
Received: 9 December 2019 Accepted: 30 January 2020

DOI: 10.1002/tpg2.20012

The Plant Genome

O R I G I N A L R E S E A R C H

Dominance and G×E interaction effects improve genomic
prediction and genetic gain in intermediate wheatgrass
(Thinopyrum intermedium)

Prabin Bajgain1 Xiaofei Zhang2 James A. Anderson1

1Department of Agronomy & Plant Genetics,

University of Minnesota, St. Paul, MN, USA

2The Alliance of Bioversity International and

International Center for Tropical Agriculture,

Cali, Colombia

Correspondence
Prabin Bajgain, 411 Borlaug Hall, 1991 Upper

Buford Circle, St. Paul, MN 55108.

Email: bajga002@umn.edu

James A. Anderson, 411 Borlaug Hall, 1991

Upper Buford Circle, St. Paul, MN 55108.

Email: ander319@umn.edu

Funding information
General Mills; Minnesota Department of

Agriculture; The Forever Green Initiative,

University of Minnesota

Abstract
Genomic selection (GS) based recurrent selection methods were developed to accel-

erate the domestication of intermediate wheatgrass [IWG, Thinopyrum intermedium
(Host) Barkworth & D.R. Dewey]. A subset of the breeding population phenotyped at

multiple environments is used to train GS models and then predict trait values of the

breeding population. In this study, we implemented several GS models that investi-

gated the use of additive and dominance effects and G×E interaction effects to under-

stand how they affected trait predictions in intermediate wheatgrass. We evaluated

451 genotypes from the University of Minnesota IWG breeding program for nine

agronomic and domestication traits at two Minnesota locations during 2017–2018.

Genet-mean based heritabilities for these traits ranged from 0.34 to 0.77. Using four-

fold cross validation, we observed the highest predictive abilities (correlation of 0.67)

in models that considered G×E effects. When G×E effects were fitted in GS models,

trait predictions improved by 18%, 15%, 20%, and 23% for yield, spike weight, spike

length, and free threshing, respectively. Genomic selection models with dominance

effects showed only modest increases of up to 3% and were trait-dependent. Cross-

environment predictions were better for high heritability traits such as spike length,

shatter resistance, free threshing, grain weight, and seed length than traits with low

heritability and large environmental variance such as spike weight, grain yield, and

seed width. Our results confirm that GS can accelerate IWG domestication by increas-

ing genetic gain per breeding cycle and assist in selection of genotypes with promise

of better performance in diverse environments.

Abbreviations: BL, Bayesian LASSO; BRR, Bayesian ridge regression;

GBLUP, Genomic best linear unbiased prediction; GEBV,

Genomic-estimated breeding value; GS, Genomic selection; G×E,

Genotype by environment interaction; IWG, Intermediate wheatgrass; LD,

Linkage disequilibrium; QTL, Quantitative trait locus; SNP, Single

nucleotide polymorphism; TKW, Thousand kernel weight.
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1 INTRODUCTION

Predicting the genetic potential of an individual in a breed-

ing population using genome-wide selection is a powerful

method to increase selection efficiency in plant and ani-

mal breeding programs (Hayes & Goddard, 2010; Heffner,

Lorenz, Jannink, & Sorrells, 2010). This method, commonly
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known as genomic selection (GS), evaluates a population

under selection by estimating its genomic-estimated breeding

values (GEBVs) using whole genome information and sta-

tistical functions commonly known as models. For complex

quantitative traits controlled by a large number of genes with

medium to small effect, GS can be quite effective relative to

marker assisted selection alone (Jannink, Lorenz, & Iwata,

2010; Lorenz et al., 2011). In recent years, GS has been a pop-

ular tool in crop improvement programs including perennial

species (Cros et al., 2015; Fè et al., 2015; Biazzi et al., 2017)

to improve a wide range of traits such as yield and domesti-

cation traits (Resende et al., 2012; Annicchiarico et al., 2015;

Zhang et al., 2016).

Crop domestication and enhancement has been practiced

by humans for several thousand years. All current crops and

livestock are direct results of active domestication practices.

Nearly all of our current crops are of annual growth habit as

they occupy 70% of the landscape (FAO, 2013). While annual

crops are highly productive and provide a large portion of

human nutrition, current agricultural management practices

of annual crops also tend to weaken soil and water health

(Bestelmeyer et al., 2015). Perennial cropping systems have

been proposed as restorative means to nurture soil, water, and

air health, as well as for their dual use potential: food and sus-

tainability (Cox, Van Tassel, Glover, DeHaan, & Cox, 2006;

de Oliveira, Brunsell, Sutherlin, Crews, & DeHaan, 2018).

