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Abstract

This work is the result of an Industrial Doctorate developed through a partnership agree-
ment between the Universitat Politecnica de Catalunya and the company Horizons Op-
tical. This thesis solves the complex design of progressive lenses for eyeglasses, which
is a real problem in the industry. The lens is the transparent part of the eye behind
the pupil that helps humans to see clearly by focusing light onto the retina. Over time,
the lens loses some of its elasticity and therefore can no longer accommodate clearly for
near vision. This phenomenon is called presbyopia and explains why people need reading
glasses as they become older. Progressive lenses correct presbyopia and have a complex
design: they have an upper region for far vision, a low region for near vision (reading),
and a corridor that connects these areas which allows clearly vision at an intermediate
distance, for example, when looking at a computer screen. The surface of the progressive
lens designed in this thesis is the surface that is farthest from the eye, thus the power in
the near region is bigger than the power in the far region.

In geometrical terms, power and astigmatism are calculated using the principal curva-
tures of the lens surface. When the power changes vertically, unwanted lateral astigmatism
(aberrations) appear as a result of the Minkwitz theorem. The focus of this thesis is the
use of optimization methods in order to design progressive lenses minimizing the lateral
aberrations (astigmatism) and providing the power required in each zone.

This thesis presents two different models for computing progressive lens. Both models
are highly nonlinear, nonconvex and continuous and were solved using the AMPL mod-
eling language and the interior point solvers IPOPT, LOQO and KNITRO. Both models
have approximately 900 variables (the coefficients of a third-degree B-spline basis). The
first model has about 7000 constraints, while the second model has about 15000 con-
straints. Each constraint corresponds to a property of power or astigmatism at a point
on the grid that defines the lens surface.

The first model uses Cartesian coordinates and is an improved version of a previous
model by the same author, published in a master’s thesis. The CPU time in the master
thesis was between 10 and 33 minutes, and in this thesis it has been reduced to less than 3
minutes using the same machine and the LOQO solver. In this thesis, all of the proposed
instances converged using the LOQO solver and the Cartesian coordinate model, which
was not the case in the master’s thesis. However, with other solvers some of the instances
did not converge using the Cartesian coordinate model of this thesis.

The second model uses spherical coordinates and exhibits better convexity properties
than the previous one based on Cartesian coordinates. All of the problem instances con-
verged using all the proposed solvers, and the quality of the solution was improved. CPU
time for spherical coordinates increased in relation to the Cartesian coordinate model,
due to large calculations involved, but the number of iterations needed to converge de-
creased considerably (for example, from a maximum of 192 iterations using the Cartesian
coordinate model to a maximum of 84 iterations using the spherical coordinate model and



the same LOQO solver).

These models resulted in two publications. The first one is a patent for an invention
that uses the Cartesian coordinate model and orients the astigmatism gradient, which is
useful when personalizing progressive lenses for real users. The second publication is a
scientific article published in Optimization and Engineering that proposes the spherical
coordinate model.
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Resum

Aquest document és el resultat d’'un Doctorat Industrial desenvolupat a través d’un acord
entre la Universitat Politecnica de Catalunya i 'empresa Horizons Optical. Aquesta tesi
resol el disseny complex de les lents progressives per ulleres, que és un problema real de
la industria. El cristalli és la part transparent de 1'ull, situada darrera la pupilla, que ens
permet veure-hi nitidament enfocant la llum a la retina. Amb el pas del temps, el cristalli
perd la seva elasticitat i disminueix la seva capacitat d’acomodacié a la visié de prop.
Aquest fenomen s’anomena presbicia i explica per que necessitem ulleres quan ens fem
grans. Les lents progressives corregeixen la presbicia i tenen un disseny complex: la zona
superior s’utilitza per a la visi6é de lluny, la zona inferior per a la visi6é de prop (lectura)
i el corredor que connecta aquestes dues zones permet una visié nitida per a distancies
intermedies, per exemple per a mirar la pantalla d'un ordinador. La superficie de la lent
progressiva dissenyada en aquesta tesi és la superficie més distant de 1'ull, és a dir, la
potencia de la zona de prop és més gran que la potencia de la zona de lluny.

En termes geometrics, la potencia i I'astigmatisme es calculen utilitzant les curvatures
principals de la superficie de la lent. En augmentar la potencia verticalment, aparei-
xen aberracions laterals en forma d’astigmatisme com a conseqiiencia del teorema de
Minkwitz. L’objectiu d’aquesta tesi és utilitzar metodes d’optimitzacié per a dissenyar
lents progressives minimitzant les aberracions laterals (astigmatisme) i proporcionant la
potencia demanada per a cada zona de la lent.

Aquesta tesi presenta dos models diferents per a calcular lents progressives. Tots
dos models sén altament no lineals, no convexos i continus i han estat resolts utilitzant el
llenguatge de modelitzaci6 AMPL i els solvers de punt interior IPOPT, LOQO i KNITRO.
Tots dos models tenen aproximadament 900 variables (les variables sén els coeficients
d’una base de B-splines de grau tres). El primer model té unes 7000 restriccions, mentre
que el segon model té unes 15000 restriccions. Cada restriccié correspon a una propietat
de potencia o astigmatisme d’un punt de la malla que defineix la superficie de la lent.

El primer model utilitza coordenades cartesianes i és una versié millorada d’'un model
previ de la mateixa autora, publicat en un treball final de master. El temps de CPU en
el treball final de master era entre 10 i 33 minuts, i en aquesta tesi s’ha reduit a menys
de 3 minuts utilitzant el mateix ordinador i el solver LOQO. En aquesta tesi, totes les
instancies han convergit utilitzant el solver LOQO i el model amb coordenades cartesianes,
la qual cosa no passava en el treball final de master. Tanmateix, en aquesta tesi algunes
de les instancies no han convergit utilitzant el model amb coordenades cartesianes i altres
solvers.

El segon model utilitza coordenades esferiques i presenta millor convexitat que ’an-
terior model de coordenades cartesianes. Totes les instancies han convergit utilitzant
qualsevol dels solvers, i la qualitat de la solucié ha millorat. El temps de CPU utilitzant
coordenades esferiques ha estat superior que el temps del model de coordenades cartesi-
anes, a causa dels llargs calculs, tot i que el nombre d’iteracions ha disminuit considera-
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blement (per exemple, d’'un maxim de 192 iteracions utilitzant coordenades cartesianes a
un maxim de 84 iteracions utilitzant coordenades esferiques i el mateix solver LOQO).

Aquests dos models han tingut com a resultat dues publicacions. La primera és la
patent d’invencio que utilitza coordenades cartesianes i orienta el gradient d’astigmatisme,
la qual cosa és 1til a I’hora de personalitzar les lents progressives per als usuaris finals. La
segona publicacié és un article cientific publicat a la revista Optimization and Engineering,
que presenta el model amb coordenades esferiques.
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Chapter 1

Introduction

The lens is the transparent part of the eye behind the pupil that helps humans to see
clearly by focusing light onto the retina. The parts of the eye and the lens can be seen in
Figure 1.1. In young people the lens of the eye is soft and flexible, allowing it be easily
reshaped by the thin muscles inside the eye to focus on near and far objects. Over time,
the lens loses some of its elasticity and therefore can no longer accommodate clearly for
near vision. This phenomenon is called presbyopia and explains why people need reading
glasses as they become older. The simplest eyeglasses to correct presbyopia are monofocal
lenses that can only be used for near vision. A more complex type of eyeglasses are bifocal
lenses, allowing clear vision at two different distances: far vision and near vision. Finally,
the third type of eyeglasses are progressive lenses (also called progressive addition lenses)
that have a complex design: they have an upper region for far vision (far region), the
corridor for middle vision and the lower region for near vision (near region). The different
parts of a progressive lens surface are shown in Figure 1.2 (left). The far region is used
to focus objects that are at a distance of 2 meters or more, near region is used to focus
objects at around 40 cm, and the corridor changes gradually its power in order to be used
to focus objects between 2 m and 40 cm.

This thesis will consider progressive lenses used for eyeglasses. In this thesis, only
one of the two surfaces of the lens will be calculated, and the other surface of the lens
will be a spherical cap. That means that we will consider progressive lenses with no
center thickness. The two main properties of a progressive lens are the power and the
astigmatism (formulas for which will be shown in Chapter 3) that are defined for each
point of the lens. From now on, by term power will refer to surface power, or, more
precisely, to mean surface power. Similarly, the term astigmatism will refer to surface
astigmatism. In geometrical terms, power is the product of the mean principal curvatures
of the lens surface multiplied by a constant; and the astigmatism is the product of the
principal curvatures difference multiplied by the same constant. When the power changes
vertically, unwanted lateral astigmatism (aberrations) appears because of the Minkwitz
theorem [29]. For more information about the Minkwitz theorem, see [12].

In this thesis, the progressive lens surface being considered is the surface of the lens
that is farthest from the eye. The lateral view of this progressive lens surface is shown
in Figure 1.2 (right). The near zone must have greater power (Py—power in the near
zone—) than the far region (Pp—power in the far zone—), and the corridor exhibits a
gradual increase in power. Optimization techniques are used to design these types of
surfaces, while minimizing lateral aberrations that appear in form of unwanted astigma-
tism. The aim of this thesis is to obtain a surface of a progressive lens, with some desired
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power and minimum astigmatism using optimization methods. The optimization methods
used in this thesis are interior point methods. The next Chapter 2 presents a review of
optimization methods.

This thesis is a continuation of the Master’s thesis [47] by the same author. That
work developed a model of the progressive lens, and that model has been enhanced and
further enlarged here. We may observe that the problem of designing progressive lenses is
a nonlinear and nonconvex problem. Both theses use Cartesian coordinates with a surface
model of B-splines. This thesis has also tested different degrees of B-splines. In addition,
spherical coordinates have also been used to enhance the convexity of the problem.

Contributions of this thesis in the form of publications are listed in Section 2.3. There
are three main contributions of this thesis. Firstly, the Cartesian coordinate model pre-
sented in [47] has been improved, reducing the number of iterations and the time required
by solvers to converge. Secondly, an application of the Cartesian coordinate model has
been patented, orientating the direction of power and astigmatism gradients. Finally, a
new model with spherical coordinates is presented, being “more convex” that the model
using Cartesian coordinates.

The quality of the solution obtained using spherical coordinates will, in general, be
the same as that using the Cartesian coordinates. The main advantage of using spherical
coordinates is that, theoretically, the problem is “less nonconvex” (as will be shown), and,
consequently, the optimization problem is (ideally) expected to converge faster (i.e., with
fewer iterations). The data provided in the spherical coordinates model must be referenced
in angles (radians), and the data provided in the model using Cartesian coordinates must
be referenced in distances (mm) on the projected z—y plane.

The structure of this thesis is as follows. The next Chapter 2 describes the state
of the art of nonlinear optimization methods and the design of progressive lenses. The
detailed contributions in form of published articles, conferences and other miscellaneous
publications are described at the end of Chapter 2. The definition and computation of the
power and astigmatism are given in Chapter 3, which also introduces the optimization
model. The detailed optic model for this problem is given in Chapter 4 for Cartesian
coordinates, and in Chapter 5 for spherical coordinates. These two sections also discuss
convexity issues. A new application of this optimization model is presented at the end of
Chapter 4 that allows the power and astigmatism gradients to be orientated in different
directions. Chapters 4 and 5 also give examples of progressive lenses computed using
the two different models. These two Chapters also provide numerical results using the
interior point solvers LOQO, IPOPT and KNITRO hooked to AMPL. Finally, future work,
conclusions and contributions are detailed in Chapter 6. Tables of numerical results using
the Cartesian coordinate model are shown in Appendix (page 106).



Chapter 2

State of the art

2.1 Nonlinear optimization

In this thesis, optimization methods have been used to calculate the design of progressive
lenses. However, in other works different authors have used alternative methods to solve
the issue of designing progressive lenses, for example variational methods. This chap-
ter will describe nonlinear optimization and other methods used to calculate progressive
lenses.

Due to the fact that the expressions of power and astigmatism are nonconvex and
nonlinear, our problem is neither convex nor linear. Consequently, this section will detail
the optimization methods that can be used to solve a nonconvex and nonlinear problem.

The practical methods of nonlinear and nonconvex optimization are:

1. Penalty and augmented Lagrangian methods (implemented in the solvers
LANCELOT, MINOS)

2. Sequential quadratic programming (implemented in the solver SNOPT)

3. Interior point methods (implemented in the solvers LOQO, KNITRO/direct,
[POPT)

Various solvers are now available which can apply these methods. The names of
commercial solvers are shown in parentheses. In the case of KNITRO, there exists different
algorithms of the same solver.

All of these methods are iterative methods. Depending on the way solvers iterate
from one point to the next, they may use a line search or trust region. For more infor-
mation about these techniques, see the book [7, page 19]. This book also describes the
optimization problems cited above (pp. 497-597).

We have used IPOPT, LOQO and KNITRO solvers that use interior point methods
to solve the progressive lenses problem. In [6, pp. 487-491 | there is a short description
of interior point methods. For more information about the solver LOQO, see [9] and [10],
and for more information about the IPOPT solver, see [11]. The interior point algorithm
implemented in the KNITRO software is described in the articles [2] and [4].

We have not yet succeed in solving our problem with method that were not interior
point methods. Using KNITRO with the active set algorithm (algorithm 3) and the
SQP algorithm (algorithm 4) the problems did not converge. We also, unsuccessfully,
tried other active set codes, such as MINOS (which implements a projected Lagrangian
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method for nonlinearly constrained problems): in 10 million iterations (3 hours of CPU
time) on server 2, MINOS did not converge, and the surface obtained—although it looked
like a progressive lens—was very rough.

2.2 Progressive lenses

The literature defining the progressive lens is quite extensive (e.g., [27, 28]). However,
literature on how to calculate progressive lenses is scarce, mainly for reasons of confi-
dentiality, since this problem is generally addressed by private industry. However, a few
references are available.

2.2.1 History of the progressive lens

A detailed history of the progressive lens from 1907 to 1986 can be found in [17]. [14]
traces the development of progressive lenses from 1951 to 2000; it should be noted that this
book is written from the prespective of the company Essilor. We remark that the free-form
technology developed from 1983 to 2000. Free-form technology allows progressive lenses
to be manufacturated using digitally controlled machines instead of mechanical ones.
In 2000, Zeiss and Rodenstock launched their first free-form PALs, and soon afterwards
other companies also started to manufacture progressive lenses using free-form technology.
The importance of free-form technology is explained [26]. Some of the progressive lenses
designed in this thesis have been cut using free-form machines.

2.2.2 Evaluating the quality of a progressive lens

As stated in the Introduction (Chapter 1), a progressive lens has different zones (far
vision zone, corridor and near vision zone); the properties being studied in these areas
are power and astigmatism. Depending on the shape and properties (i.e. power and
astigmatism values) of these zones, different types of progressive lenses can be designed,
to suit different users and different activities.

The different types and features of progressive lenses are explained in the reviews [27]
and [28]. These publications describe the limits of astigmatism values and define what
makes a good quality progressive lens. The article [21] also gives a broad description of
progressive lenses.

