Nx x x , where the exponents ip  are natural numbers (possibly 

zero); writing  1 2, ,..., Np p pp  this can be abbreviated to 1 2
1 2 ... Npp p

Nx x xpx . If 1 2| | ... Np p p   p  then we 

write 1 2
| | | |

1 2 ... Npp p
Nx x xp p px . 

      Definition 3. The monomial symmetric polynomial is defined as the sums of all monomials | |q qx , where q  
ranges over all distinct permutations of p :  
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N

pp p
N N

S
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  p
pMon                                                                                            (33) 

where NS  is the set of all permutations of  1 2, ,..., Np p p . These monomial symmetric polynomials form a vector 
space basis: every symmetric polynomial can be written as a linear combination of the monomial symmetric 
polynomials. 

Definition 4. Let 1 2, ,..., Nx x x  be positive real numbers and  1 2, ,..., N
Np p p R p . The p -Muirhead symmetric 

polynomial (named after Robert Franklin Muirhead) [16] is defined by  
1 2| |

1 2 (1) (2) ( )( , ,..., ) ... ,N
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pp p
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S
x x x x x x  
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     For example,  
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bag of N , with replacement, where 1
k
N kC    is the binomial coefficient. This determines the normalization factor.  

Definition 2. The Heronian k -mean and k -median of an N -tuple of positive real numbers 1 2( , ,..., )Nx x x  
are defined as  

1 2
1 2

1 2
            1

2( , ,..., ) ... ,
k

k

k
k N r r rk

r r rN k

x x x x x x
C    

   ArithHeron  (25) 

 1 2
1 2

1 2 ...
( , ,..., ) .   

k
k

k
k N r r r r r r

x x x x x x
  

     
MedHeron Med  (26) 

Obviously, 1 (1,1,...,1)k
N k kC    ArithHeron . 

      As we see, two types of aggregation operators ( Arith  and Med ) are used in (25) and (26). We can use an 
arbitrary aggregation operator 

  1 2
1 2

1 2
...

( , ,..., )
k

k

k
k N r r r

r r r
x x x x x x

  

   AggHeron Agg   (27)  

that gives a wide family of Heronian filters.  
 
      Indeed, in the standard linear and nonlinear 2D-filters the square window 

,

( , ) ,
M ( , )

m s n s

i j m s n s
m n

 

 
    of size 

N M M       2 1 2 1s s     is used, where 2 1M s  .  Obviously,  ( , ) ( . ) ( , )
( , )i j n m M i j

f n m


 is an image block 

of the fixed size N M M   extracted from f  by moving window ( , )M i j  at the position ( , )i j . Our idea consists in 
ordering the pixels according to Radix- s  number system:  

        

       ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )( . ) ( , ) 1
( , ) ( , ),..., (0,0),..., ( , ) ( ) (1), (2),..., ( ) .

N

i j i j i j i j i j i j i j i jn m M i j r
f n m f s s f f s s f r f f f N

 
      

 where the map ( , )n m r  has the following form ( ) ( )r M n s m s    . For example, for the window of size 
3 3  we have ( 1, 1) 0,   ( 1,0) 1,  ( 1,1) 2,        (0, 1) 3,  (0,0) 4,  (0,1) 5,      (1, 1) 6,  (1,0) 7,  (1,1) 8.     
Here  3,  1M s   and 3( 1) ( 1)r n m    . Now we define a product of k  pixels ( , ) 1 ( , ) 2 ( , )( ) ( )... ( )i j i j i j kf r f r f r  from 

the image block    ( , ) ( , )1 ( . ) ( , )
( ) ( , )

N

i j i jr n m M i j
f r f n m

 
 . Using this product we define the generalized aggregation 

Heronian filter as 

   
( , ) 1 2 ( , )

1 2

( , ) 1 ( , ) 2 ( , )
( , ) , ,...,

...