Compared to their annual counterparts, perennial crops are

reported to maintain topsoil 50-fold more effectively, lower

nitrogen losses by 30- to 50-fold, and sequester significantly

more carbon per unit area (Gomiero, 2016; Jungers, DeHaan,

Mulla, Sheaffer, & Wyse, 2019). As the world population

is projected to reach 9.6 billion by 2050 and annual cereal

grain production needing to be increased by > 40% (Tripathi,

Mishra, Maurya, Singh, & Wilson, 2019), alternative means

to produce more food while preserving renewable resources

is a pressing need. Intermediate wheatgrass (IWG) can be one

such alternative crop that nurtures environmental sustainabil-

ity while providing food. A perennial cool grass species of the

same tribe Triticeae as wheat, IWG domestication was initi-

ated in the 1980s (Wagoner, 1990) with active breeding efforts

ongoing at The Land Institute (Salina, KS, USA), Lund Uni-

versity (Lund, Sweden), University of Manitoba (Winnipeg,

Canada), University of Minnesota (St. Paul, MN, USA), and

USDA-ARS (Logan, UT, USA).

The University of Minnesota IWG breeding program aims

to develop germplasm with higher grain yield, larger seed

size, reduced shattering, and improved free grain thresh-

ing (percent de-hulled seeds). Initiated in 2011, the breed-

ing program uses two-year recurrent selection cycles for trait

improvement with substantial reliance on GS. In our cur-

rent GS approach, 8–10 random half-sibs from approximately

70 families are evaluated at two locations for multiple agro-

nomic traits. Phenotypic data are used to train GS models

Core Ideas
• Intermediate wheatgrass is a cross-pollinated

perennial crop with nutritious grain and excellent

ecosystem services.

• Genomic selection based breeding has led to

germplasm improvement and variety develop-

ment.

• Using dominance effects in genomic prediction

models led to modest increases in trait predictions.

• Use of G×E effects in genomic prediction mod-

els significantly increased their ability to predict

nearly all traits.

• Cross-environment predictions varied by trait and

location yet can help select high-heritability traits.

that are applied to a population of several thousand seedlings

from which the best 70–100 are selected as parents for the

next breeding cycle. Using this approach, we have been able

to significantly improve grain yield, seed-related traits, dis-

ease resistance, and domestication traits such as shatter resis-

tance and free grain threshing (Zhang et al., 2016; Bajgain

et al., 2019a; Bajgain et al., 2019b). Implementation of GS

in our program has had a direct impact in notably improv-

ing genetic gain in IWG because of better population perfor-

mances observed in each of our breeding cycles.

A vast majority of the existing GS models and application

tools focus on exploiting additive effects only. The earliest GS

models were implemented in dairy cattle breeding programs

that sought to select highly performing sires by estimating the

additive genetic effects of genome-wide markers (Meuwissen,

Hayes, & Goddard, 2001; VanRaden, 2008). While efficient

and predictive, additive-only models tend to ignore a signifi-

cant amount of leftover underlying genetic architecture, par-

ticularly in the aspect of complex traits, and can cause the

problem of ‘missing heritability’ (Eichler et al., 2010). While

the extent of control that dominance and higher order genetic

interactions have on IWG traits is unknown, some level of het-

erosis could be expected to affect trait performance in open-

pollinating species, especially in the early generations of syn-

thetic populations (Falk, Rakow, & Downey, 1998; Pembleton

et al., 2015). Therefore, using all available genetic information

in genomic prediction can improve predictive ability and help

geneticists and breeders improve the germplasm.

The IWG breeding populations at the University of Min-

nesota are evaluated at two Minnesota locations—Crookston

and St. Paul—that differ in the amount of precipitation

received, day length, temperature, and soil type. Natu-

rally, large genotype by environment (G×E) effects are

observed in the trait data each year. Typically, predictions

are carried out with best linear unbiased estimates (BLUEs)
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estimated across all locations and years and/or by using mod-

els that do not consider G×E effects. Instead of ignoring

the G×E interaction effect, using it to train genomic selec-

tion models can boost trait predictability. Burgueño, de los

Campos, Weigel, and Crossa (2012) was among the first to

demonstrate that higher prediction accuracy can be gained by

applying a genomic best linear unbiased prediction (GBLUP)

model to multi-environment data. Subsequently, incorpora-

tion of G×E effects, especially multi-location, multi-year, and

multi-treatment data have shown substantial improvements

in improving prediction accuracies in crops (Crossa et al.,

2013; Heslot, Akdemir, Sorrells, & Jannink, 2014; Lopez-

Cruz et al., 2015).

The primary objective of this study was to evaluate multi-

ple GS models for their effectiveness in IWG trait predictions

and recommend the overall best model. We mainly tested two

model types: Bayesian and GBLUP, and derived their vari-

ants with either additive effects only or with both additive

and dominance effects. Further, we explored how trait pre-

dictions changed when genotype by environment interaction

(G×E) effects were implemented in these models and exam-

ined cross-environment trait predictions. We also report the

genetic variance components and heritability estimates for all

traits, estimated genetic gain based on genomic predictions,

and provide a brief outlook on GS-based IWG breeding.