However, depending on the user and how the progressive lenses are to be used different
distributions of the aberrations (lateral astigmatism) are better than others. For example,
we can classify the users as head movers or eye movers, and wearers will tend to have a
preference for one type of progressive lenses. For more information about head movers or
eye movers see [28] and [20].

Progressive lenses can be designed to suit the different activities being carried while
they are worn. Examples of activities include working in an office, doing outdoor sports
or driving a car. Depending on the main purpose of the lens, the progressive lens will have
the far, near or corridor zone bigger or smaller and the power will be also modified. The
Minkwitz theorem means that it is not possible to maximize all of these zones within the
same lens, so one zone must be prioritized depending on the user’s main activities. For
example, in an office progressive lens, the distance vision zone will be smaller than the
near vision zone. This is because the lens is specifically intended for near and intermediate
vision (intermediate vision is used to look at the computer or laptop screen). However,



Chapter 2. State of the art 6

in a multipurpose lens or an outdoor sports lens, the distance vision zone will be larger
than the other zones. Moreover, the power will differ depending on the user’s prescription
and on the distance from the eye of these various different activities. For example, when
driving a car the near zone will be used to focus on objects at the same distance as the
car dashboard, whereas the near zone in an office will be used for focusing to the objects
located at normal reading distance (usually 40 cm).

The goal of this thesis is to present a versatile method for designing any type of
progressive lenses. By modifying the different parameters in our model (described in
Section 4.5, page 27), we can calculate different types of progressive lenses.

2.2.3 Modeling lenses

In some articles and patents, progressive lenses surfaces are modeled using B-splines,
whereas other publications use Zernike polynomials or other type of polynomials. Refer-
ence will be made to these publications below.

Splines

Many publications use splines when modeling progressive lenses. This is the case in
the articles [25] and [37] and the theses [36], [19] and [17]. Furthermore, the article [25]
also specifies the properties of the splines used. Finally, the patent [13] uses splines of
five—degree with control points spaced 10 mm or 20 mm. We may observe that in Section
5.6 (page 91) splines of three—degree will work better than splines of five-degree. We also
remark that in this thesis control points will be spaced 4 mm (see 4.6.1, page 29).

Zernike polynomials
In the review [28] and in some other publications, such as the thesis [22], it is said
that Zernike polynomials can be used to model progressive surfaces.

Linearisation and Taylor series
The article [25] proposes an approximation with the Taylor series. Finally, the thesis
[32] uses polynomials of degree 20 to model the surface of the progressive lens.

2.2.4 Designing progressive lenses

There are several methods used for designing progressive lenses. This thesis focuses on our
research into optimization methods, but we would like to describe, or at least to mention,
others methods used for designing lenses. These methods are:

e Variational methods
e Constructive methods

e Optimization

Variational methods

The article [25] describes the use of a variational method, where the strategy is to
minimize an objective function without constraints, by using numeric approximations.
The objective function is the sum of the astigmatism plus the difference between the lens
power and the objective lens power.



Chapter 2. State of the art 7

Other articles that use variational methods are, for example, [35] and [34]. In addition,
the article [30] explains the variational method and [35] reviews it.

In order to solve variational methods, a discretization is used. This normally involves
the use of numerical algorithms and finite element methods. See, for example, [34].

Constructive methods
In the article [31], a constructive method is described. Instead of considering the whole
surface of the lens, this method considers the different regions of the lens.

Optimization methods

Many articles and patents cite optimization methods in order to solve the problem of
progressive lenses, but few give many details about the optimization method used.

In the reviews [27] and [28] numerical optimization methods are cited. However, they
state that the “finite element method seeks to minimize” the merit function. They add
that the merit function includes power errors, unwanted astigmatism and gradients of
power. Strangely, this review does not explicitly cite the minimization of the astigmatism
gradient in the merit function, although it does suggest that some users “may benefit from
designs with softer gradients”. To sum up, this review cites both finite element methods
and numerical optimization methods without giving details of any of them.

However, there are two theses that merit special attention because they solve the
problem of progressive lenses by applying optimization methods, so they are quite relevant
to our work. One is the thesis [32] that solves multilevel optimization problems using a
trust-region algorithm. This thesis makes use of the GALAHAD library. An application
of this thesis is the design of progressive lenses. The bibliography includes the article [1],
which covers interior point methods, but the thesis develops multilevel algorithms that
are a type of trust-region methods. In 2009 thesis [32] resolves a progressive lens model
without constraints in 20 minutes using polynomials of degree 20 in fewer than 10000
iterations. However, during this project we solved a progressive lens model in less than
5 minutes using B-splines and the LOQO solver in fewer than 200 iterations (see Section
4.6, page 29). Another difference between [32] and our work is that in [32] the model has
no constraints (the only set of constraints have been moved to the objective function and
our work has different sets of constraints. Consequently, we do have more flexibility in the
objective function. The complete model in [32] is formed only by the following objective
function:

M 2
min Z a; Ast? + B; <P0wi — PowRefZ) (2.1)
i=1

where «; and (3; are given weights, PowRef; is the reference value for the optical power
over the whole surface of the lens and M is the number of points. The optimization
problem to be solved in our model is described below in Chapter 4 and involves the
minimization of (4.26), subject to constraints (4.27), (4.28), (4.29), (4.30) and (4.25)
using variables (4.24) (see page 28). That means that in both works the astigmatism is
minimized and the requested lens power is fixed in three regions for our work and in the
whole surface for [32]. This is: our model does not require the power values for the whole
surface of the lens to be specified, whereas [32] requires it. Having a degree of freedom
with the power value in the lateral zones is a clear advantage. In addition, we specify
a threshold astigmatism value for the far region, corridor and near regions (producing
higher quality lenses) and the power and astigmatism gradients can also be minimized.
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To sum up, our work allows more freedom with the lateral power, produces smoother
surfaces (minimizing the gradients of power and astigmatism), imposes a minimum level
of quality by fixing the astigmatism threshold values, and the method converges in fewer
iterations. Computational time cannot be compared because these projects date from
different years and use different computers. The concept of using different weights applies
in both theses. We may note that the thesis [32] cites the company INDO, because it is
said that INDO have approved this progressive lens design.

The other thesis that is quite related to our work is [22]. This thesis used Zernike
polynomials and a B-spline basis and developed different interior points methods (trust-
region methods) and also conjugate gradient methods in order to solve the progressive
lens problem. It did not use any commercial software (although it cites KNITRO). The
optimization problem is as follows:

Np 2 2
min % Z wP" (S’phi(u) - Sphi) +w? (C’yli(u) - C’yli>
i=1

2.2

—

M (k) < ep(k) < k), k= myi.my

where N, is the number of points which is about 2000 to 3000. The S/pE and 6y\ll
are the objective power and the objective cylinder (parameters) for all points, and the
variables Sph;(u) and Cyl;(u) are the power (sphere) and the astigmatism (cylinder).
We may note that cylinder is synonymous with astigmatism. In the objective function,
. Sph Cyl .. . .
weights w;"" and w;””" are used to prioritize certain zones, for example the corridor, over
others. Concerning the constraints, it states that at certain points (usually only 2 or
4 points)—the distance and the near points—some values of power and astigmatism are

—

given. These values are ¢ (k) and are limited by ¢/ (k) and c?o(\k:) or are fixed to another
parameter ¢,. Therefore, in this thesis power and astigmatism values must be specified
for the whole surface of the lens surface (S/pE and C'/y\ll), but 2 o 4 points are considered
more important. This is due to ISO specifications, that impose strict tolerance in near
and distance points; see [23] and [24]).

The number of variables depends on the definition of the surface using Zernike poly-
nomials or B-splines and is said to be 150 or 250. The number of iterations and time
to convergence depends on the optimization method implemented and, in general, the
number of iterations is approximately twice the number of variables (i.e. twice 150 or
250). The time to convergence, which also depends on the optimization method being
implemented, is between 7 minutes and 44 seconds in a Windows NT, Pentium III 666
MhZ machine. Again, this optimization modelization does not allow to minimize the
astigmatism or power gradients (as we have achieved in this new project), and likewise
does not allow the sum of astigmatism to be minimized (as in [32]). The main drawbacks
of this model are the need to generate all power and astigmatism data (parameters) for
the whole lens surface and the fact that smoother lenses, which minimize astigmatism
and power gradients, cannot be produced. The optimization code developed used Matlab
and Fortran 77 and solved a non-lineal and nonconvex optimization problem with (few)
constraints.

Interior point methods:
To date, we have found few publications relating progressive lenses with interior point
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optimization methods, aside from INDO or Horizons Optical publications. The only other
major publication (aside from INDO and Horizons Optical publications) is the above thesis
[22].

The master’s theses produced at INDO, [16] and [47], cite the use of interior point
methods. This thesis continues the work achieved in these master’s theses.

2.2.5 Work carried out at INDO and at Horizons Optical

Considering that this thesis has grown out of a collaboration between Horizons Optical
and UPC, it is important to reference certain publications. We must also note that, the
Research and Development department at INDO company separated from INDO to form
the company Horizons Optical in 2017. For these reasons, it is important to describe
publications related to the design of progressive lenses by both companies.

Two theses on progressive lenses have come out of INDO during recent decades: [17]
and [19]. Both of these theses tackled the problem of progressive lenses using optimization
methods and splines, but neither used AMPL software or interior point algorithms.

The master’s thesis [16] introduces the use of AMPL modeling language used with
interior point solvers. The proposed model uses polynomials. Although splines are cited
in the conclusions, they were not implemented yet.

The master’s thesis [47] forms the groundwork of this thesis. It uses splines and interior
point methods, and is from the same author of this thesis. The master’s thesis [47] is
described in more detail in the Introduction, see Chapter 1 and below, in Section 2.2.6.

INDO has produced two patents, [18] and [15], that are particularly relevant to this
thesis. Patent [15] describes a new method for distributing the astigmatism aberrations
accross the surface of the lens in order to decrease the aberrations inside the frame.
Specifically, this method increases aberrations (astigmatism) below the bottom part of
the frame allowing lateral aberrations of the lens (lateral astigmatism) to be decreased.
The author of this thesis, Casanellas, contributed to the elaboration of the patent [15]
before starting the research of this thesis.

Patent [18] describes a method for designing progressive lenses that consists of defining
the progressive surface on the back surface (convex) of a lens, and moving it to the
front surface while keeping the same optical properties. With free-form technology, the
progressive surface must be on the front surface (concave). The method described in
this patent allows this thesis to develop and define solely the back (rear) surface of the
progressive lens. Patent [18] is described in more detail in Section 3.1 (11).

2.2.6 Previous work of this thesis

The master’s thesis [47] upon which this thesis is based is by the same author. In this
publication splines and interior point methods were used. Using a set of 9 problem
instances in Cartesian coordinates, only 5 out 9 problems converged with fewer than 3000
iterations. LOQO solver took between 10 minutes and 33 minutes to converge. In this
new thesis, the Cartesian coordinate model has been improved considerably so that all
problems calculated using LOQO converged in fewer than 200 iterations and less than
3 minutes (using the same computer and a new Cartesian coordinate model). It also
presents a new spherical coordinate model.
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2.3 Contributions
The author’s contributions of this thesis are:
o Articles

— G. Casanellas, J. Castro, Using interior point solvers for optimizing progressive
lens models with spherical coordinates, Optimization and Engineering, 2019.
https://doi.org/10.1007/s11081-019-09480-z.

e Patents

— G.Casanellas, P.Artus, T.Vilajona, Method for Optimising a Progressive Oph-
thalmic lens and Method for Producing Same, PCT ES2018070321,
WO02018193147, Assignee: Horizons Optical S.L.U, 2017.

e Scientific conferences:

— G. Casanellas, J. Castro, J.C. Diirsteler, Modelling and optimization of pro-
gressive addition lenses, in The XXXV Congreso Nacional de Estadistica e
Investigacion Operativa (SEIO), Pamplona, Spain, May 2015.

— G. Casanellas , J. Castro, Modelling and Optimization of Progressive Lenses,
in the 28th European Conference on Operational Research (EURO), Poznan,
Poland, July 2016. Invited presentation.

e Informative conferences

— G. Casanellas, J. Castro, P. Artus, Design of progressive lenses by optimization
techniques, BGSMath Workshop Maths for Industry 4.0, Universitat Pompeu
Fabra, 19 February 2018. Invited presentation.

e Competitions

— G. Casanellas. Selected candidate for the institutional final of the UPC “Pre-
sent your thesis in four minutes”. UPC and Catalan Foundation for Research
and Innovation (FCRi). May 17h 2018.

e Informative article

— Do the progressive lenses really satisfy the Minkwitz theorem? Strategies to go
beyond the Minkwitz theorem. Innovation Department of Horizons Optical.
MAFO - Ophthalmic Labs & Industry, Volume 15, pp 10-17, 1/2019. ISSN
1614-1598 66527. (*)

(*)Although they are not mentioned in the publication, the authors of this
article are G.Casanellas and P.Artus.
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Model description

3.1 Problem description

As stated in the introduction, the aim of this thesis is to calculate a progressive surface,
where the upper part has less power than the lower part (see Figure 1.2 right, page 2). In
the calculations for this surface, only the surface power and the surface astigmatism are
considered. However, in a later step (which is confidential and does not form part of this
thesis) the wavefront, optical power and optical astigmatism are included.

The front surface of a lens is the surface that is farther from the eye, while the back
surface is the surface of the lens that is closer to the eye. In this research project, the
progressive surface of the lens is the front surface, while the back surface is spherical (see
Figure 3.1 left). Using wavefront tracing, the progressive surface is moved from the front
to the back surface of the lens while retaining the same optical properties, and adding
optical astigmatism and optical power calculations.

The calculations of wavefront tracing are not part of this thesis. The process described
in Figure 3.1 is registered in patent [18], which was filed some years before work began
on this thesis.

When this new progressive lens is calculated, see the dashed line in Figure 3.1 (right),
a semi-finished spherical lens will be cut and polished using free-form generating and
polishing commercial equipment. A semi-finished spherical lens is a lens with a spherical
surface on the front side and a rough, as yet uncut, back surface. Information about
professional free-form equipment can be found at [38] and [39].

,’IBack side
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Figure 3.1: The progressive lens calculated in this thesis (left) and the progressive lens
calculated in a subsequent step (right).
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Although the lenses are rather rounded, free-form generators require a description of
a square surface, that is bigger than the (rounded) lens and is expressed in Cartesian
coordinates. Therefore, the optimization problem will compute a square surface (not a
rounded one, as might be expected).

From this point forward, the progressive surface that will be calculated is the front
side of the left image in Figure 3.1, where the upper part is the far region and the lower
part is the near region.

3.2 Features of the progressive surface

In order to have stable far and near regions, these zones must have stable power, and near
zero astigmatism. The only surface that has these two optical properties is a sphere, and
consequently, far and near regions should be similar to the surfaces of two spheres, where
the radius of the sphere of the near zone is smaller than that of the top part. The right
image in Figure 1.2 shows that the upper part of the lens is very similar to a spherical
cap. However, the lower part of the lens is more curved to increase its power (in the near
region). Locally it is also similar to the another spherical cap of a smaller radius. The
orientation in the space of the upper sphere is fixed (by the constraints of the problem),
and the orientation of the lower spherical cap is such that the surface is continuous in the
corridor with the minimum level of astigmatism.