ˆ( , ) ( , ) ( ) ( ) ( ) .
i j k i j

k

k
i j i j i j k

m n M r r r M
r r r

ks i j f m n f r f r f r
 

  

     
AggHeron Agg  (28) 

In particular cases, we have the following Heronian filters.  
1) The arithmetic k -Heronian filter 

   
( , ) 1 2 ( , )

1 2 ( , )
1 2

1 2

( , ) 1 ( , ) 2 ( , ) ( , ) 1 ( , ) 2 ( , )( , ) , ,..., , ,...,1... ...

1(̂ , ) ( , ) ( ) ( ) ( ) ... ( ) ( ) ( ).
i j k i j

k i j
k

k

k k k
i j i j i j k i j i j i j kkm n M r r r M r r r MN kr r r r r r

s i j f m n f r f r f r f r f r f r
C   

  
  

         ArithHeron Arith    (29) 
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2) The median k -Heronian filter 

   
( , ) 1 2 ( , )

1 2

( , ) 1 ( , ) 2 ( , )( , ) , ,...,
...

ˆ( , ) ( , ) ( ) ( ) ( ) .
i j k i j

k

k k
i j i j i j km n M r r r M

r r r

s i j f m n f r f r f r
 

  

     
MedHeron Med   (30) 

3) The Kolmogorov-Heronian filter 

     
( , ) 1 2 ( , )

1 2

1 2 ( , )

1 2

1
( , ) 1 ( , ) 2 ( , )( , ) , ,...,

...

1
( , ) 1 ( , ) 2 ( ,

, ,...,1
...

ˆ( , ) K | ( , ) K ( ) ( ) ( )

1K ... ( ) ( )

i j k i j

k

k i j

k

k k
i j i j i j km n M r r r M

r r r

i j i j i jk
r r r MN k

r r r

s i j f m n K f r f r f r

K f r f r f
C



 
  



 
  

 
    
 
 

  

KolmHeron Arith

 ) ( ) .    k
kr

 
 
 
 
 

 (31) 

4) The Kolmogorov-Aggregation-Heronian filter 

      
( , ) 1 2 ( , )

1 2

1
( , ) 1 ( , ) 2 ( , )

( , ) , ,...,
...

ˆ( , ) K | ( , ) K K ( ) ( ) ( ) .
i j k i j

k

k k
i j i j i j k

m n M r r r M
r r r

s i j f m n f r f r f r

 
  

 
    
  

KolmAggHeron Agg               (32) 

 

It is easy to see that 
1 2

1 2            
...

k
k

k
i i i

i i i
x x x

  

    is a symmetric polynomial in the variables 1,..., Nx x . There are a few 

types of symmetric polynomials in variables 1,..., Nx x  , which that are associated new symmetric means. 

3.6. Symmetric aggregation filters  

Any monomial in 1 2, ,..., Nx x x  can be written as 1 2
1 2 ... Npp p

Nx x x , where the exponents ip  are natural numbers (possibly 

zero); writing  1 2, ,..., Np p pp  this can be abbreviated to 1 2
1 2 ... Npp p

Nx x xpx . If 1 2| | ... Np p p   p  then we 

write 1 2
| | | |

1 2 ... Npp p
Nx x xp p px . 

      Definition 3. The monomial symmetric polynomial is defined as the sums of all monomials | |q qx , where q  
ranges over all distinct permutations of p :  

1 2 ( )( ) ( )| |
1 2 1 2( , ,..., ) ... . N

N

pp p
N N

S
x x x x x x 



  p
pMon                                                                                            (33) 

where NS  is the set of all permutations of  1 2, ,..., Np p p . These monomial symmetric polynomials form a vector 
space basis: every symmetric polynomial can be written as a linear combination of the monomial symmetric 
polynomials. 