2 MATERIALS AND METHODS

2.1 Plant population, phenotyping,
genotyping

The intermediate wheatgrass (IWG) plant population used in

this study has previously been described in detail (Bajgain

et al., 2019a). Briefly, 451 genets from the third IWG recur-

rent breeding cycle at the University of Minnesota (UMN_C3

hereafter) were used. The term ‘genet’ identifies a geneti-

cally unique organism in an outcrossing plant species such

as IWG (Zhang et al., 2016). These genets were genotyped

using genotyping by sequencing (Poland, Brown, Sorrells, &

Jannink, 2012) resulting in 8,899 genome-wide SNP markers.

The population was phenotyped for multiple agronomic traits

in St. Paul, MN in 2017 (StP17) and 2018 (StP18), and in

Crookston, MN in 2018 (Crk18). In this study, we will focus

on spike weight, spike length, number of spikelets per spike,

yield, seed mass measured in terms of thousand kernel weight

(TKW), seed length, seed width, shatter resistance, and free

threshing (i.e. % de-hulled seeds or ‘threshability’ hereafter)

in this study. Data collection on all traits except shatter resis-

tance and threshability have also been previously described

(Bajgain et al., 2019a).

Shatter resistance was measured by assessing florets and

spikelets breakage from mature spikes. Measurements were

taken from three spikes per genet on a 0–4 scale where 0.01

was assigned for genets with no shattering, 0.5 for genets

with shattering of up to 10%, 1 for 10–20%, 2 for 20–50%, 3

for 50–80%, and 4 for 80–100% shattering. Threshability was

measured as the proportion of naked or de-hulled seeds after

mechanical threshing. This was also measured on a 0–4 scale

where 0.01 was assigned for genets with 100% hulled seeds

(i.e. no naked seeds), 0.5 for genets with up to 10% de-hulled

seeds, 1 for 10–20%, 2 for 20–50%, 3 for 50–80%, and 4 for

80–100%. Phenotypic data were adjusted for trial effects using

the method outlined by Sallam, Endelman, Jannink, and Smith

(2015) to obtain BLUEs (PHENOadj) for statistical analyses.

Briefly, trial effects were first estimated for all traits by treat-

ing trial as fixed effects in a mixed model equation in the

MIXED procedure in SAS 9.4. BLUEs for each genet were

calculated in the next step by correcting for the trial effect

estimated in the previous step.

2.2 Variance components and heritability
estimates

Variance components for each trait were estimated using

the average information (AI) restricted maximum likelihood

(REML) algorithm (Gilmour, Thompson, & Cullis, 1995) that

uses a univariate mixed model of the following form:

𝐘 = 𝐗β + 𝐙μ + ε

where Y is the vector of adjusted phenotypic data (i.e.

PHENOadj); X and Z are incidence matrices for fixed and ran-

dom effects, respectively; β is a vector of fixed effects; μ is a

vector of random effects; and ε is the residual variance.

Variance components were estimated with two major

model types using: only additive effects (A) and with both

additive and dominance effects (AD). The model above was

therefore extended to following variants:

𝐘A = 𝐗β + 𝐙μ𝑎 + ε when only additive effects were included

in the model (A)

𝐘AD = 𝐗β + 𝐙μ𝑎 + 𝐙μ𝑑 + ε when additive and dominance

effects were included in the model (AD)

In an attempt to include higher order genetic effects such

as epistasis and interactions among additive, dominance,

and epistasis effects, an additional extension of these mod-

els that would consider all additive, dominance, and resid-

ual genetic effects (ADE) was briefly considered. How-

ever, the additive, dominance, and epistatic effects in such

ADE model are not orthogonal, and therefore the partition

of genetic effects becomes more challenging (Covarrubias-

Pazaran, 2016; Vitezica, Legarra, Toro, & Varona, 2017).

Therefore, only the A and AD matrices were implemented in
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all genomic prediction models. Model fitness was assessed

using the Akaike information criterion (AIC, Akaike, 1974).

Broad sense heritability estimates (H) were obtained on a

genet mean basis by Bajgain et al. (2019a). Narrow-sense

heritability (h2) was estimated from the variance components

obtained from each model in the following manner:

ℎ2A = σ2A∕σ2P to obtain h2 using additive effects

ℎ2AD = (σ2A + σ2D)∕σ2 to obtain h2 using additive and dom-

inance effects

where σ2
A is the additive genetic variance; σ2

D is the domi-

nance genetic variance; and σ2
P is the phenotypic variance.