The goal of this thesis is to build a progressive surface having (1) the minimum astig-
matism (aberrations); (2) the requested power in the far region; (3) the requested power
in the near region; (4) and such that the astigmatism in the corridor, in the far, and in the
near regions must be less than a certain threshold value. As stated in the introduction,
the astigmatism is an aberration, and it must be minimized. By power we mean the
optical power of the lens, which must be equal to a predefined value for the far region
and another greater value for the near region. The main parameters for the model are
thus the powers of the far and near regions, the shape of these regions, and the maximum
permitted levels of astigmatism in the far region, corridor and near region.

3.3 Defining astigmatism and power

The power and the astigmatism of a lens are defined as follows:

Definition 1. Let be ki and ks the two principal curvatures at a given point of a surface,
then
Astigmatism = (p — 1)k — ksl ,
k1 + ko (3.1)
2 ?

Power = (u—1)

where p is the refractive index of the material.

If we express the curvatures in m~! (inverse of meters), then the astigmatism and the
power are expressed in diopters (1D = 1m™1).

The principal curvatures k; and k5 at a given point of the lens surface will be computed
considering the following general parametrization of the lens:

R? —R?

(1,0) P (0, 0) = (a(u,0), y(u, ), (11, 0). 82)
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From differential geometry [40] and [42], k; and kg are the eigenvalues of the Weingarten
application defined by the matrix

(DG o

where F, F,G and e, f, g are the coefficients of the first and second fundamental forms.
They are expressed as

E-ppy  P=memy G-RR 3.4)
€= N *Pyu =1 Du g= 1 Py,
where - is the dot product, W), defined as
— =
— Pu X Dy
= |__)ﬁ_|, (3.5)

Du X Py

is the normal vector to the surface (where x is the cross or vector product of two vectors
in R3), and the subscripts u, v denote the partial derivative with respect to u or v, that
is,

or Oy 0z or Oy 0z
- _ [ YI Y~ = _ [ X2 Y V<
Pu= (0u’ ou’ au) be (81}’ v’ 8@) ' (3:6)

The second-order partial derivatives are thus

L (Pr By 0N L (Pr By BN (B 0 o
Pus = ou?’ ou?’ ou? » Puw = Oudv’ Oudv’ Oudv » Pov = ov?’ w2’ o2 )

From (3.3), A is a 2 x 2 matrix, which can be rewritten as

A= Q11 A12 7
Q21 Q22
and then its eigenvalues can be computed by

11 — A ai 2
21 22 — A

P(\) = det(A — ) =

‘ = A — tr(A)\ 4 det(A), (3.8)

where

tI‘(A) =ai,1 + a2 2

3.9
det(A) =a1 a2 — 1202, (39)

are respectively the trace and the determinant of the matrix A. The solutions to P(\) =0
are

\ = tr(A) + \/tl”(;l)Q — 4det(A) _ tr(QA) + \/<@) — det(A) (310)

Denoting K = det(A) and H = 3tr(A), k; and ks are defined as

ki ks = H+ /(H? - K) (3.11)
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where H and K are named the mean curvature and the Gaussian curvature, respectively.
From (3.3) we obtain

K =det(A) = % .
3.12
1 eG —2fF + gF
H=3wd) = me )
Using (3.1) and (3.11) we obtain:
Pow(z,y) = (n—1) - H(z,y) (3.13)
Ast(z,y) = =2 (n—1) - VH(z,y)? — K(z,y) . (3.14)

Thus, we have a method for calculating the power and astigmatism at each point on
the lens.

3.4 The inverse problem

In the previous section we showed that given a surface described in Cartesian coordinates,
the values for power and astigmatism can be computed for the entire surface.

The inverse problem [41] (that is, reconstructing the entire surface from some given
values for power and astigmatism) is not trivial, and a solution cannot be guaranteed.
That is, given a distribution of power and astigmatism, in most cases there is no surface
that fits them and, even if there were, it would not be easy to calculate. Indeed, the
goal of this research work is to solve this inverse problem formulated as an optimization
problem. To guarantee the feasibility of the optimization problem, values of power and
astigmatism are not given for the entire surface, but only for some regions. In particular,
the values for target power are given for the far and near regions and a threshold for
astigmatism is given in most regions of the lens. This optimization model will be fully
detailed in Chapter 4. 4.5 (page 27).

Note that this inverse problem is not often explained for reasons of confidentiality
within private companies. Among the few available references we find [27, page 248].

3.5 Modeling the progressive lenses surface using B-
splines

In order to calculate the power and the astigmatism, we need to calculate the partial
derivatives of the surface. Using B-splines basis allows us to calculate partial derivatives
analytically. For this reason, we will define the surface of the lens as a cubic B-spline.
Later, in Section 5.6 (page 91) we will see that B-splines of degrees 4, 5 and 6 do not offer
any benefit.

In this section we have assumed that we have a Cartesian coordinate model, but the
B-spline basis can be similarly used with spherical coordinates.

In Cartesian coordinates, the expression (3.2) (page 12) is expressed as:

R? — R3

(uvv) — ?(U, U) = (ZE(U,’U), y(u,v), Z(uﬂ))) — (u, v, Z(u,v)) (315)
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that came from the definition of a surface as the function:
2:R?—R
(z,y) = 2(z,y).

We have assumed a square lens surface with each side of 2 - r length. We have also
assumed the following parameters:

(3.16)

(wi,y;) € [—r,r] x [=r,r],(1,7) € G={1,...,n} x{1,...,n} (3.17)

, is a grid of points (in mm) used to define the lens in Cartesian coordinates, where
n denotes the number of points for each dimension of the grid. The grid is defined
such that (2140, y140) = (0,0).

(i, yy) € [=rr] x [=rr], (7,5) € G ={1,...,0} x{1,...,0}, (3.18)

is another grid of points (mm), with G’ much coarser than G (i.e., 0 < n), where
o is the number of points used in the definition of a B-spline whose coefficients are
the variables of the optimization model (see equations 3.19 and 3.20). Usually the
(2}, ys) are called knots.

The variables of the optimization problem are the coefficients of a third-degree B-spline
surface, as defined in [44, page 100]. These coefficients are denoted as

R > c(ah,yy) >0, (i,7)€q. (3.19)
Using the B-spline we define the z of the surface for the grid G as
(i, y;) Z Z VoY) B () B (), (i.4) €, (3.20)
i'=1j'=1

where Bj(z;) and B} (y;), (i,5) € G,(,j') € G', are the 1-dimensional third-degree B-
splines basis defined in [44, page 100].

The optimization problem has only o0? variables, but the surface can be evaluated in
n? points (where o < n). Indeed, this is the second reason for using a B-spline in the
model. The first reason is to provide a way of calculating its partial derivatives.

Properties of the cubic B-splines:

e Nonnegativity (a lens surface is always positive)
e Convex hull property
e Smoothness

e 2(i,7) is a C? class function
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3.6 Detailing the definition of the B-splines

In this section the basis of third-degree B-splines is explained in depth. The surface is
modeled using the expression (3.18), (3.19) and (3.20) (page 15). The parameters used
for the grid of knots defined at (3.18) are:

=y, =-724+4-i, i=1,..,0, 0=235 (3.21)

i.e., from -68 mm to 68 mm each 4 mm step. Note that this grid will be used later to
calculate square lens surfaces. The progressive lenses calculated will be square surfaces
[—b54mm, 54mm] x [—54mm, 54mm]. Points from 54 mm to 68 mm are used to force the
border to be smooth.

The Bj(x;) and Bj(y;) are the third-degree polynomials constructed piecewise, as
a product of second-degree polynomials, that are defined using first-degree polynomials.
Similarly first-degree piecewise functions are defined using zero-degree piecewise functions.

The B°, B!, B? and B3, that is to say the zero-degree, first-degree, two-degree and
third-degree B-spline 1-dimensional basis are defined as:

1 Zf ZL’Q/_ S l‘z S ZL‘;/
By (x;) = { 0 else T () (3.22)
Loif vy < (y) <yp
0(y.) = =1 =\ = Jj
Bji (i) { 0 else (3.23)
r; — [
Bl (x;) = —=L . B9(x, v L RBY 3.24
I3 <$ ) ﬂfg, o .Z';/ . 7 (I ) + xéq_l xi/ i/ +1( ) ( )
Yi — Yy Y —
7 J yj y;”—l 7 J y3/+1 yj +1
x; — T x!, T;
Bzz’ (xl) / : 71 Bl (l’,) /Z = ;o le’Jrl(Il) (326)
i1 L ir42 — Ly
Yi — Yy, Yirgo = Yj
B (y;) = —L— - Bji(y;) + - =~ By (y))- (3.27)
yj +1 y]’*l y] +2 y]’
T — T @ x;
Bf’(xl) / _le BE/(:L'@)—F / L ’ 'BzQJrl( ) (328)
Liryog = Ly g ir+3 Ly
Yi — y/‘/_1 3/1_,_3 —Yj
Bj(y;) = - Bi(y;) + 57— Bi1(y))- (3.29)
yj/+2 yj/_l yj’+3 y]’

Over the next pages, z, with i = 10,11, 12 will be used. We may note that, according
0 (3.28), to calculate B3, (using ¢ = 10), not only 2/, will be used but also other points
of the grid of knots such as x, _,, zj,, 7, , and z,_.

Some points are calculated as an example:

— 724 (4-9) = —36 mm
Ty = -T2+ (4-10) = =32 mm
= —=T2+(4-11) = =28 mm
Ty = =72+ (4-12) = =24 mm

T3 = —T2+ (4-13) = =20 mm.
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In Figures 3.2, 3.3, 3.4 and 3.5 the BY(x;), B}(x;), B(x;) and B3 (z;) B-splines functions
are shown for ¢/ = 10,11,12, and 2}, = —28 mm, 2}, = —24 mm, 2|3 = —20 mm. We
remark that BY(z;) is 1 in one interval and 0 in the others.

0w 02 04 08 08 10
L L L L L L

T T T T T T T T T
50 0 50 50 0 50 50 0 50
x(mm) x(mm) X (mm)

Figure 3.2: BY for ¢/ = 10,11, 12, 2}, = —32 mm, z}; = —28 mm, 2}, = —24 mm.

i=10 i=11 i=12

00 02 04 0B 08 10
L L L L L L

T T T T T T T T T
50 0 50 50 0 50 50 0 50
x(mm) x(mm) X (mm)

Figure 3.3: B} for ¢/ = 10,11, 12, 2}, = —32 mm, z}; = —28 mm, 2}, = —24 mm.

i=10 i=11 i=12

x(mm) x(mm) X (mm)

Figure 3.4: B2 for i' = 10,11,12, 2}, = —32 mm, 2}, = —28 mm, z}, = —24 mm.

3.7 Calculating the derivatives of the B-splines

In order to calculate the power and the astigmatism as defined in equation (3.1) and using
(3.2) - (3.12) we need to calculate the second order partial derivatives of z(z;, y;) as can be
seen in (3.4). In addition, (in the next section) we will seek to minimize the astigmatism
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x(mm) x(mm) x(mm)

Figure 3.5: B3 for i’ = 10,11,12, 2}, = —32 mm, 2}, = —28 mm, z}, = —24 mm.

gradient and the power gradient. Consequently, we will need to calculate the third order
partial derivatives of z(z;, y;).

The definition of z(z;, y;) depends on Bj(x;), which is a recursive formula: the calcula-
tions of Bj(x;) depends on the calculations of B%(x;), the calculations of BZ(z;) depends
on the calculations of B, (z;), which depends on the calculations of B} (z;). Consequently
we must calculate the first derivative of B} (z;), B2 (z;) and Bj(x;), the second derivative
of B%(x;) and Bj(x;) and the third derivative of B3(z;), for i = 1,...,n. The same applies
to the other dimension vy, ..., y,.

Here are the calculations for these derivatives. The first derivative of B}, is a direct
calculation:

OB} 1 1 0

5 (0= BY(z;) — . B, (x;). (3.30)
0B, 1 1
J 0 0
ay ( J) y;/ _ y;‘/,1 J ( J) y9/+1 . y;/ J +1( J) ( )

The other derivatives require some (not very extensive) calculations. The other first
derivatives are:

0B 2 2
(1) = ———— B}, i - B} i) 3.32
ax ("E ) ‘(L’;'I_;'_l - mgl_l % (l’ ) $2/+2 — 7, % +1($ ) ( )
0B? 2 2
J 1 1
ay ( J y;/_H . 3/3/_1 J J) y;/+2 _ y;/ J +1( J) )
0B3 3 3
“(z;)) = ———Bj(v;) - ——— - Bj i) 3.34
ax (‘T ) -1'2/_;'_2 o (E;'/_l % (.’L' ) 3:;/_;'_3 - .fl?;/ % +1(£B ) ( )
OB3 3 3
J 2 2
ay ( J y9/+2 . y;”—l 7 ( J) y;/+3 . y;/ i +1( ]) )
The second derivatives are:
0B 2 OB} 2 OB},
V) = LI ) L (), 3.36
8:62 (x ) x;/_i_l - fE;/_l a.T (J; ) 3:2/_;'_2 - -7;2/ G.T (:L‘ ) ( )
82B‘72/ 2 . aB;/ 2 . 8BJ1/+1

(¥;)- (3.37)

(y;) =

(y5) —
Oy? Vi =Yy Oy 7 Y=y, Oy
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0B 3 oB? 3 0B .,
x;) = . Cx;) — . v i) 3.38
8562 ( ) :L';/+2 - :L';/_l ax <x ) :C;/+3 - Q?;/ al' (x ) ( )
2 3 2 2
0 B (yj) - ’ 7 ’ aBj/ (yj) - & ;o aBJ s (yj)' (339)
ay yj/+2 - yj/—l ay yj/+3 - y]’ 8y
And the third derivatives are:
>*B3 3 0*B? 3 9*B3.
C(x;) = . C(x;) — . L i) 3.40
ox3 (w:) Ty g — Ty  Ox? (z:) Ty g — Ty Ox? (w:) ( )
& B?, 3 9°B, 3 0*B?
() (3.41)

—(y;) = = (y5) —
ay ! y;/+2 - y;/_l ay J y;/+3 - y;/ 8y2

0 2
We may observe that some derivatives as, such as, aan (x;), 88By' (v:), aaf (x;), 88y (vi),

93 2/ o3 2/ . .
WB;(xi) and WBl(yi) as well as the cross derivatives, are zero. The cross derivatives are,
oBY, 02B%
for example: —(z;) and 55> ~(y;)
The first, second and third order derivatives appear in Figures 3.6, 3.7, 3.8 for ¢ = 11.
Recall that x}; = —28 mm.

Derivative i=11 Derivative i=11 Derivative i=11

(mm)

03 02 01 00 01 02 03

1 2 3
Figure 3.6: First derivatives a;? (i), %(xi) and %(xi) for i = 11 (2}, = —28 mm).

Second derivative i=11 Second derivative i=11

«
Second derivative @
01 00
L L

2 B2

2 p3
Figure 3.7: Second derivatives %(wi) and %(:pi) for i =11 (21, = —28 mm).