Definition 4. Let 1 2, ,..., Nx x x  be positive real numbers and  1 2, ,..., N
Np p p R p . The p -Muirhead symmetric 

polynomial (named after Robert Franklin Muirhead) [16] is defined by  
1 2| |

1 2 (1) (2) ( )( , ,..., ) ... ,N

N

pp p
N N

S
x x x x x x  



  p
pMui                                                                                                     (34) 

     For example,  



380 V. Labunets  et al. / Procedia Engineering 201 (2017) 372–384 V. Labunets et al / Procedia Engineering 00 (2017) 000–000 9 

 

1 2
1 2 2

(1,0,...,0) 1 2 1 2
1

(1,1,...,1) 1 2 1 2 1 2

(1,1,...,1,0...,0) 1 2
            

( , ,..., ) ( , ,..., ),     

, ,..., ( , ,..., ),

( , ,..., ) ...
k

k

N

N i N
i

N
N N N

k
N r r r

r r r

x x x x x x x

x x x x x x x x x

x x x x x x



  

 

   

  



  

Mui Mean

Mui Geo

Mui Her 1 2( , ,..., ).     k
Nx x xon

 (35) 

      For each nonnegative integer 0 k N   the elementary  1 2( , ,..., )k
Nx x xEl  and homogeneous 1 2( , ,..., )k

Nx x xHom  
symmetric polynomials are the sums of all distinct products of k  distinct variables: 

   
1 2 1 2

1 2 1 2

1 2 1 2
.... ....

, ,..., ,  , ,...,         
k k

k k

k k
k N r r r k N r r r

r r r r r r
x x x x x x x x x x x x

     

     El Hom  (36) 

We then define 

   

   

1 2
1 2

1 2
1 2

1 2

1 2

1 2 1 2
....1 1

1 2 1 2
....1 1

...

...

, ,..., , ,..., ,

, ,..., , ,..., .

t
kt

kt

t
kt

kt

q t

q q

q q
q kq

N N r r r
r r rt t

q q
q kq

N N r r r
r r rt t

k k k k

k k k k

x x x x x x x x x

x x x x x x x x x

   

   

 
    

 

 
    

 

 

 

El El

Hom Hom

  (37) 

To each of polynomial  
1 2 1 2, ,..., , ,...,, ,

N Np p p p p pMon Mui  
1 2 ... ,

rk k kEl  
1 2 ... rk k kHom we will associate normalized symmetric 

function:  

     

     

     

1 1 1

1 1 1

1 2 1 2 1 2

1 2

,..., 1 ,..., 1 ,...,

,..., 1 ,.., 1 ,...,

1 1... ... ...

...

,..., ,..., / 1,...,1 ,

,..., ,..., / 1,...,1 ,

,..., ,..., / 1,...,1 ,

N N N

N N N

q q q

q

p p N p p N p p

p p N p p N p p

N Nk k k k k k k k k

k k k

x x x x

x x x x

x x x x







Mon Mon Mon

Mui Mui Mui

El El El

Hom      
1 2 1 21 1... ...,..., ,..., / 1,...,1 ,        

q qN Nk k k k k kx x x x Hom Hom

 (38) 

 We obtain four families of a generalized symmetric means: 

   

   

   

 

1 21 2

1 21 2

1 21 2

1 21 2

, ,...,, ,..., 1 1

, ,...,, ,..., 1 1

...... 1 1

...... 1

,..., ,..., ,    

,..., ,..., ,

,..., ,..., ,    

,...,

NN

NN

qq

qq

p p pp p p N N

p p pp p p N N

q
k k kk k k N N

k k kk k k N

x x x x

x x x x

x x x x

x x x









MonMean Mon

MuiMean Mui

ElMean El

HomMean Hom  1,..., .      q
Nx

 (39) 

Using generalized symmetric means, we can construct the following families of symmetric MonArith -, MuiArith -,  
ElMean- and HomMean-filters:  

 

 

( , )
( , )

( , )1

( ( , ))| |1 2( , ) ( , )

( ( , ))| |

( , ),...,

ˆ( , ) , ,..., | ( , ) ( , ) =       

1= ( , ) ,
1,...,1

i j N
i j

N i jN

p m n
Nm n M S m n M

p m n

S m n Mp p

s i j p p p f m n f m n

f m n









  

 

       
    

 
 
 
 



 

p

p

MonArith Arith

Mon

 (40) 
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( , )
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ˆ( , ) , ,..., | ( , ) ( , ) =
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ElArith Arith

El
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, ,...,

...