The additive relationship matrix was estimated using the

A.mat function (Endelman, 2011). The dominance relation-

ship matrix was estimated by assuming that the heterozygos-

ity of an individual is contributing to dominance effects (Su,

Christensen, Ostersen, Henryon, & Lund, 2012). The resid-

ual relationship matrix is assumed to contain epistatic effects,

among others, and was estimated by considering only the sec-

ond order epistasis and ignoring population inbreeding (Su

et al., 2012). The latter assumption holds more true in the

case of IWG because seed-production through inbreeding in

this plant is uncommon (Zhang et al., 2016). All estimates and

calculations described in this section were carried out using

the R package sommer (Covarrubias-Pazaran, 2016).

2.3 Multi-environment G×E models for
genomic prediction

The UMN IWG breeding program evaluates its germplasm at

two distinct MN locations for at least two years. Because of

the inherent differences that exist between these sites as well

as the expected genotype by year effect, models that could

fit multi-environment effects were tested in order to investi-

gate their effect on trait predictions. Three multi-environment

genomic best linear unbiased prediction (GBLUP) models

were tested, as described by Granato et al. (2018) in the R

package BGGE:

1. MM, which considers only the main genetic effects in all

environments

2. MDs, which considers the main genetic effect in all envi-

ronments as well as a single G×E effect for each environ-

ment, and

3. MDe, which considers the main genetic effect in each envi-

ronment as well as a single G×E effect for each environ-

ment.

The models MM and MDs incorporate genetic information

from molecular markers and/or from environmental covari-

ates (Jarquín et al., 2014) and model MDe decomposes marker

in each specific environment as well as across all envi-

ronments (Lopez-Cruz et al., 2015). As these models have

already been discussed in depth (Pérez-Rodríguez et al., 2015;

Bandeira e Sousa et al., 2017), they will not be described here

further.

2.4 Evaluation of genomic prediction models
using cross-validation

Six different methods were used to predict the breeding val-

ues of the agronomic traits measured in UMN_C3 IWG breed-

ing population: BayesA, BayesB, BayesC, Bayesian LASSO

(BL), Bayesian Ridge Regression (BRR), and genomic best

linear unbiased prediction (GBLUP). All Bayesian models

were fitted as implemented in the R package BGLR (Pérez

& de los Campos, 2014). GBLUP was implemented in the R

packages sommer and BGGE.

In sommer, 1000 replications of the model were run with

20 iterations (maximum number allowed) in each run. For

all models within BGGE and BGLR, 100 replications of

each model were iterated 50,000 times with the first 25%

discarded as burn-ins and results sampled at every third

iteration. Predictive ability of the models was obtained by

calculating the correlation between observed phenotypic val-

ues and the genome estimated breeding values (GEBVs), that

is, r = cor(PHENOadj, GEBV). Predictive abilities from all

genomic prediction models were estimated using a four-fold

cross-validation scheme. For this, UMN_C3 was randomly

divided into four subsets and three out of the four subsets

(338 genets) were used to train the models. The remaining

subset with 113 genets was used as a validation set. This

four-fold cross-validation scheme was replicated at least 100

times for all models in all packages. Table 1 summarizes all

models and their components investigated by this study.

2.5 Genetic gain from genomic selection

Expected genetic gain (ΔG) for trait ‘y’ was estimated using

the following formula, as previously described by Heffner

et al. (2010) and Rutkoski (2019):

Δ𝐺𝑦 = 𝑖𝑟σA

where i is the selection intensity, that is, trait selection differ-

ential (S) expressed in units of phenotypic standard deviation

(σP); r is the trait predictive ability obtained from genomic

prediction models. For the sake of simplicity, only the high-

est r values observed among the three MM, MDe, and MDs

models were used in the equation; and σA is the square root

of additive genetic variance.
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T A B L E 1 Models and components used in genomic prediction of nine agronomic traits in UMN_C3 intermediate wheatgrass breeding

population. Symbol ‘X’ means the component was used in the model. G×E, genotype by environment interaction effect

Method Model Effects G×E Tool Replications Iterations Source
Additive Additive and

Dominance

GBLUP General X X sommer 1000 20 (Covarrubias-Pazaran, 2016)

MM X X X

MDe X X X BGGE 100 50000 (Granato et al., 2018)

MDs X X X

BayesA X X

BayesB X X

Bayesian BayesC X X BGLR 100 50000 (Pérez & de los Campos, 2014)