The third-degree B-spline basis functions are two times continuously differentiable and
three times differentiable (the third derivative is not continuous, and the fourth derivative
is zero). This means that the surface defined in (3.20) allows us to compute its first, second
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Third derivative i=1

x(mm)

3 33
Figure 3.8: Third derivatives %(az‘i) for i = 11 (2}, = —28 mm).

and third derivatives. The first and second derivatives are needed to calculate the power
and the astigmatism, for all the n? points of the grid G. The power and astigmatism are
thus continuous, although they are only evaluated in a grid of n? points. The third degree
of differentiability allows us to compute the gradients of the astigmatism and power, which
will be needed later in the calculation of the objective function (4.26) (page 28).

The next chapter will present the detailed calculations of power and astigmatism in
Cartesian coordinates and also some computational results using Cartesian coordinates.
The definition of the surface in Cartesian coordinates (and also in spherical coordinates)
uses the third-degree B-spline basis defined in this chapter.



Chapter 4

Cartesian coordinates

4.1 Computing power and astigmatism using Carte-
sian coordinates

From (3.2) (page 12), considering z(u, v) = u, y(u,v) = v and using Cartesian coordinates,

the surface of a lens can be defined as a function
2:R?—R
(4.1)
(z,y) = 2(z,y).

The main advantage of using Cartesian coordinates is that the expressions 175, E,), p_UZ ,

p_ul and p_mi are simplified. The first-order partial derivatives at a given point in Cartesian

u ) 9 9 v Y 9 9 .

while the second-order partial derivatives are given by

y 0?z(x,y) y 0?z(x,y) y 0*2(z,y)
puu (07 07 8372 ) ) puv (0’ O’ axay ) ) p'UU (O’ 07 8y2 ) ( 3)

The normal vector to the surface is then

Replacing (4.2) (4.3) (4.4) in the fundamental form (3.4) (page 13) we get:

a2z
e — 922 E=1 + 0z 0z
\/l+(%)2+(%)2 Oz Oz
f_ giz F = 0z 0z
V() (5)° "
z y
g i G=1+22

From (3.12) (page 14), we can express the mean curvature as:

21
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Pr (14 (&) —2. L2 02,02 4 02 (g (02y2)
oz2 Oy or Oy Oy? oz .
; 3 = 5(1{;1 + ko) (4.5)

and the Gaussian curvature as:

H(x,y) =

O =k ky. (4.6)

2, z 2, 2 P 2, »
P (14 (g)?) -2 22224 22 (14 (Z))

Pow(z,y) = (n—1) -

and

(4.8)
And then
Ast(z,y) = —2- \/[Pow(x,y)]z —(n—=1)% K(z,y) =
wla 2 (4.9)
—2-(u—1)- %] — K(z,y) .

We have thus calculated the power and astigmatism using Cartesian coordinates.

4.2 Simplifying the expressions of the astigmatism

The expression of Ast(z,y) in (4.8) can be simplified by making two transformations.
The first arrangement uses Ast(z,y)? instead of Ast(z,y) in order to eliminate the square
root. We will see later in Section 4.5 in equations (4.26) and (4.29) (page 29) that the
expression of Ast(z,y) is only used in our model squared. The new expression is therefore:

Ast(,y)® =4+ (u — 1)
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The second arrangement is to consider the greatest common divisor (ged) in order to
have a division between polynomials. The expression (4.10) can be simplified as:

Ast(r,y)? = 4- (u— 17 Awrley) (111)
(e () (3))
where:
0%z 0z 2 0%z 0z 0z 0%z 02 2\ 2
Aua(e,y) =52 (04 (5)) =2 50 a0 gy Tae (0 (E))) -
(4.12)

Dz 0z 0% Dz\2 0z
4. . — 1+ (= udd
(81:2 Iy (3xy)) (1+(5) +(8y))
We thus have a new expression of Ast(x,y)>.

4.3 Example: a sphere

Let us consider a thin lens (without center thickness) whose surface is part of a sphere
of radius R. We will calculate the power and the astigmatism of the sphere using the
preceding formulas.

The parametrization in Cartesian coordinates is:

2:R?—R

(4.13)
(,y) = 2(z,y) = =V R — 2> =y
The previous formulation corresponds to a sphere of radius R centered at (0, 0, 0). As
we consider the negative root, we take into account the inferior part of the sphere shown
in blue in Figure 4.1.

Figure 4.1: Sphere of radius R, centered at (0, 0, 0). In blue, the inferior part of the
sphere modeled in (4.13).

In order to calculate the astigmatism and the power, we need to calculate the first and
second derivatives of (4.13):
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0z(z, y) x
o JR?— 22— 2
4.14
0x(z, y) _ y 414
oy R2 — 42 — yz’
82Z($, y) _ R2 B y2
o2 - (RQ — 2 — y2)3/2
0*z(x, y) z-y
Oy - (R2 — 22 — y2)3/2 (4.15)
Pz(z, y) R? — 22
3y2 _(R2 — 2 _ y2>3/2‘

Using the expressions (4.7) and (4.8) and also (4.14) and (4.15) and doing large cal-
culations we finally obtain:

—1
Pow(zx, y) :'MT Y(z,y) where 2 — y* < R?

Ast(z, y) =0.0 V(z,y) where 22 — y* < R?.

(4.16)

This means that a sphere of radius R has zero astigmatism and constant power “T?I
for the entire surface. For example, if we want to create a sphere of power 5 D using a 1.6

refractive index, we will need a radius of (u—1)/5 D = (1.6—1)/5 D = 0.12m = 120 mm.

4.4 Nonconvexity in Cartesian coordinates

The expressions of power and astigmatism expressed in Cartesian coordinates are clearly
nonlinear and, when used in the formulation of the constraints of an optimization problem,
give rise to a nonconvex set of solutions and a nonconvex feasible region (this was also
noted in [33]). To illustrate this fact, let us first consider the following Examples 1 and 2
which correspond to a lens with Pr = Py (i.e., with the same power in the far and near
regions).

Example 1. Given the function (defined on a grid of points in R?)

z2:GCR?> — R
(xz7yz) — Z(xzayz) izlv"'7n7

we find the surface z(x,y) solution to the following problem:

{nin) 1
Z\Ti,Yi
subject to Ast(x;, y;) =0 Y(zi,y:) € G
Pow(x;,y;) = V(xi,y) € G
2(0,0) = &1 (4.17)
9z(z,y) -0
Oz z=0,y=0
0z(z,y) -0
9y z=0,y=0 ’
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where Pow(z;,y;) and Ast(x;,y;) are defined in (4.7) and (4.8), P = 5D, u = 1.6,
and the points (x;,y;) satisfy —45mm < x;, y; §A45mm.
The solution to (4.17) is a sphere of radius R centered at point (0,0,0), such that
s u—1_ 16—1
=" =701

2(xi, Yi) = —\/32 — :UZQ — yiz . (4.18)

Being more precise, the solution to (4.17) is a spherical cap of the previously defined
sphere such that —45mm < x;,y; < 45mm. This sphere is represented in Figure 4.2 and
the spherical cap is shown in Figure 4.3.

=0.120 m = 120.0 mm

i.e.

150

14

o
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z )
=)

w047

aon4

50 A
150

150 200

¥ (mm)
¥ {mm)

Figure 4.2: In gray color a sphere of radius 120 mm, centered at (0, 0, 0). In red
color, the solution of problem 1, that is the inferior part of the previous sphere where
—45 mm < z;, y; < 45 mm.

B e 7 e

ey

50

-50 -50

Figure 4.3: Solution of problem 1: the inferior part of a sphere of radius 120 mm, centered
at (0, 0, 0) where —45 mm < xz;, y; < 45 mm.

We remark that the constraint:
w—1 A 1.6 -1
0,0))=——=—-R=

fixes that the sphere goes throw the point (0, 0, —I%) In addition, the constraints:

= 0.120 m = 120.0 mm (4.19)

Oz(z, y) 0.0
al’ =0, y=0
(4.20)
0z(z, y) 0.0
8?} =0, y=0
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indicate that the normal of the surface (lens) at point (z = 0, y = 0) must be perpen-
dicular to the axis z. We have added these three constraints in order to obtain a single
solution (i.e. to fix the surface being located and orientated in a single way in the space).

Example 2. Given the function (defined on a grid of points in R?)

z2:GCR?> — R
(i, y:) — z(xi, ;) 1=1,...,n,

we find the surface z(x,y) solution to the following problem:

min 1
z(4,y:)
subject to Ast(z;,y;) =0 V(ziy) € G
P —¢e< Pow(z;,y;) < P+e V(ziy) € G
2(0,0) X (4.21)
0z(z,y) -0
Ox x=0,y=0
0z(z,y) -0
% z=0,y=0 ’

where Pow(x;,y;) and Ast(x;,y;) are defined in (4.7) and (4.8), P = 5D, ¢ = 0.12D,
= 1.6, and the points (x;,y;) satisfy —45mm < x;,y; < 4bmm.

The solution to (4.21) is a set of spheres of radius R centered at point (0,0,0), such
that R, < R < R4z where

Rypin = (u—1)/(P+¢) = (1.6 —1)/(5 + 0.12) = 0.11719m = 117.19mm
Rae = (n—1)/(P =€) = (1.6 — 1) /(5 — 0.12) = 0.12295m = 122.95mm.

Considering two different solutions of (4.21)

Solution 1 : 2! (zy,y;) = \/Rmm —x? —y?
(4.22)

Solution 2 : 2%(x;, y;) = \/Rmax —a? —y2,

we observe that
az (x5, ;) + b2% (g, y3) # — R —a? —y? VR, € R,wherea+b=1. (4.23)

Therefore the solution set (and thus also the feasible region) of (4.21) (in Cartesian
coordinates) is not a convex set.

It is worth noting that if the model had been reformulated in terms of 2% instead
of z, the solution set in the example above would become convex. However (as seen in
expressions (4.1), (4.5), (4.6), (4.7), (4.8) and (4.9)), in order to calculate the power and
the astigmatism, we need the first and second derivatives of z (not 2?) with respect to x
and with respect to y. Therefore, although reformulating the model in variables z? might
improve the convexity properties, it would make it impractical to compute the power and
astigmatism. In addition, it may force us to add some square root, creating discontinuities
around zero.

However, with another parametrization (in particular, using spherical coordinates) the
feasible region of that problem becomes convex. This new parametrization is shown in
the next Chapter.
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Although the space of solutions in Cartesian coordinates is not a convex set, some
progressive lenses are calculated using Cartesian coordinates. In practice, we will see that
when calculating progressive lenses from scratch it is faster to use Cartesian coordinates
than spherical coordinates because, although the convexity is worse, the calcutations are
simpler. In Section 4.6 (page 29) several progressive lenses are calculated using Cartesian
coordinates. Firstly, the optimization model is detailed in the next section.

4.5 The optimization model

The goal of the optimization problem is to obtain a square surface with certain optical
properties. These optical properties are astigmatism and power, as defined in the previous
sections. Predefined values of power and maximum values of astigmatism will be imposed
on certain regions of the surface. In addition, the surface must be as smooth as possible,
and have minimum astigmatism. These last two conditions will be controlled by the
objective function.

The parameters, variables and objective function of the model using Cartesian coor-
dinates are very similar to those in spherical coordinates model. Below, we will present
the model in Cartesian coordinates. Details of the spherical coordinates model will be
explained in Section 5.4 of Chapter 5 (pag. 75).

Parameters of the model

The main parameters for defining the model are:

o (z;,y;) € [-rr|x[—rr], (i,j) € G={1,...,n}x{1,...,n}, is a grid of points used
for defining the lens in Cartesian coordinates, where n denotes the number of points
for each dimension of the grid. The grid is defined such that (z Lgn, y1+n) (0,0).
The grid G is partitioned into three subsets: G = F UN U B. F and NV are the
set of points in the far and near regions of the lens, respectively, where some values
of power will be imposed; B is the set of the remaining points, corresponding to
regions of the lens whose power will not be constrained.

o (vy,yy) € [=r,r] x [=rr], (i',5)) € G" = {1,...,0} x {1,...,0} is another grid
of points (mm), with being G’ much coarser than G (i.e., 0 < n), where o is the
number of points used in defining of a B-spline whose coefficients are the variables
of the optimization model (see next Section).

e Pr and Py are the requested powers (in diopters) in the far and near regions of the
lens, respectively (Py > Pr).

e 1 € [1.5,1.9] is the refractive index of the lens material

e The subset F of the grid’s far region points is partitioned into k additional far
subregions F = F;U---UFy. For each of these k subregions we consider a tolerance
€n, h = 1,... k, for the soft constraints for the power (in diopters). The total
number of far region constraints is then 22:1 | Fh)-

e Similarly to the far region, the set of points A of the near region is partitioned into
[ near subregions N' = Nj U ---UN;. For each of these | subregions we consider a
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tolerance &y, h = 1,..., 1, for the soft constraints for the power (in diopters). The
total number of near region constraints is Y, _, |NVj|-

e The grid G of points is also partitioned into different m subregions of astigmatism,
that is, G = A; U---UA,,. An upper bound on §;,, h = 1,...,m will be imposed
to the astigmatism (diopters) of points in each subregion. The total number of
astigmatism constraints is y ;- | |Axl.

e Finally, wy, wy, w3 € [0,1] C R are weights of the different parts of the objective
function (defined below in (4.26)).

Variables of the model

The variables of the optimization problem are the coefficients of a three-degree B-spline
surface, as defined in [44, page 100]. These coefficients are denoted as

R > c(h,y) >0, (7,5)€d. (4.24)

Using the B-spline we define the vertical component of the surface for the grid G as

ZBuy] Z Z c(;] ’vyj )B]s’(yj)> (Zvj) S gv (425)

i'=1j5'=1

where Bji(z;) and Bj(y;), (i,5) € G,(i,j') € G', are the 1-dimensional three-degree B-
splines basis defined in [44, page 100], and detailed in (3.28) and (3.29) using (3.22)-(3.27).
Calculations of the derivatives of the B-splines needed to compute the power and the
astigmatism are detailed in (3.30)—(3.41).

In Chapter 3, sections 3.5, 3.6 and 3.7 the B-splines are described in more detail
calculating its derivatives, explaining its properties and plotting some of them.

Objective function

The objective function (4.26) consists of minimizing the sum of the squared astigmatism
and the squared norm of the gradients of power and astigmatism, for all the points on
the grid G. These factors are weighted by wy, ws, w3 € [0, 1]. The objective function is:

1 2
min Z ﬁ<w1 (ASt(l'i,]./j)) +

w2(<aA8t LS )2 + (aASt x“%)) )+ (4.26)
)

ws((@Pow(xz,yJ > <6’Pow xl,yj ))

where n is the number of points in each dimension of the grid.
Note that the astigmatism and also its derivatives are squared to avoid discontinuities
around zero (the derivatives of the astigmatism may have divisions by zero if not squared).
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Constraints

The objective function is minimized subject to the following three groups of constraints:

PF—GhSPOZU(l'i,yj)SPF—FEh (i,j)e./—"h, hzl,...,k, (427)
Py — 6 < Pow(xi,y;) < Py + 6 (i,5) €Ny h=1,...,1, (4.28)
Ast(zi,y;)* < By (i,5) € Ap, h=1,...,m. (4.29)

These constraints define the philosophy of the design of the progressive lens. Constraints
(4.27) and (4.28) control the power in the different far and near subregions of the lens,
while constraints (4.29) fix a maximum of astigmatism in certain regions of the lens.
Constraints (4.29) are squared to avoid the square root in the definition of the astigmatism
(4.8), thus making the model simpler and avoiding discontinuities near (6;, ;) when
Ast(0;, ;) = 0 (see Section 4.2, pag. 22).