,
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... ( )

t
t
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q
kqq i j i j i j km n M r r r Mt
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r r r M

r r r
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ElArith Arith
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1
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t t

q
k

q i j k
t
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 El

 (42) 

   

 
( , ) 1 2 ( , )
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1 2 ( , )
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( , ) 1 ( , ) 2 ( , )( , ) , ,...,
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( , ) 1 ( , ) 2 ( , )
, ,...,
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k
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k

k
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r r r

k
i j i j i j k

r r r M
r r r

k
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f r f r f r

 
  


  

       

  

HomArith Arith

Hom  

   
( , ) 1 2 ( , )

1 2

1 2 ( , )

1 2

1 2 ( , ) 1 ( , ) 2 ( , )( , ) , ,...,1
...

( , ) 1 (
, ,...,
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... ( )

t
t

i j k i jt

kt

k i jt

kt

q
kqq i j i j i j km n M r r r Mt

r r r
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HomArith Arith

   , ) 2 ( , )
1

( ) ( ) / 1,...,1 .t
t t

q
k

q i j i j k
t

kr f r


 
        
 

 Hom

 (43) 

As we see, aggregation operator Arith  is used in (40)-(43). We can use here an arbitrary aggregation operator :Agg   

 
( , ) ( , )

( ( , ))| |1 2
( , ) ( , )

ˆ( , ) , ,..., | ( , ) ( , ) ,
i j N i j

p m n
N

m n M S m n M

s i j p p p f m n f m n

  

       
    

pMonAgg Agg  (44) 

   
( , ) ( , )

( , )| |1 2
( , ) ( , )

ˆ( , ) , ,..., | ( , ) ( , ) ,
i j N i j

p m n
N

m n M S m n M

s i j p p p f m n f m n
  

       
    

pMuiAgg Agg  (45) 
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Nx x xon

 (35) 

      For each nonnegative integer 0 k N   the elementary  1 2( , ,..., )k
Nx x xEl  and homogeneous 1 2( , ,..., )k

Nx x xHom  
symmetric polynomials are the sums of all distinct products of k  distinct variables: 
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     El Hom  (36) 

We then define 
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Hom Hom

  (37) 

To each of polynomial  
1 2 1 2, ,..., , ,...,, ,

N Np p p p p pMon Mui  
1 2 ... ,

rk k kEl  
1 2 ... rk k kHom we will associate normalized symmetric 

function:  

     

     

     

1 1 1
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 We obtain four families of a generalized symmetric means: 
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Using generalized symmetric means, we can construct the following families of symmetric MonArith -, MuiArith -,  
ElMean- and HomMean-filters:  
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As we see, aggregation operator Arith  is used in (40)-(43). We can use here an arbitrary aggregation operator :Agg   
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        a) Original image.              b) Noise images, PSNR=21.8.         a) Original image.   .  b) Noise images, PSNR=28.2. 
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Fig. 2. Original (a) and noise (b) images.  
Noise: “Salt-Pepper PD”. Denoised images  (c)-(f). 

Fig. 3. Original (a) and noise (b) images.  
Noise: “Laplasian PDF”. Denoised images  (c)-(f). 
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Fig. 5. Original (a) and noise (b) images.  
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4. Results and Discussion 

The following generalized aggregation Heronian filtering 2MeanHeron , 2MedHeron , 2MinHeron , 2GeoHeron  
for | | 5 5N M M    M  has been applied to noised 256x256 gray level “Dog” images (Figures 2b,3b). The 
denoised images are shown in Figures 2–3. In Fig.4-5, we present examples of MonArith -, MuiArith -,  ElMean- 
and HomMean-filtering. All filters have very good denoising properties. This fact confirms that further 
investigation of these new filters is perspective. Particularly, very interesting is a question about the types of noises, 
for which such filters are optimal. 

5. Conclusion 

We developed a new theoretical framework for image filtering using aggregation operators. The main goal of 
the work is to show that aggregation operators can be used to solve problems of image filtering in a natural and 
effective manner. Some properties of a nonlinear aggregation filters are exploited in this paper.  Unlike the linear 
masking filter, they avoid amplification thanks to the nonlinearity of the response to luminance variations; unlike the 
classical linear and median filters, they are able to sharpen even small details as its impulse response demonstrates.  
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