BL X X

BRR X X

3 RESULTS

3.1 Variance components and trait
heritability

All traits discussed in this study exhibited quantitative dis-

tributions with occasional bi-modality, such as in shatter

resistance in Crk18 and StP17 environments and number of

spikelets in StP18 environment (Figure 1). Variability among

the environments was evident by different quantile data. Vari-

ance components and heritability estimates for all traits were

obtained by fitting GBLUP mixed models on phenotype val-

ues adjusted for trial effects (PHENOadj) results are presented

in Table 2. Calculations were carried out using components

from models that accounted for additive effects only (A) and

with both additive and dominance effects (AD). For all traits,

the additive variance (σ2
A) in the A model variant was equal

to or larger than σ2
A estimates in AD models. Dominance

variance estimates (σ2
D) were larger than σ2

A in AD models

for traits spike weight and seed width. Interestingly, σ2
D for

TKW (g) Seed Length (mm) Seed Width (mm)

Shatter Resistance Threshability Yield (g)

Spike Weight (g) Spike Length (cm) No. of Spikelets

0 5 10 4 5 6 7 1.0 1.5 2.0 2.5 3.0

−1 0 1 2 3 4 5 −1 0 1 2 3 4 5 0 50 100 150

−0.5 0.0 0.5 1.0 1.5 2.0 10 20 30 40 10 20 30

BLUE Value

Environment

Crk18
StP17
StP18

F I G U R E 1 Density ridgeline plots of best linear unbiased estimates (BLUEs) for nine agronomic traits in the UMN_C3 intermediate

wheatgrass breeding population. Traits were measured in three environments: Crookston, MN, USA in 2018 (Crk18), and Saint Paul, MN, USA in

2017 (StP17) and 2018 (StP18). Plot height within each trait facet is scaled for 0–1. Three vertical lines denote the four quantiles of data distribution



6 of 13 BAJGAIN ET AL.The Plant Genome

T A B L E 2 Summary of additive (σ2
A), dominance (σ2

D), and residual (σ2
ε) variance components along with narrow (h2) and broad-sense (H)

heritability estimates in the UMN_C3 intermediate wheatgrass breeding population. A, additive effects; AD, additive and dominance effects

Trait Model 𝛔2
A 𝛔2

D 𝛔2
𝛆 h2 H AICa

Spike weight (g) A 0.010 (0.004)
b

0.027 (0.003) 0.274 (0.088) 435.71

AD 0.005 (0.009) 0.006 (0.009) 0.027 (0.003) 0.136 (0.233) 0.687 (0.094) 435.35

Spike length (cm) A 2.971 (0.791) 4.104 (0.576) 0.420 (0.093) 419.89

AD 1.559 (1.688) 1.516 (1.765) 3.946 (0.620) 0.222 (0.237) 0.438 (0.099) 419.17

Number of spikelets A 1.368 (0.366) 1.902 (0.266) 0.418 (0.093) 393.97

AD 1.368 (0.805) 0.000 (0.812) 1.902 (0.288) 0.418 (0.236) 0.418 (0.098) 393.97

Shatter resistance A 0.388 (0.083) 0.292 (0.052) 0.570 (0.090) 333.87

AD 0.227 (0.162) 0.187 (0.166) 0.264 (0.056) 0.334 (0.232) 0.610 (0.095) 332.24

Threshability A 0.258 (0.065) 0.305 (0.045) 0.458 (0.093) 415.29

AD 0.258 (0.139) 0.000 (0.139) 0.305 (0.049) 0.458 (0.235) 0.458 (0.098) 415.29

Yield (g) A 41.915 (16.985) 145.070 (15.845) 0.224 (0.085) 440.18

AD 41.921 (43.876) 0.000 (45.807) 145.065 (17.032) 0.224 (0.231) 0.624 (0.090) 440.18

Thousand kernel weight (g) A 0.754 (0.135) 0.306 (0.073) 0.711 (0.081) 271.52

AD 0.672 (0.251) 0.093 (0.243) 0.294 (0.080) 0.635 (0.217) 0.723 (0.086) 271.33

Seed length (mm) A 0.086 (0.017) 0.053 (0.010) 0.618 (0.088) 335.83

AD 0.062 (0.033) 0.029 (0.034) 0.049 (0.011) 0.442 (0.228) 0.649 (0.092) 335.02

Seed width (mm) A 0.008 (0.002) 0.013 (0.002) 0.398 (0.093) 408.55

AD 0.006 (0.005) 0.011 (0.005) 0.010 (0.002) 0.229 (0.162) 0.516 (0.098) 401.34

aAIC, Akaike information criterion;
bValues wihin parentheses are the standard error estimates for each component

number of spikelets, threshability, and grain yield were effec-

tively zero. The largest proportion of the total genetic vari-

ance explained by σ2
A for any trait was for TKW in the A

model (71%), and that by σ2
D for any trait was for seed width

(52%). Overall, the AIC (Akaike information criterion) esti-

mates showed that including dominance effects in the models

improved model fitness relative to the A model, except for two

traits: number of spikelets and threshability. For TKW, the A

model was marginally better than the AD model. Yet, the dif-

ferences observed in AIC estimates between A and AD model

variants were small and not significant.