The quality and characteristics of the progressive lens are governed by the values of
the parameters €, 0, and 3, and the sets Fj,, N, and A;,. In terms of optics, setting the
proper values of these parameters is the most difficult part.

A second set of three constraints imposes conditions on the midpoint of the grid (0, 0)
(and on the lens surface):

2(0,0) = F
0z(z4,yi) =0

02| 4,=0,9:=0 (4.30)
0z(xi,yi) —0.

9 z;=0,y;=0

The purpose of these three constraints is to center the lens within the three dimensional
space: the first one imposes a certain radius, while the other two guarantee that it is
perpendicular to the normal of the surface. These are the only equality constraints on
the model.

Constraints (4.27), (4.28) and (4.29) refer to the properties of the lens (power and
astigmatism). On the other hand, constraints (4.30)refer to the shape of the lens.

Finally, the optimization problem to be solved is the minimization of (4.26), subject
to constraints (4.27), (4.28), (4.29), (4.30) and (4.25) using variables (4.24).

The solution

Once the optimization problem has been solved, we obtain the optimal coefficients of the
B-spline surface c(zj,yj) > 0,(¢',j') € G'. Using (4.25) we obtain z(z;,y;), (4,7) € G.
The obtained points (xj, yij, zi;) € R, (i,7) € G, where (x5, y;;) define a square surface
in R? are sent to the free-form generator to physically cut the lens.

4.6 Numerical results

4.6.1 Problem instances

We generated a set of 12 families of problem instances, denoted as F1, F2,... . F12. Each
family of problems have 6 different types denoted as T1, T2,..., T6. This produces a total
number of problem instances of 72 (12 families - 6 types = 72). Some parameters that
are common for all 72 problem instances are:



Chapter 4. Cartesian coordinates 30

Pr = 5D (power in the far region).

Py =7D (power in the near region).

p = 1.6 (refractive index of the lens material).

n = 59 (n? is the number of points in grid G).

o = 35 (0? is the number of points in grid G’, the grid used to define the B-splines).
Remember that the B-splines can be evaluated at any point, not only for the list of
o? points. In particular, for each problem we have n? = 59?2 = 3481 points where
the B-splines can be evaluated.

(xi,y;), (4,7) € G (the particular points used in grid G).
o (73,y5),(i',j') € G' (the particular points used in grid G').
Note that:

— the subset F of far region points and its partition in k far subregions F = FiU---U
Jrka

— the subset N of near region points and its partition in [ near subregions N =

/\/’1 U---uU ./\/2’
— and the partition of m subregions of astigmatism G = A, U---UA,,

are different for each family.

The grid of points G’ is a regular grid computed by the formula z/, = 3!, = —72+44, i =
1,...,0i.e., from -68 mm to 68 mm each 4 mm step. Note that only from -54 mm to 54 mm
is used.

Among the parameters that differ for each problem we find ¢, h = 1,...,k, d, h =
,....0,and B, h=1,...,m

Each family of problems differs from every other family of problems because each one
has a different objective function and/or a different shape for the regions (far subregions,
near subregions and subregions of astigmatism).

Each problem of one family differs from every other problem of the same family and
different type because the near region is located in a different position, having three
different horizontal positions and two different vertical positions. The position of the
center of the near region is described in Table 4.1 for each type of problem.

Type x ¥y
Tl 1.0 -125
T2 25 -125
T3 4.0 -12.5
T4 1.0 -14.0
T5 2.5 -14.0
T6 4.0 -14.0

Table 4.1: Horizontal and vertical coordinates in mm for the center of the near region for
each type of problem.
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4.6.2 Example of zones for a particular family

The type T2 of family F1 is considered to represent the different subregions of the far
region points, near regions points and astigmatism regions points. For this problem we
have k = 2 far regions, [ = 2 near regions, and m = 9 astigmatism regions. Type T2 has
the center of the near zone in the position (z = 2.5 mm,y = —12.5 mm) (as described
previously in Table 4.1).

The regions corresponding, respectively, to far, near and astigmatism (defined by sets
F1, Fo, Ni, Ny, and Ay, ..., Ag) are shown in Figures 4.4, 4.5 and 4.6, and are illustrated
using different colors for each subregion.

In Figure 4.6 the near and far astigmatism regions are concentric; this fact, together
with the values of d; and the objective function, guarantee that the change in astigmatism
will be gradual, thus obtaining a smoother lens. This same behavior also applies to the
far and near regions in Figures 4.4 and 4.5. In Figure 4.6 we may also observe that some
astigmatism regions correspond to the part of the lens named corridor, which connects
the far and near regions.

Figure 4.4: The two far regions of problem F1 and type T2, each shown in a different
color.

Figure 4.5: The two near regions of problem F1 and type T2, each shown in a different
color.
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Figure 4.6: The nine astigmatism regions of problem F1 and type T2, each shown in a
different color.

The tolerances €, €3, of far region constraints (4.27) are, respectively, 0.11 and 0.16.
For near region constraints (4.28), tolerances d1,d, are 0.01 and 0.06. Finally, the 9
tolerances fp,, h = 1,...,9 for astigmatism constraints (4.29) are 0.10, 0.11, 0.14 and 0.25
(for the far astigmatism zones); 0.09, 0.12 and 0.25 (for the near astigmatism zones);
0.12 for the corridor astigmatism zone, and 2.5 for the global zone (yellow color). These
tolerances are expressed in diopters (D). For this family, the 9 astigmatism subregions
are partitioned into four far astigmatism subregions, three near astigmatism subregions,
one corridor astigmatism subregion and one global region (with the rest of points). In all
families, there is always a global zone of astigmatism with the rest of points of the lens. In
this way, all the points have exactly one constraint of astigmatism (see constraint (4.29),
page 29).

Note that this family has a lot of subregions for astigmatism and only two subregions
for far regions and near regions of power. For the other problem instances of family F1
and other types (T1, T3, T4, T5 and T6), the distribution of regions is similar except
that the near zone is shifted horizontally and vertically according to Table 4.1. The other
zones for the other families are not described in detail. The number of zones of the other
families can be different (i.e. different parameters k, [ and m), different shapes of the
zones having bigger or smaller regions with different tolerances.

4.6.3 Number of constraints and variables

Once the shape of the regions have been detailed in previous section using an example, we
can easily describe and comprehend the number of constraints. The number of constraints
is the addition of:

e the sum of the number of points of sets F;,, h = 1,...,k, that are the points in the
far regions, usually much smaller than n?. See constraints (4.27), page 29.

e the sum of the number of points of sets A}, h =1,..., h, that are the points in the
near regions, usually much smaller than n?. See constraints (4.28), page 29.

e the sum of the number of points of sets Ay, h =1,...,[, that are the points in the
astigmatism regions. In our problem instances there are exactly n? points in the
astigmatism region. See constraints (4.29), page 29, and the example in Figure 4.6.

e 3 constraints. See constraints (4.30) (page 29).
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Family/Type T1 T2 T3 T4 T5 T6

F1 7811 7815 7811 7792 7792 7792
F2 7878 7878 7878 T78G4 7865 7864
F3 7811 7815 7811 7792 7792 T792
F4 7878 7878 7878 T78G4 7865 7864
F5 6289 6293 6289 6270 6270 6270
F6 6289 6293 6289 6270 6270 6270
F7 6289 6293 6289 6270 6270 6270
F'8 6289 6293 6289 6270 6270 6270
F9 7878 7878 7878 7864 7865 7864
F10 7878 7878 7878 7864 7865 7864
F11 7878 7878 7878 7864 7865 7864
F12 6289 6293 6289 6270 6270 6270

Table 4.2: Number of constraints for each problem instance, i.e., for each familiy and
type. The number of variables is always 961.

Table 4.2 reports the number of constraints for all families and types. For a fixed
family (for example F1) the number of constraints is very similar for all the types (for
example for F1 the number of constraints varies from 7811 to 7792). The reason for this
is that, once fixed a family, one type differs from another type because the near region
has been shifted (horizontally and/or vertically), but the shape of the regions remains the
same. When shifting the near regions to the bottom (for example from T1, T2 and T3
to T4, T5 and T6, respectively), the number of constraints decreases, because the near
regions goes from a certain point to the bottom of the square grid (so the regions are a
lightly smaller for T4, T5 and T6 than for T1, T2 and T3, respectively). When shifting
the near regions horizontally, the number of constraints vary very little (between 0 and 4
constraints), only due to the fact that there are rounded areas in a discrete grid of points.

The number of variables is always the same 0®> = 31?2 = 961, which is the number of
points in the grid G'.

In general, we have between 6000 to 8000 (nonlinear) constraints, and most of these
are inequalities. There are only three equality constraints defined in (4.30) (page 29).

We may note that there are n? = 592 = 3481 points where power and astigmatism can
be evaluated. Constraints (4.27) refer to the power values in the points of the far sub-
regions; constraints (4.28) refer to the power values in the points of the near subregions;
and finally constraints (4.29) refer to the astigmatism values in the points of the astigma-
tism subregions. In our instances, the number of points of the astigmatism subregions is
always n?, as illustrated in Figure 4.6. However, the number of points in the far and near
regions is much smaller than n?. That means that the power constraints do not apply
to the whole lens surface (see Figures 4.4 and 4.5). Consequently, there are always fewer
than 3-n2 + 3 = 3 - 3481 4+ 3 = 10446 constraints, as illustrated in Table 4.2.

Objective function

The objective function (4.26) (page 28) was used for all the 15 families, with the different
weights wy, wq, and ws:

o w; = 1,wy = 0,ws =0, for families of problems F1 to F4.
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e wi; = 1,wy = p, w3 = 0, for families of problems F5 to F8.
e w; =0,wy; = 0,w3 =1, for families of problems F9 to F11.
e wi = 1,wy = 0,w3 = 1, for families of problems F12.

For families of problems from F5 to F8, we added a parameter p whose values are
between 2500 and 10000 in order to balance the minimization of the square of the astig-
matism and the minimization of the gradients of power astigmatism.

The units of the objective function are D? for families F1 to F4; D?+ -2 " for families

mm?
F5 to F8 and F12; and mDriﬂ for families F9 to F11.

4.6.4 Computational environment and stopping criteria

The optimization model was implemented using the AMPL modeling language [5] linked
with three different interior points solvers: LOQO [8], KNITRO [3] and IPOPT [11].
Due to licensing agreements (with AMPL, LOQO and KNITRO, which are commercial
products), two different servers were used. The first one has eight 2.7GHz AMD Opteron
8384 Shanghay CPUs, with 32 cores and 128GB RAM. The AMPL modeling language,
the LOQO 6.0.6 solver and the IPOPT 3.8.1 solver were installed on this computer. The
second machine was a Fujitsu Primergy RX300, with two 3.33 GHz Intel Xeon X5680
CPUs, with 24 cores and 144GB RAM. The modeling language AMPL, and the solvers
KNITRO 10.1.0, IPOPT 3.9.3 and TPOPT 3.12.8 were installed on this second server.
Both servers will be referred to as “server 1”7 and “server 2” in the following sections.

From this point forward, we will consider six different combinations of solvers and
servers:

e LOQO 6.0.6, server 1.
IPOPT 3.8.1, server 1.

IPOPT 3.9.3, server 2.

IPOPT 3.12.8, server 2.

KNITRO 10.1.0 with interior point / direct algorithm (algorithm 1), server 2.

KNITRO 10.1.0 with interior point / conjugate gradient algorithm (algorithm 2),
server 2.

The two variants of KNITRO differ in how Newton’s equation is solved at each iteration
of the interior point algorithm; either by a direct method (factorization); or through an
iterative conjugate gradient [3]. IPOPT and LOQO use a direct method for this step
8, 11].

Recall that when using KNITRO with the active set algorithm (algorithm 3) and the
SQP algorithm (algorithm 4) the problems did not converge.

The stopping criteria chosen provides good quality lenses without extra iterations or
refinements. In order to determine whether there are extra iterations, some problems have
been calculated several times with five different stopping criteria. We appreciate that,
from one point, the obtained lenses are practically the same. To evaluate the quality of
the progressive lenses (or to determine whether they can be considered the same solution),
we plot the astigmatism map and the power map and appreciate that they are in fact
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very similar. Note that when observing the values of the variables (the coefficients of the
B-splines) it is not easy to know whether two lenses are different.

The stopping criteria used for each solver will be described in Section 5.5.3 (page 82)
for spherical coordinates, and the same stopping criteria have been used for Cartesian
coordinates.

The stopping conditions used for each solver within AMPL were:

e LOQO 6.0.6: sigfig= 4, inftol= 1076
e [POPT (versions 3.8.1, 3.9.3 and 3.12.8): tol= 1072
e KNITRO 10.1.0 (both algorithms 1 and 2): opttol= 1073

with a maximum of 2000 iterations.

4.6.5 Comparison of solvers

Over the next pages, the following aspects of the solutions will be studied:

e the number of iterations

e the CPU time

number of iterations)

the velocity (™™ 55

the value of the objective function

the relative error with respect to LOQO (the absolute value)

the relative error with respect to LOQO (with the sign)

e the quality of the solution (in optical terms)

The number of iterations is the number of iterations required to converge, and the
CPU time is reported in seconds. The “velocity” is defined as:

number of iterations  number of iterations

velocity =

(4.31)

number of seconds CPU time

Note that considering the expression of the objective function (4.26), problems F1 to F4
are expected to be faster in terms of velocity (iterations/seconds), because the calculations
for the power and astigmatism derivatives are not being considered. Note that calculating
the power and astigmatism gradients for each iteration requires large calculations (and
large CPU time).

In order to evaluate the quality of the objective function, it is worth calculating the
relative error. The objective function value used as reference has been the objective
function obtained using LOQO. The relative error is thus:

‘O'fLOQO - O-fother solver‘

absolute relative error = (4.32)
o.f LOQO
It is worth calculating the relative error without the absolute value:
0. —o.
relative error = frogo Jother solver (4.33)

o.f LOQO

because the sign indicates which objective function is bigger (either the objective function
obtained using LOQO or the other one).
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Number of iterations and CPU time

In most of the 72 problem instances, all the solvers reported solutions obtained as “opti-
mal” (with LOQO and IPOPT) or either “locally optimal” or as “satisfactory solution”
(with KNITRO). However, there are some cases that reached the maximum number of
iterations (2000 iterations). It was the case for 2 problem instances using IPOPT ver-
sion 3.8.1, 3 problem instances using I[POPT versions 3.12.8 and 3.9.3 and 13 problem
instances using KNITRO with the conjugate gradient algorithm 2.

Using LOQO all of the problem instances reported solutions obtained as “optimal”.
Using KNITRO with the direct algorithm 1, all the problem instances reported the solu-
tions obtained as “locally optimal” or as “satisfactory solution”.

Problem LOQO IPOPT IPOPT IPOPT KNITRO KNITRO
6.0.6 3.8.1 3.9.3 3.12.8 10.1.0 alg 1 10.1.0 alg 2

Optimal
or locally 72 70 69 69 72 59
optimal
Maximum
iterations 0 2 3 3 0 13
exceeded

Table 4.3: Number of optimal solutions found using the six different solvers.