The highest estimates of narrow sense heritability (h2) for

all traits were observed in the A model variants (Table 2). The

largest h2 value was observed for TKW (0.71), followed by

seed length (0.62) and shatter resistance (0.57). Broad sense

heritability (H) estimates were larger than h2 for all traits. The

largest H values were observed for TKW (0.72) followed by

spike weight (0.69) and seed length (0.65).

3.2 Trait predictions in additive and
dominance models

As expected, different prediction methods produced dissimi-

lar predictive abilities that varied by trait. While GBLUP mod-

els were generally better than Bayesian, no single method or

model variant gave the highest predictive ability for any par-

ticular trait (Figures 2 and 3). One notable exception was

the trait seed width where all Bayesian models performed

relatively well, although not better than most other models.

Models that incorporated G×E effects outperformed nearly

all other models and model variants. The lowest predictive

abilities were observed for multiple traits such as yield, spike

weight, spike length, and threshability when G×E effects were

not taken into consideration. Notable improvements in pre-

dictions with G×E included in the models were observed

for yield, spike weight, spike length, and threshability with

improvements of up to 19, 14, 19, and 19%, respectively.

Between the A and AD variants of all models, neither was

significantly better than the other for any given trait, except

for seed width where a 9% increase in predictive ability was

observed in the AD variant of MDs compared to its A variant.

3.3 G×E based genomic prediction

Trait predictions using the multi-environment models MM,

MDe, MDs showed that incorporating G×E effects can

significantly boost predictive ability (Figure 3). Predictions

for yield increased by more than two fold and predictions

for spike weight, spike length, and threshability increased by

at least 1.6 fold. The MDs model, which takes into account

the main genetic effect in all environments and a single

G×E effect for all environments, was overall better for most
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Threshability TKW (g) Yield (g)

Spike Length (cm) No. of Spikelets Spike Weight (g)

Seed Length (mm) Seed Width (mm) Shatter Resistance
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BayesC − AD
BL − A
BL − AD
BRR − A
BRR − AD
GBLUP − A
GBLUP − AD
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traits with the exception of spike length and grain yield for

which MM had slightly better prediction results; TKW was

predicted the same by both MM and MDs. For all traits, MDe

under-performed relative to MM or MDs. No significant

differences in trait predictions were found between A and

AD variations of MM, MDe, and MDs models. Although,

the AD variant within MDe improved predictive ability of

seed width from 0.31 to 0.40, an increase by 9%. In MM, the

AD version of the model was better for shatter resistance and

seed length; for MDe, the AD model was better for two traits:

spike weight and seed width; and for MDs, the AD model

was better for three traits: spike length, seed length, and seed

width.

3.4 Cross-environment predictions

The additive variant of the MDs model (MDs-A) was trained

on single environment data from which GEBVs were pre-

dicted for the remaining two environments, i.e. using StP17 to

predict StP18 and Crk18, StP18 to predict StP17 and Crk18,

and Crk18 to predict StP17 and StP18. A four-fold valida-

tion approach was used here as well where a random 75%

subset of a population in an environment was used to predict

remaining 25% within the environment, and the same 75% was

used to predict the other two environments. This process was

replicated 100 times. MDs-A model was the overall best per-

former, and results are summarized in Figure 4. The highest

cross-environment predictions were observed for seed length

when StP18 data were used to predict Crk18 (r = 0.77) and

Crk18 data were used to predict StP18 (r = 0.76). Overall,

the prediction estimates ranged from 0.16 to 0.77 and no one

environment was the overall best predictor of all traits in the

remaining two environments. The first year trial (StP17) was

the best predictor of both second year trials for spike weight,

number of spikelets, TKW, and seed length with predictive

abilities that deviated ≤ 4% from the mean predictions. StP18

was the best predictor for grain yield in all environments with

predictions of 0.30, 0.32, and 0.29 in StP18, StP17, and Crk18,

respectively. Crk18 was not a good predictor of either Saint

Paul environments.

3.5 Genetic gain from prediction models

Expected genetic gain estimated by the A models for all traits

ranged 0.02-1.88 and 0–1.82 for the AD models (Table 3).

The highest gain predicted based on genomic prediction mod-

els was observed for grain yield where both A and AD mod-

els estimated an improvement of nearly two units relative to

genetic standard deviation. For all traits except number of

spikelets and threshability, the A models showed higher gain

than the AD model. Seed width had the smallest gain esti-

mates (< 0.02) in both A and AD models followed by spike

weight and seed length.

4 DISCUSSION

Genomic selection (GS) is an alternative selection approach

that can help breeders make sound breeding decisions and

increase genetic gain per unit time and cost (Meuwissen et al.,

2001; Heffner, Sorrells, & Jannink, 2009). In silico selec-

tions carried based on GS models cost a fraction relative to

multi-location and multi-year phenotypic evaluations. As the

cost of high-throughput genotyping continues to decline, sev-

eral thousand high quality genome-wide polymorphic mark-

ers, primarily SNPs, can be discovered in any plant or animal

species and make GS-based breeding an attractive option. In

fact, the implementation of GS in our IWG breeding program

has trimmed 3–4 years from our conventional variety devel-

opment pipeline. One of the basic objectives of our GS based

IWG breeding approach is to carry out timely training, updat-

ing, and fine-tuning of existent GS models as new and promis-

ing algorithms become available. In this study, we provide the

results obtained from training several GS models that include

additive and non-additive effects and G×E interaction effects

with cross-site predictions.

In our phenotypic data, we observed that additive effects

have a bigger role in dictating the performance of most IWG

traits, yet the contribution from non-additive effects cannot

be completely ignored. We saw substantial contributions

from dominance and higher order genetic effects, possibly

epistatic, in the phenotypic variance of a few traits (Table 2).

For instance, the dominance effect contributed an additional

1.2- to 2-fold the additive variance for spike weight, spike

length, and shatter resistance in AD models. While these

contributions are mostly of small magnitude, AIC estimates

suggested that including dominance effects can improve over-

all model fitness. Our results also suggest that the distribution

of additive and non-additive effects in IWG are highly trait

specific and are possibly affected by the diverse environments

where our trials are conducted. Another interesting observa-

tion is that the dominance variance was often either zero or of

negligible value in AD model variants for number of spikelets,

yield, threshability, seed length, and TKW. These traits there-

fore likely do not rely on dominance for trait expression. We

noticed that heritability estimates for several traits were not

constant among these three model variants. Narrow sense

heritability (h2) estimates for most traits reduced by 11–70%

when dominance and higher order genetic effects were parti-

tioned. There were some exceptions: no change in heritability

was seen for number of spikelets, threshability, and grain

yield between the A and AD model variants. Lower estimates

of h2 are not uncommon in non-additive models and has

been shown to be the case in both plant and animal species
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F I G U R E 4 Cross-environment genomic predictions from traits measured in three environments: Crookston, MN, USA in 2018 (Crk18), and

Saint Paul, MN, USA in 2017 (StP17) and 2018 (StP18). Predictions were using (a) StP17 to predict StP18 and Crk18, (b) StP18 to predict StP17 and

Crk18, and (c) Crk18 to predict StP17 and StP18. Predictive abilities were obtained from 100 replicates (50000 iteration of each replicate) of the

additive variant of the MDs model (“MDs – A”). Traits are displayed on the x-axis and predictive abilities are displayed on the y-axis

(Su et al., 2012; Bouvet, Makouanzi, Cros, & Vigneron,

2016). This is because a large portion of non-additive genetic

variance is often included within the additive variance in

A model when no further partitioning of variance compo-

nents is done, giving higher estimates of h2. Broad sense

heritability (H) is often larger than h2 because all genetic

variance is included in the numerator (Falconer & Mackay,

1996).

We observed that GBLUP models were generally better

than Bayesian models whether or not G×E effects were fitted

in the models. Seed width was the only trait that deviated from

this pattern as nearly all Bayesian models had predictions sim-

ilar to the GBLUP models. For spike morphology such as

spike weight, spike length, number of spikelets, as well as

grain yield, a large amount of genetic variance was neither

additive nor dominance. Depending on the trait and the model
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T A B L E 3 Expected genetic gain (ΔG = irσA) in the UMN_C3 intermediate wheatgrass breeding population based on multi-environment

genomic prediction models. ΔG values are shown in percentage per breeding cycle (2 years)

Traita 𝛔2
A-A 𝛔2

A-AD 𝛔P i rA rAD 𝚫GA 𝚫GAD

Spike weight (g) 0.01 0.01 0.26 1.03 0.39 0.37 0.03 0.02

Spike length (cm) 2.97 1.56 3.30 0.83 0.48 0.48 0.20 0.14

No. of spikelets 1.37 1.37 2.44 1.04 0.42 0.42 0.07 0.07

Shatter resistance 0.39 0.23 1.03 1.07 0.63 0.62 0.13 0.10

Threshability 0.26 0.26 0.91 1.17 0.53 0.52 0.13 0.13

Grain yield (g) 41.92 41.92 18.06 0.95 0.40 0.39 1.88 1.82

Thousand kernel weight (g) 0.75 0.67 1.31 1.04 0.64 0.64 0.76 0.72

Seed length (mm) 0.09 0.06 0.45 1.01 0.66 0.67 0.12 0.11

Seed width (mm) 0.01 0.00 0.14 1.10 0.35 0.40 0.02 0.00

aσ2
A-A and σ2

A-AD, additive variance calculated using additive only and additive + dominance models, respectively; i, selection intensity; σP, phenotypic distribution

standard deviation; rA and rAD, highest predictive abilities obtained in models with additive only and additive + dominance effects, respectively; ΔGA and ΔGAD, expected

genetic gain in models with additive only and additive + dominance effects, respectively.