Table 4.3 summarizes the number of problems that reached the optimum using the
different solvers for the 72 problem instances (12 families and 6 types). It does not
make sense to increase the number of maximum iterations: using LOQQO, all the problems
converged using fewer than or equal to 192 iterations. Using IPOPT 3.8.1 all the cases that
converged used fewer than or equal to 1269 iterations, and one case converged using 72
iterations. Using KNITRO with the direct algorithm 1, all the problems converged using
fewer than or equal to 1371 iterations, and one instance was solved with 27 iterations.

The Appendix (page 106) includes a table for each solver which reports the number
of iterations (Tables 6.1 to 6.6), the CPU time (Tables 6.7 to 6.12), the velocity (number
of iterations / CPU time) (Tables 6.13 to 6.18) and objective value (Tables 6.19 to 6.24).
As these tables are rather dens, some of the tables are represented in the figures below in
this section.

Figure 4.7 (page 38) summarizes in 6 different bar charts the number of iterations for
the 72 problems and 6 solvers. The number of iterations for each solver was:

e LOQO: between 42 and 192 iterations

e IPOPT 3.8.1: between 72 and 1269 iterations (and 2 instances reached 2000 itera-
tions without converging)

e IPOPT 3.9.3: between 151 and 957 iterations (and 3 instances reached 2000 itera-
tions without converging)
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e IPOPT 3.12.8: between 151 and 968 iterations (and 3 instances reached 2000 iter-
ations without converging)

e KNITRO with the direct algorithm 1: between 27 and 1371 iterations

e KNITRO with the conjugate gradient algorithm 2: between 46 and 1727 iterations
(and 12 instances reached 2000 iterations without converging)

LOQO was the solver with the smallest “maximum number of iterations” (192), so it
was the faster solver in terms of the number of iterations. In some cases, KNITRO with
the direct algorithm 1 was faster than LOQQO, but exhibited large variability than LOQO.
The three versions of IPOPT used more iterations than LOQO and KNITRO with the
direct algorithm 1. Finally, KNITRO with the conjugate gradient algorithm 2 was the
worst performing solver: 13 instances did not reach the optimal solution in fewer than
2000 iterations and had high variability.
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Figure 4.7: Number of iterations for each solver and problem instance (for 12 families and
6 types) using Cartesian coordinates. A total of 72 problem instances. The maximum
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Figure 4.8: CPU time (in seconds) for each solver and problem instance (for 12 families
and 6 types) using Cartesian coordinates. A total of 72 problem instances. Note that
server 2 is faster than server 1.
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Figure 4.10: Velocity (iteration/seconds) for each solver and problem instance (for 12
families and 6 types) using Cartesian coordinates using IPOPT 3.8.1 on server 1. Graphics
considering different objective functions.

The CPU time, reported in Figure 4.8 (page 39), is directly related to the number of
iterations (more iterations, more seconds) taking into account two additional aspects. One
aspect is that two solvers (LOQO and IPOPT 3.8.1) were executed on server 1 and the
other four on server 2; this explains the different times between the first IPOPT version
and the other two, while all of them had similar number of iterations (server 2 was on
average 2.65 times faster than server 1). The other aspect is that the objective function
(and also the modeling problem) of families F1 to F4 is much simpler than the objective
function (and modeling problems) of families F5 to F12, because it does not consider
the power and astigmatism gradients (recall the objective function defined in (4.26) and
detailed in Section 4.6.3 for each family).
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Figure 4.9 (page 40) reports the velocity (number of iterations / number of seconds)
(see (4.31)) for each solver for the 72 instances. Considering only IPOPT 3.8.1, Figure
4.10 (page 41) represents the velocity in three different bar charts for three different groups
of families. It is appreciated that the velocity for families F1 to F4 is much bigger than
the velocity for families F5 to F12. For IPOPT 3.8.1 the velocity is between 1.8 and
2.4 iterations/second for families F1 to F4 and between 0.5 and 1.6 for families F5 to
F12 (see also Table 6.14 in the Appendix). That means that calculating the power and
astigmatism gradients requires large calculations for each iteration (as was expected).

In order to calculate how many times faster server 2 is than server 1, we have divided
the velocity (number of iterations / number of seconds) see (4.31)) of the 72 instances of
IPOPT 3.8.1 (on server 1) by the velocity of the 72 instances of IPOPT 3.9.3 (on server
2). The resulting mean of these 72 values was 2.6. When repeating the same calculations
using IPOPT 3.8.1 (on server 1) and IPOPT 3.12.8 (on server 2), the mean was 2.7. We
considered the mean of these two values. The next chapter will demonstrate that using
spherical coordinates, server 2 will be shown to be 2.8 times faster than server 1.

Quality of the objective function and the solutions obtained

The relative error with respect to LOQO has been calculated for all the problem instances
and the other 5 solvers. See Tables 6.25 to 6.29 in the Appendix (page 119). Figure 4.11
summarizes theses tables in 5 different bar charts with the relative error with respect to
LOQO for the 72 problem instances and the other 5 solvers.
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Figure 4.12: Relative error without the absolute value of the objective function for each
solver and problem instance with respect to LOQO (for 15 families and 6 types) using
Cartesian coordinates. A total of 72 problem instances.

The relative error with respect to LOQO for each solver was:

e between 0.0 and 1.59 for IPOPT (3 versions)
e between 0.0 and 0.29 for KNITRO with the direct algorithm 1

e between 0.0 and 2.17 for KNITRO with the conjugate gradient algorithm 2

The problems that did not reach the optimum have been omitted from the ranges
above. Note that the relative error of the objective function with respect to LOQO for
all the others solvers should be near zero. A relative error of 1.0 means that the objective
function of one solver is twice the objective function of the other solver (taking as a
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reference the solver with the smallest objective function). A relative error of 1.5 means
that the objective function of one solver is 2.5 times the objective function of the other
solver (also taking as a reference the solver with the smallest objective function).

In order to determine which solver is better (if LOQO or one of the others) we may
examine which objective function is bigger or the sign of the relative error without the

absolute value:
O'fLOQO - O-fother solver

0.frogo
This is illustrated in 4.12 (page 44) and the limit of the relative error without the absolute
value was:

e between -0.33 and 1.59 for IPOPT 3.8.1

e between -0.36 and 1.59 for IPOPT 3.9.3 and IPOPT 3.12.8
e between -0.29 and 0.18 for KNITRO with the direct algorithm 1

e between -0.36 and 2.17 for KNITRO with the conjugate gradient algorithm 2

Considering Table 6.33 (page 123) without rounding to 2 decimals, there are 60 prob-
lem instances where the minimum of KNITRO with the direct algorithm 1 was smaller
than the objective function of LOQO; and 12 problem instances where the minimum of
KNITRO with the direct algorithm 1 was bigger than the objective function of LOQO.
However, considering LOQO as reference is reasonable, since the solutions produced by
both of these solvers are very similar.

We want to determine the maximum relative error from which two problem instances
can be considered the same. Two solutions are the same, if the astigmatism map and the
power map look the same using isolines of 0.25D.

In Figures 4.13 and 4.14, it is appreciated that a relative errors of 1.59 and 0.42,
respectively, produce different power and astigmatism maps. It is appreciated that the
astigmatism and power maps using IPOPT 3.8.1 of these Figures are rougher than the
astigmatism and power maps produced using LOQO. Consequently, the solution using
IPOPT 3.8.1 is not of sufficient quality, and relative errors of 1.59 and 0.42 are much
bigger (as one would expect).

We continued to investigate what the biggest relative error could be that would produce
a lens of sufficient quality that was also similar to the original. In Figure 4.15 it is
appreciated that both lenses look the same, and they have a relative error of 0.29. The
maximum biggest value of the relative errors of all the 72 instances with KNITRO with
the direct algorithm 1 (with respect to LOQO) is 0.29. We may thereby conclude that all
lenses calculated using LOQO and KNITRO with the direct algorithm 1 look the same,
and have similar objective functions.

Finally, Figure 4.16 shows that the two lenses with a relative error of 0.33 look slightly,
but no significantly, different. One illustrative example is the astigmatism map around
the point (z = —1.5 mm,y = —10.0 mm) and the power map around the point (x =
20.0 mm,y = 2.5 mm).

In conclusion, a relative error below 0.30, produces lenses of similar quality, an a
relative error greater than 0.30 produces lenses of different qualities. The greater the
relative error, the greater the difference in the the lenses (as it is evident).

All the problem instances calculated with LOQO and KNITRO using direct algorithm
1 have a relative error of fewer than 0.30, and we may therefore consider that these two
solvers can produce a correct optimal lens for all of the 72 problem instances computed.
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Figure 4.13: Astigmatism (left) and power (right) of the lens of family F10 and type T6
using LOQO 6.0.6 (top) and IPOPT 3.8.1 (bottom), with a relative error of 1.59. Maps
using IPOPT 3.8.1 are rougher than maps using LOQO.
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Figure 4.14: Astigmatism (left) and power (right) of the lens of family F1 and type T5
using LOQO 6.0.6 (top) and IPOPT 3.8.1 (bottom), with a relative error of 0.42. Maps
using IPOPT 3.8.1 are rougher than maps using LOQO.
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Figure 4.15: Astigmatism (left) and power (right) of the lens of family F7 and type T1
using LOQO 6.0.6 (top) and KNITRO with the direct algorithm 1 (bottom), with a

relative error of 0.29.
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Figure 4.16: Astigmatism (left) and power (right) of the lens of family F2 and type T3

using LOQO 6.0.6 (top) and IPOPT 3.12.8 (bottom), with a relative error of 0.33.
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The percentage of problem instances for each case having a relative error of fewer than
0.30 is shown in the following Table 4.4:

Problem LOQO IPOPT IPOPT IPOPT KNITRO KNITRO
6.0.6 3.8.1 3.9.3 3.12.8 10.1.0 alg1  10.1.0 alg 2

Optimal
or locally
optimal 72 (100%) 43 (59.7%) 42 (58.3%) 48(66.6%) 72 (100%) 38 (52.8%)
with a rel.
error < 0.30

Optimal

or locally

optimal 0 27 (37.5%) 27 (37.5%) 21 (29.2%) 0 21 (29.2%)
with a rel.
error > 0.30

Maximum

iterations 0 2 (2.8%) 3 (4.2%) 3 (4.2%) 0 13 (18.0%)
exceeded

Table 4.4: Number of optimal solutions found using the six different solvers, indicating
the cases with relative error with respect to LOQO inferior to 0.30.

Note than in Tables 4.5 to 4.9 there are some values with the relative error bigger
than 0.30. Note that all of the problem instances for families F9, F10 and F11 produce
bad results. The objective function for F9, F10 and F11 is:

min Z % (wg((—ﬁpog(;i,yj))? + <_6P0ué(;i»yj))2)>7 (4.34)

without considering the minimization of the sum of the astigmatism. If we discard these
problem families (F9, F10 and F11), the number of instance problems with a relative error
bigger than 0.30 is still not zero (but decreases significantly).

Problem instances for families F9, F10 and F11 can be improved by adding another
term with w; > 0 (4.26) (page 28) to the objective function .
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Family/Type | T1 T2 T3 T4 T5 T6
F1 041 033 032 | 0.13 0.42 0.40
F2 0.12 021 0.10 | 0.12 0.40 0.33
F3 0.05 090 0.00 | 0.07 0.03 0.05
F4 0.61 0.06 0.02 | 0.02 0.06 0.05
Fb5 -0.15 -0.01 -0.11 | -0.02 -0.11 T
F5 -0.11  0.02 -0.11 | -0.33 -0.06 0.00
E7 -0.29 0.00 -0.23]-0.19 -0.02 -0.17
F8 -0.07 -0.10 -0.13 |-0.12 -0.05 -0.14
F9 1.21 120 1.55 | 1.15 1.18 1.50
F10 1.21 120 1.50 | 1.15 1.17 1.59
F11 1.16  1.21 1.18 T 1.09  1.20
F12 -0.02 -0.02 -0.02 | 0.00 -0.02 -0.05
T No optimal solution was found within the limit of 2000 iterations.

Table 4.5: Relative error of the objective function with respect to LOQO for each family
and problem with IPOPT 3.8.1 on “server 1”7 without absolute value.

Family/Type | T1 T2 T3 T4 T5 T6
F1 0.10 033 032 013 0.11 0.33
F2 012 029 033 | 0.12 040 0.39
F3 0.05 0.90 0.00 | 0.07 0.03 0.05
F4 0.06 0.06 002|081 0.06 0.89
F5 -0.15 -0.02 -0.11 | -0.03 -0.12 T
F5 T -0.13 -0.14 | -0.36 -0.11 -0.16
F7 -0.29 -0.03 -0.24 | -0.06 0.14 -0.07
F'8 -0.07 -0.10 -0.13 | -0.08 -0.05 -0.14
F9 1.21  1.20 155 | 1.15 1.18 1.50
F10 1.21 1.20 155 | 1.15 1.17 1.59
F11 1.16 1.21 1.18 T 1.09 1.20
F12 -0.02 -0.02 -0.02 | 0.00 -0.02 -0.05

T No optimal solution was found within the limit of 2000 iterations.

Table 4.6: Relative error of the objective function with respect to LOQO for each family
and problem with IPOPT 3.9.3 on “server 2”7 without absolute value.
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Family/Type | T1 T2 T3 T4 T5 T6
F1 0.10 0.33 0.07 | 0.13 0.11 0.33
F2 0.12 008 033 | 0.12 0.12 0.10
F3 0.05 0.04 0.00 | 0.07 0.03 0.05
F4 0.05 0.06 0.02 | 0.02 0.06 0.05
F5 -0.15 -0.02 -0.11 | -0.03 -0.12 T
F5 T -0.13 -0.14 | -0.36 -0.11 -0.16
F7 -0.29 -0.03 -0.24|-0.19 -0.02 -0.18
F8 -0.07 -0.10 -0.13|-0.14 -0.05 -0.14
F9 1.21 120 1.55 | 1.15 1.18 1.50
F10 .21 1.20 150 | 1.15 1.17 1.59
F11 1.16  1.06 1.18 T 1.09 1.20
F12 -0.02 -0.02 -0.02 | 0.00 -0.02 -0.05

1 No optimal solution was found within t

he limit of 2000 iterations.

Table 4.7: Relative error of the objective function with respect to LOQO for each family
and problem with IPOPT 3.12.8 on “server 2” without absolute value.

Family/Type | T1 T2 T3 T4 T5 T6
F1 -0.02 -0.02 -0.07 |-0.01 -0.01 -0.03
F2 0.00 -0.04 -0.03|-0.01 0.00 -0.02
F3 -0.01 -0.02 -0.06 | 0.00 -0.03 -0.02
F4 0.00 0.00 -0.03|-0.04 0.00 0.00
F5 -0.15 -0.02 -0.15| 0.02 -0.12 -0.06
Fb5 -0.15 -0.13 -0.15|-0.20 -0.12 -0.17
F7 -0.29 -0.03 -0.27 | -0.20 -0.03 -0.20
F'8 -0.07 -0.10 -0.17 | -0.13 -0.05 -0.13
F9 0.07 0.16 -0.09| 0.14 0.18 -0.02
F10 0.07 0.11 -0.06 | 0.08 0.17 0.01
F11 -0.05 -0.01 -0.05| 0.00 0.06 0.02
F12 -0.03 -0.02 -0.02 | 0.00 -0.02 -0.07

Table 4.8: Relative error of the objective function with respect to LOQO for each family
and problem with KNITRO 10.1.0 direct algorithm 1 on “server 2” without absolute

value.
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Family/Type | T1 T2 T3 T4 T5 T6
F1 0.13 0.13 T T 0.38 0.11
F2 0.14 0.11 0.27 | 0.26 0.14 T
F3 032 031 0.02 | 0.36 0.62 T
F4 031 0.07 022|028 033 0.07
Fb5 -0.15 0.00 -0.11]-0.03 -0.11 -0.03
F5 -0.10 -0.07 -0.09 | -0.36 -0.05 -0.13
E7 -0.29 -0.03 { |-0.19 -0.02 -0.19
F8 -0.07 -0.10 -0.13 | -0.13 -0.05 -0.13
F9 1.96 131 203 | 1.24 194 1.58
F10 1.98 131 1.54 | 1.87 1.92 T
F11 T 2.17 T 1.61 T T
F12 T 0.05 -0.01 T 0.05 T
T No optimal solution was found within the limit of 2000 iterations.

Table 4.9: Relative error of the objective function with respect to LOQO for each family
and problem with KNITRO 10.1.0 conjugate gradient algorithm 2 on “server 2” without
absolute value.

However, even discarding problem instances of families F9, F10 and F11, there are
still some problem instances that have the relative error bigger than 0.30. Using spherical
coordinates in next chapter the relative error will be enhanced. This is one of the main
advantages of spherical coordinates.

We may therefore conclude that using Cartesian coordinates, LOQO and KNITRO
with the direct algorithm 1 produces good quality lenses. However, some of the lenses ob-
tained using IPOPT (all 3 versions) and KNITRO with the conjugate gradient algorithm 2
are poor quality lenses (compared to those lenses obtained with LOQO and KNITRO with
the direct algorithm 1). This is due to the fact that the problem is nonconvex. Different
solutions were obtained using different solvers, but some solvers (LOQO and KNITRO
with the direct algorithm 1) produce better lenses than the other solvers (IPOPT -all 3
versions- and KNITRO with the conjugate gradient algorithm 2).

In the next chapter, it will be seen that using spherical coordinates with a fixed
problem instance and the 6 different solvers the same solution will be obtained (unlike for
Cartesian coordinates).

4.7 Orienting the power and astigmatism gradients

This Section presents a new way of orienting the power and astigmatism gradients. These
orientations are obtained by modifying the objective function. The optimization model
defined in Section 4.5 (page 27) is used, replacing the objective function (4.26) (page 28)
with a new objective function. The variables, parameters and constraints are the same
as in the previous model.

We propose two ways of orienting the power and astigmatism gradients. One way is
orienting the gradient in a direction between 0 and Jrad. This orientation is obtained
with the new objective function:
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2
min Z %(wl (Ast(xi,yj)) +

(4,5)€G
OAst 1y Yj 2 . 0Ast i Ysi 2
wy (0032(04)(%‘%]) + san(a)(%) >+ (4.35)

s (cos2<ﬂ>(—apmgf“%>)2+3m2<5>(_8P0“§;f7w>)2)),

where n is the number of points in each dimension of the grid, wq, wy, w5 € [0,1], 0 < a <
5, and 0 < 8 < 7. This objective function produces progressive lenses with the gradient
oriented vertically, horizontally or with a direction between Orad and Zrad.

The second way to orient the gradients is orienting them at an angle between Orad
and mrad. This produces fairly asymmetrical lenses not only due to position of the near
zone, but also due to the orientation of the gradients. The objective function is:

. 1 ’
min Z ﬁ<w1 (Ast(wi,yj)) +
(,5)€g

2
we (cos(a)—ﬁASta(zi’ ] - sm(a)—aASta(Zi’ yj)) + (4.36)

OPow(x;,y;)

wy (COS(B)T + sm(ﬁ)%yx“yj))z) ,

where n is the number of points in each dimension of the grid, wq, wg, wy € [0,1], 0 < a <
m,and 0 < 3 <.

The optimization problem solved in this section is the minimization of (4.35) or (4.36),
subject to constraints (4.27), (4.28), (4.29), (4.30) and (4.25) using variables (4.24).

When using the objective function (4.35), having wy = 0 or ws = 0 is recommended
because it is not possible to orient the power and the astigmatism gradients in the same
way. Similarly, when using the objective function (4.36), having wg = 0 or w; = 0 is
recommended.

We generated a set of 9 problem instances, denoted as D1, D2,...,D9. These instances
have the parameters defined in Section 4.6.1 (page 29). The far regions, near regions and
astigmatism regions are those of the instances of family F10 in Section 4.6.1, and the
position of the near zone is that of type T6 of Table 4.1 (page 30). However, the objective
function has been replaced by a new objective function. Instances D1, D2 and D3 use
the objective function (4.35) with w; = 0, wy = 1 and ws = 0. Instances D4, D5,...,D9
use the objective function (4.36) with wy = 0, wg = 1 and w; = 0. Table 4.10 indicates,
for each problem, the objective function and the parameter o used. Since ws = 0 and
wy; = 0, parameter [ is not used.

Note that minimizing (4.35) with w; =0 or wy = 1, ws; = 0 and o = 0 is the same as
minimizing (4.36) with wl = 0, wg = 1 w; = 0 and o = 0. Consequently, instances D1
and D4 produced the same result. Similarly, D3 and D7 also produced the same result.

Instances D1, D2,...,D9 were solved using the LOQO solver and the same stopping
criteria as in Section 4.6.4 (page 34), sigfig= 4, inftol= 107%, on server 1. The number of
iterations, CPU time and the optimal objective function are reported in Table 4.11.
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Problem Objective e o
instance  function  (rad)  (°)
D1 (4.35) Orad  0°
D2 (4.35) Trad  45°
D3 (4.35) 5 rad  90°
D4 (4.36) Orad  0°
D5 (4.36) 5 rad  30°
D6 (4.36) 3 rad  60°
D7 (4.36) 5 rad  90°
D8 (4.36) 2 rad 120°
D9 (4.36) 2 rad 150°

Table 4.10: Objective function and value of parameter « for each instance.

Problem Number of CPU Objective
instance iterations time function

D1(%) 75 100 0.001165
D2 134 263 0.001662
D3(1) 87 124 0.000592
D4(T) 75 100 0.001165
D5 85 145 0.001279
D6 99 177 0.001197
D7(%) 87 124 0.000592
D8 85 155 0.001056
D9 109 203 0.001143

T Note that D1 and D4 problems produce the same lens result.
T Note that D3 and D7 problems produce the same lens result.

Table 4.11: Number of iterations, CPU time and optimal value of the objective function
for each instance.

Figure 4.17 shows the power and astigmatism maps for instances D1, D2 and D3.
It is appreciated that the astigmatism map for D1 (top) is oriented horizontally, the
astigmatism map for D3 (bottom) is oriented vertically, and the astigmatism map for
D2 (middle) is a mixture of these. Note that the horizontal isolines on the astigmatism
map for D1 (for example, around the point (z = —15 mm, y = 4 mm)) are very close
together, whereas the isolines on the astigmatism map for D3 around the same point are
very separated, and finally for D2 there is a compromise. Similarly, the vertical isolines on
the astigmatism map for D3 (for example, around the point (z = —2 mm, y = —20 mm))
are very close together, whereas the vertical isolines for the same point for D1 and D2
are more separated. Figure 4.18 shows the astigmatism maps for instances D4, D5,....D9.
It is appreciated that the astigmatism map for each instance has a different orientation,
thus producing asymmetrical maps. For example, we may note that the astigmatism map
for D6 (middle left) has horizontal isolines around the line y = 0 mm that are separated
differently, for x > 10 and z < 10, because o = 60°.

Orienting the power and astigmatism gradients is helpful in personalizing progressive
lenses according to each user, by using different data. One data is how a user moves their
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Figure 4.17: Astigmatism (right) and power (left) maps of the problems D1 (top), D2
(middle) and D3 (bottom).
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eyes. For example, when using progressive lenses, there are eye movers and head movers,
see Section 2.2.2 (page 5). Eye movers tend to move their eyes more vertically or more
horizontally. Depending on eye movements, some orientations of power and astigmatism
gradients are likely to fit better than others. Another application of orientating these
gradients is relating the orientation of the astigmatism gradient to the axis on the cylinder
of prescription.

All of the results described in this Section are described in full in the patent of invention
[46]. The first author of this patent is the author of this thesis, and the patent was
developed during the research for this thesis.
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Spherical coordinates

5.1 Introduction to the spherical coordinates used

When spherical coordinates are used in ophthalmic optics, the center of the coordinates
is referenced at the center of the eye. As a simplification, the center of the eye can be
considered to be the center of rotation of the eyeball. Using this model, the eye’s angle
of rotation is the angle of rotation of the model, and the point with radius 0 (with any
angle) is the center of the eye. An example of using spherical coordinates in this way is
given in Figure 1.21 of [22] and in Figure 5.1. The left part of Figure 5.1 shows the lateral
view of a progressive surface with the spherical coordinates centered at the center of the
eye. The right part of the same Figure 5.1 shows the same progressive lens in a front
view. However, the model proposed here is entirely unrelated to this model.

As stated in Sections 3.2 (page 12) and 4.3 (page 23), the far zone of a progressive lens
can be approximated by a sphere because the lens power in this region and, consequently,
its curvature is nearly constant. The center of this sphere will be the center of the new
proposed model in spherical coordinates. One angle is in the normal direction of the lens,
while the other angle is in the perpendicular direction. The main motivation behind this
new model is to obtain better convexity properties than previous existing models. The
representation of this new model is shown in Figure 5.2. In this image, the radius is near
a constant R for all the points on the far region; the radius is smaller for the points on
the near region. The radius will vary gradually from the far region to the near region.

Far
region
(Power Pg)

Corridor

Near
region
(Power Py)

Figure 5.1: Example of spherical coordinates centered at the center of the eye.

39
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---- Progressive surface
Sphere of the same radius as the far
region of the progressive surface

Figure 5.2: Example of spherical coordinates centered at the center of the sphere corre-
sponding to the far region.

5.2 First attempt to use spherical coordinates
The first attempt made using spherical coordinates was the following parameterization:
R* —R?

(0,9) — T (0,0) = (x(8,9), y(6,), 2(6,¢)) = (5.1)
(R(0,p) - sin(0) - cos(p), R(0,p) - sin(d) - sin(p), R(0,p) - cos(d))

such that:

x(0,9) = R0, ) - sin(0) - cos(p) R(0,¢) >0
y(0,0) = R(0,¢) - sin(f) - sin(p) where 0 <0,7] (5.2)
A0.0) = R(0,9)- cos(t) o€ [omm]

™

Considering a grid of angles (6;,¢;), i =1,...,n, j =1,...,n where §; € [0, %] and
¢; € [—m, 7], we obtain:

zi; = Ry - sin(6;) - cos(p;) R;; >0
bo= Byosin@)-sin(e) o d6e(0g] (5:3)
zij = Ry cos(b;) @; € [=m, 7]

where R;; are the variables and 60; and ¢, are the parameters.

5.2.1 Example: A sphere

The solution of Example 1 (page 24) was a sphere of radius R centered at point (x =
0 mm,y =0 mm,z =0 mm), such that:

=1 1.6-—-1
= = =0.12 = 120.
R Iz D 0.120 m 0.0 mm
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This sphere expressed in Cartesian coordinates was defined in (4.18) (page 25). The
same sphere expressed in the spherical coordinates (5.3) is defined by R;; = R =120 mm
Vi,j =1,...,n. Figure 5.3 represents the sphere of radius 120 mm using the first model
(5.3) with spherical coordinates. In this figure the positive part of the sphere is considered,
and the lens is a spherical cap of radius 120 mm. In left image of this figure, the range of
angle 6 is smaller (6 € [0, §]), in order to consider only the part corresponding to a lens.
In right image of the same figure, the range or angle 6 is bigger (6 € [0, 7]), in order to
consider all the positive part of the sphere. Figure 5.4 shows the ranges of the described
angles.

Figure 5.3: Part of a sphere of radius 120 mm centered at (0, 0, 0) using spherical
coordinates. The ranges of the angles are different in left and right image. ¢ € [—m, 7|

(left and right) and 6 € [0, §] (left) and 6 € [0, 7] (right). The axes are z,y, 2z (mm).

Figure 5.4: Plot of coordinates (0, ¢, R) of a part of a sphere of radius R=120 mm
centered at (0, 0, 0) using spherical coordinates. ¢ € [—m, 7] (left and right) and ¢ € [0, §]

(left) and ¢ € [0, 7] (right). The axes are 6, ¢, z (mm).

In the next section, we will see that this parameterization resulted in certain discon-
tinuity problems. Consequently, we moved to a new formulation, as explained in Section
5.3.

5.2.2 Calculation of the power and astigmatism of a surface us-
ing spherical coordinates

In this section, we will calculate the power and the astigmatism of a lens surface expressed
in the spherical coordinates (5.1) (page 60). In the expression (5.1) (page 60), the coordi-
nates (z, y, z) and R are expressed in mm, the refractive index is expressed in diopters

(=—2—) and the angles 0 and ¢ are expressed in radians.
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Using the equations (3.4) (page 13), the coefficients of the first and second fundamental

forms are recalculated as:

— — = — =
e:ﬁ-m f:ﬁ.m g:ﬁ.m
where - is the dot product, 7 is the normal vector to the surface:
_ B
= To7 NGk (5.5)
a0 " e

and the subscripts 6, ¢ are the partial derivatives with respect to 6 or .
The first order partial derivatives at the point being studied can be computed by:

(0 0y 0
Po=\o0" 90’ o0 o0
(00 0y 0 '
p(ﬂ aso7 8()07 8@ .
Likewise, the second-order partial derivatives at the point being studied are:
., [(0%x Py 0%z
Poo =\ 062" 962" 902
Px 0%y 0%z
_%
= 5.7
Poe (808@7 9090 898@) (5:7)
s [(Px PPy 0%z
ptptp - 6@27 (9g027 8902 .
Thus, the first derivatives can be calculated as:
-
97 8R(9 sm( ) cos(p) + R(6, ) cos(0) cos(p)
50 = | 7 W sin(0) sin(p) + R0, ¢) cos(0) sin(y) | - (5.8)
IREL) cos(0) — R(6, ) sin(f
s aRéifD) sin(f) cos(p) — R(0, ¢) sin(0) sin(p !
v 8R6(9’¢) sin(0) sin(p) + R(6, ¢) sin(0) cos(p (5.9)
O ? ORO.2) os(p
B cos(0)
The second derivatives are:
s ” géz ) sin(6) cos(p) + 2% cos(f) cos(p) — R(0, ) sin(#) cos(p) !
600 A };éz ) sin(0) sin(p) + 2% cos(0) sin(p) — R(6, ) sin(f) sin(p) :
i gg@ ) cos(0) + ZBR{%’@) sin(p) — R(ip,0) cos(y)

(5.10)
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Oy

9000
8289(8@ ¢) sin(#) cos(p) + %ﬁ;@) cos(f) cos(p) — % sin(0) sin(p) — R(0, ¢) cos(9) sin(ip)
9’ R(6.0) OR(6, OR(6.2)

T@) cos(0) sin(y) + =57 sin(f) cos(p) + R(0, ¢) cos(f) cos(y)

92 R(6, OR(0
éz(af) cos() — R((g 2) sin(0)

00 sin(#@) sin(p) +

(5.11)

32? % sin(#) sin(p) — 28R(9 %) sin(f) cos(p) — R(0, ¢) sin(0) cos(p) !
oo ) sin(f) sin () + 22 é 2) sin(0 cos(ip) — R(0, ) sin(6) sin()
P

0?2
R(0
—a( ) cos(6)

dedp

(5.12)
Finally, by using (3.12), (3.13) and (3.14) (page 14) we have obtained a method for
calculating the power and astigmatism of a surface using spherical coordinates (5.2).