variant, the residual variances for these traits were nearly 1.4-

to 5.4-fold larger than σ2
A or σ2

D. Thus, it became appar-

ent that modeling only the additive and dominance variance

is often inadequate in accurate prediction of GEBVs for sev-

eral traits. Therefore, we decided that G×E must be taken into

account in order to obtain predictions that are more reliable.

On the other hand, in the discussed IWG traits, non-additive

effects appear to have not-so-significant contributions to

genetic variance components as well as in genomic prediction.

This was the case even for traits such as spike weight, spike

length, and shatter resistance where the dominance effect was

1.2- to 2-fold larger relative to additive variance. Predictions

improved by up to 3% but overall were small increases. This

increase is similar to that observed in other crop species where

fitting dominance effects in the prediction models only mod-

estly increased the predictions (Wolfe, Kulakow, Rabbi, &

Jannink, 2016; Morais et al., 2017). Hence, while dominance

effects could be modeled in IWG trait prediction to improve

predictions by a small factor, simply using additive models

with G×E effects will provide similar results.

Indeed, fitting G×E interaction effects in GS prediction

models has shown to be more effective than univariate pre-

diction models and improved trait predictions in several crop

species (Ly et al., 2013; Lopez-Cruz et al., 2015; Wang et al.,

2016). The IWG breeding population presented in this study

was phenotyped at two diverse MN locations. Because of

location and year effects as observed from the variance com-

ponent calculations, modeling G×E interaction effects in GS

models provided a significant boost in trait predictions. In

particular, the models MDe and MDs were vastly superior

to any other models we tested, for all traits. These two mod-

els include a kernel for main genetic effect as well as addi-

tional kernels for G×E effects within and/or across the dif-

ferent environments. This is likely due to the prediction mod-

els benefiting by extracting information on trait performance

of the same genotypes from multiple environments (Granato

et al., 2018). We then used these models to predict trait values

in two environments using data collected in one environment.

While predictions varied by trait, those with higher heritabil-

ities and low residual environmental variance were often pre-

dicted better by using one environment data (Figure 3). This

is expected as traits are influenced by different environmental

variables in different locations and years. The results indicate

that traits with high heritabilities can be effectively selected

using the first year in Saint Paul environment (StP17). This

is an important finding for us as phenotyping IWG in multi-

ple locations is resource and labor-intensive. Therefore, being

able to predict the performance of some agronomic traits in

independent locations using data collected in one environment

would speed our IWG domestication efforts.

An increase in trait predictive ability can improve selec-

tion accuracy and overall breeding efficiency, especially for

complex traits such as yield and seed characteristics that are

typically affected by a large number of genetic and environ-

ment factors (Jarquín et al., 2014). This was corroborated in

our analysis as we obtained relatively high genetic gain esti-

mates in our trials. The largest gains were estimated for grain

yield (1.88 units or 34.0 g increase per breeding cycle on aver-

age) and TKW (0.76 or 1.0 g increase per breeding cycle),

which is expected since both these traits are under strong

selection pressure in our breeding program. UMN_C4 is cur-

rently being phenotyped and we will carry out a follow up

study to see how these estimated gain predictions compare

with realized gains based on field phenotyping. We are equally

interested in tracking the selection responses from one gener-

ation to the next as well as the amount of genetic variance in

our current and future breeding germplasm. In self-pollinated

crops, evidence suggests that GS-based breeding can cause

a significant decline in genetic variance compared to conven-

tional breeding approaches (Gaynor et al., 2017; Muleta, Pres-

soir, & Morris, 2019). The case of IWG is different in that it

is an out-crossing species with three large sub-genomes with
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some level of gene redundancy. Does being an out-crossing

hexaploid have any advantage in slowing down the reduction

of genetic variance observed in inbred cereal crops? We plan

to investigate this by evaluating the parents of all breeding

cycles in a ‘common garden’ experiment.

To summarize, as a perennial grain species with a long

cropping cycle, IWG can greatly benefit from GS prediction

models that consider G×E effects. This can potentially help in

developing elite varieties with stable and better performance

in multiple environments. Our findings discussed herein are

encouraging in rapid domestication and improvement of IWG

as these approaches promise higher genetic gains from mod-

eling of G×E interaction effects. The methods and results pre-

sented in this study will likely be useful to not only IWG

breeding, but also other crops that are undergoing domesti-

cation and need rapid trait improvement.
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