5.2.3 Example: Calculating the power and astigmatism of a
sphere using spherical coordinates

Now let us consider a sphere of radius R = 120 mm centered at point (x =0 mm, y =
0 mm, z =0mm). In this case, we will examine the positive part of the sphere (see Figure
5.5). The purpose of this example is to calculate the power and the astigmatism of the
surface (the sphere) and to discuss whether it is calculated correctly. In order to calculate
the power and the astigmatism, we must calculate the first and second fundamental forms,
as well as the partial derivatives of the surface. We define the radius as a cubic B-spline, in
order to be able to obtain analytically the first and second partial derivatives with respect
to 6; and ;. The cubic B-spline are first defined in Cartesian coordinates in sections 3.5
(14) and 3.6 (page 16) and also in (4.25) (page 28). In this problem a cubic B-spline is
defined in spherical coordinates. The Problem 1 to be solved in this Section is defined by
the following parameters, variables, objective function and constraints.

Problem 1. .

1) The parameters are:

o (0;,0;) € [0,7] x[0,7], (i,j) € G ={1,...,n} x {1,...,n}, is a grid of angles (in
radians) used for the definition of the lens in spherical coordinates, where n denotes
the number of angles for each dimension of the grid.

n = 61 (n? is the number of angles in grid G ).

The grid of angles G is computed by the formula 6; = ¢; = 0.9817477042+
0.01963495(i — 1) rad, fori=1,...,n (where n =61).

o (0,¢5) € [0,7] x [0,7], (¢,5') € G = {1,...,0} x {1,...,0}, is another grid of
angles (radians), with G' much coarser than G (i.e., o0 < n), where o is the number
of angles used in the definition of a B-spline whose coefficients are the variables of
the optimization model.

T
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e 0 = 30 (0% is the number of angles in grid G').
The grid of angles G' is computed by the formula: 0}, = ¢}, = 0.0 + 3.0(2’ - 1)/30 =
0.1(¢ — 1) rad, fori' =1,...,0 (where o =30).

o R;; =120 mm is the radius for each point of the lens (a sphere).

2) The variables are:

R>c(@),¢,) >0, (i'j)eg. (5.13)

Using a new B-spline in spherical coordinates we define the radius of the surface for the
grid G as
(0, ;) ZZc v ) B (0:) B (), (i,4) €6, (5.14)
i'=1j'=1
where B (0;) and B (p;), (i,5) € G,(/,5') € G', are the I-dimensional three-degree B-
splines basis defined in [14, page 100].

We remark that the B-splines basis is defined using the grids (0;,;) € [0, 7] x [0, 7]
and (0}, ¢) € [0, 7] x [0, 7], (¢',5) € G’ = {1,...,0} x{1,...,0}. Replacing these grids of
points in equations (3.22)-(3.29) (page 16) we obtain the new B-splines basis in spherical
coordinates.

3) Objective function: minimize 1

4) Constraints: R(0;,¢;) = Rij, (i,j) € G

Figure 5.5: A part of a sphere of radius 120 mm, centered at (0, 0, 0) of Problem 1.

This Problem 1 is modeled using the AMPL and solved using LOQO 6.0.6 on server
1. This problem converges in 4 iterations (it is a simple problem). At the optimum, we
calculate the first and second fundamental forms, as well as the power and the astigma-
tism. The angles are shown in Figure 5.6, for each Cartesian coordinate (z, y) and it is
appreciated that angle ¢ has some discontinuity around line y = Omm and x < Omm.
The power and astigmatism are shown in Figure 5.7, ant it is appreciated that Pow =5 D
and Ast = 0 D for the entire surface. Figure 5.8 shows the values of the first and sec-
ond fundamental forms. We appreciate that the first and second fundamental forms are
continuous.
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Figure 5.6: Values of the angles ¢ (left) and 6 (right) for each point (z;, v;).
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Figure 5.7: Values of the astigmatism (0D) and power (5D) for the Problem 1.

The first fundamental form E+ + The first fundamental form F+ + +

0.5
0
05
1
The first fundamental form G+ + + The second fundamental form e+ +
14550 70
14500 60
14450 :3
14400 30
14350 1 20
14300 10
14250 0
The second fundamental form f+ + + The second fundamental form g+ + +
1 1215
121
1205
120
m 1195
119
1185

Figure 5.8: Values of the first and second fundamental forms for the Problem
are (z (mm), y (mm), the fundamental form).
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Figure 5.9: The progressive lens adjusted in Problem 2.

5.2.4 Example: Calculating the power and astigmatism of a pro-
gressive lens using spherical coordinates

Let us consider a progressive addition lens (see Figure 5.9), and we will calculate the
astigmatism and the power for all points, as in the previous example (Problem 1). We
will consider the same spherical coordinates and the same grids of angles as in Problem 1.
The difference is that instead of considering a constant radius R(6;, ¢;) = 120 mm for all of
the points, in this example we will consider the radius that we have previously calculated
for a progressive lens for each point of the grid (6;,¢;) (for example a progressive lens
calculated previously in Cartesian coordinates). In order to define the radius for each
point and its partial derivatives with respect to 6; and respect to ¢;, we will define the
radius as a cubic B-spline, as in the previous Problem 1 (see Section 5.2.3).

Figure 5.10: Values of the angles ¢ (left) and 6 (right) for each point (z;, v;).

Problem 2. The new Problem defined here is the same as Problem 1 from Section 5.2.3
but replacing the parameters R;; as it s explained.

Parameters:

o I}j; = R~i]~ are the radius for a progressive lens calculated previously in Cartesian
coordinates and converted into spherical coordinates using 5.3 (page 60).

This problem converges in 3 iterations using the AMPL modeling language and the
solver LOQO 6.0.6 on server 1. At the optimum, we calculated the first and second
fundamental forms, as well as the power and the astigmatism, and the results are shown
in Figures 5.11, 5.12 and 5.13.
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Astigmatism (D) of a progressive lens+ + Power (D) of a progressive lens+ +

50

Figure 5.11: Values of the astigmatism (left) and power (right) for the progressive lens
of Problem 2. There is a significant discontinuity around the center and around line
y = 0mm and z < Omm.
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Figure 5.12: Values of the astigmatism (left) and power (right) for the progressive lens
of Problem 2, discarding points with Ast < 10D (left image), and discarding points with
Pow < 4D or Pow > 8D (right). There is a significant discontinuity around the center
and around line y = 0 and x < 0, where points lie outside of the z zoom axis.
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Figure 5.13: Values of the first and second fundamental forms for the Problem 2. The
axes are (z (mm), y (mm), the fundamental form). There is a significant discontinuity
for the fundamental form f (bottom left) for points y = 0 and x < 0.
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For the entire surface, the power and astigmatism should be:

0.15
Ast? <= (3.0 D)? (5.15)

because the progressive lens used for the input data in this example has the previous
values of power and astigmatism. However, in Figure 5.11 it is clear that the power and
the astigmatism show significant discontinuity around points y = 0,z < 0.

In Figure 5.12, the points with Ast < 10 D are plotted in the left image, and the
points with 4 D < Pow < 8 D are plotted in the right image. Points outside of these
ranges are not plotted. It is clear that some points around the line y = 0,2 < 0 do not
appear in these figures, because they lie outside of these ranges, and consequently they
have been calculated incorrectly.

Finally, Figure 5.13 shows the first and second fundamental forms. Fundamental form
f has a discontinuity around the line y = 0,2 < 0.

In Figure 5.10 we may see that angle € is not continuous around points y = 0 and
x < 0. This is the cause that the calculation of the power and the astigmatism has
a significant discontinuity around these points. For this reason, we will propose new
spherical coordinates in the next section.

5.3 Second definition of spherical coordinates

The new formulation is:

z(0, ) R(6, ) cos(8)
17) = | y(0,p) | = | R(0,¢)sin(d) cos(p) and 0,p € 0,7, (5.16)
2(0, p) R(6, ) sin(0) sin(p)

which is very similar to the previous formulation (5.3) (page 60) but avoids the singu-
larities of the previous formulation. There are two differences. The first difference is that
the new z is the old z, the new y is the old x and the new z is the old y. Applying this
rotation, the range required for the angles 0, ¢ is [0, 7] (second difference) and there are
consequently no discontinuities.
Considering a grid (6;,¢;),i =1,...,n, j = 1,...,n where each 6; € [0, 7] and each
@; € 10, 7], we obtain
Tij = Rij COS(QJ‘)
Yij = Rij SiH(@j) COS(QOZ'> (517)
zij = Ry;sin(6;) sin(y;),
where R;; are the variables and ¢; and ¢; the parameters of the model.
Using the new parameterization (5.16) (and (5.17)) a spherical cap of radius R;; =
120 mm centered at (0, 0, 0) is modeled, and we obtain the Figures 5.14 and 5.15. In
Figure 5.14 (left), we appreciate a barrel-shaped (z, y, z) grid.

5.3.1 Calculation of the power and astigmatism using the new
spherical coordinate model

This section provides the expressions of the power and astigmatism of the surface defined

using the new spherical coordinates (5.16). Firstly, the first and second derivatives of

ﬁ(@, ©) need to be calculated:
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Figure 5.14: Part of a sphere of radius 120 mm using spherical coordinates. 0, ¢ € [], ="
(left) and 6, € [0, 7] (right). The axes are x,y, z (mm).

Figure 5.15: Part of a sphere of radius 120 mm using spherical coordinates. 0, ¢ € [§, ="
(left) and 6, ¢ € [0, 7] (right). The axes are z, 6, ¢ (mm and radians).

OR(0,) T
cos(0) — R(6, ) sin()
D = 8R{()§ 2) sin(6) cos() + R(6, ) cos(8) cos(p) | (5.18)
8Rg;’g") sin(6) sin(p) + R(0, @) cos(0) sin(p)
aRg;,w) cos(f) T
p_; = %Z;s@) sin(f) cos(p) — R(0, @) sin(f) sin(p) | (5.19)
%ﬁfo) sin(0) sin(p) + R(6, ) sin(0) cos(p)
P50 cos(9) + 2452 sin(ip) — R(p,0)cos() !
pop = | & e sin(6) cos(p) + 27452 J cos(6) cos(p) — R(6, @) sin(8) cos(p) | , (5.20)
& 1;;2 2) sin(6) sin(p) + 28Rég 2) cos(6) sin(p) — R(6, @) sin(6) sin()
W _
=
i) cos(0) — 2 sin(0)
8;25% ¢) sin(6) cos(p) + 8R6(?0"P) cos(f) cos(p) — 0 “a) sm(@) n(p) — R(6, ¢) cos(#) sin(p)
% sin(@) sin(p) + 8R(6 9RO .0) cos(f) sin(p) + % sin(f) cos(p) + R(0, @) cos(#) cos(p)
(5.21)
% cos(0) !
Pos = > g(i@) sin(#) sin(p) — 2%&“") sin(6) cos(p) — R(6, ) sin(f) cos(p) | . (5.22)

828; ©) sin(#) sin(p) + 2%&” sin(f cos(p) — R(6, @) sin(@) sin(p)
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The coefficients of the first and second fundamental forms E F.G and e, f, g are

E=7 1§ F:ﬁg-p_; G — Pw
Bt { 5 5 5.23
€= "N -Pog f: - Poyp g_ n pcpcpa ( )
where
— =
7= 2P (5.24)
D4 % gl

After some rather large calculations we finally obtain:

E= (% cos(0) — R(6, p) sin(@)) +

( ) sin(8) cos(y) + R(8, ) cos(9) cos(go)>2+ (5.25)
(aRae sin(#) sin() + R(6, ) cos(6) sin(so>)2,
P (aRg’;"P cos(8) — R(0, o) sm(e)) %&@cog(en
(255 2 sin0) cos) + (6, ) cos(0) o)
(aRéi’ ?) Gin(0) cos() — R(6, ) sin(6) sin(<p)> + (5.26)
(2502 sin(0)sin(e) + R6.0) cos®)sin)
(2552 sin(0)sinfie) + (0, )sn®) cos(i) )
G = (%ﬁo’@) co s(@))2 + (%mw) cos(¢) — R(6, ) sin(6) sin(cp))2 4 -
(%ﬁp’@) sin(6) sin(,) + R(6, o) sin(6) Cos(ﬁp)) . |

Formulas for e, f, g are omitted because they are very large (in fact several pages long).
Finally we can compute the power and astigmatism as

Pow(0,p) = (n—1)H(0,¢) (5.28)
Ast(0,0) = —2(u—1)\/H(0, K(0,9), (5.29)
where
K0, ) = _ eg—f*
) =det(A) = 27— 530
H(O.p) =5t(4) = S S

From the spherical coordinates equations (5.16), we can compute the power and the
astigmatism for the entire lens surface (i.e., for points (i,j) € G) using the formulas
(5.35) and (5.18)—(5.30). In particular, (5.28) and (5.29) provide the definition of power
and astigmatism, respectively. We remark that the definition of R(f,y) as a B-spline
allows us to calculate its derivatives using (5.18)—(5.20).
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Figure 5.17: Values of the angles ; and ¢, for each point (x;, ;).

5.3.2 Example: Calculating the power and astigmatism of a pro-
gressive lens using the new spherical coordinates

Here, we consider the same progressive addition lens as in Problem 2, but the power and
the astigmatism will be calculated using the new spherical coordinates (5.16). We will see
that using these new coordinates, the main discontinuities (that appeared in Problem 2
for points y = 0 and = < 0) disappear. The progressive lens to be adjusted is represented
in Figure 5.16.

Problem 3. The new Problem 3 defined here is the same as Problem 1 from Section 5.2.3
but we have replaced the parameters R;; as follows:

Parameters:

e Rij = Ry; are the radius for a progressive lens calculated previously in Cartesian
coordinates and converted into spherical coordinates using (5.16) (page 69).

This Problem 3 converges in 7 iterations using the AMPL modeling language and the
solver LOQO 6.0.6 on server 1. The angles of Problem 3 are shown in Figure 5.17. Note
that the angle ¢ for Problem 2 (see Figure 5.10 left) had a discontinuity for points y = 0
and x < 0, and in Problem 3 this discontinuity has disappeared. This is because the
ranges of the angles for the model in new spherical coordinates are different.

The first and second fundamental forms are shown in Figure 5.18. Note that there
are some discontinuities on the border of the fundamental forms, but these discontinuities
appear on the border of the lens. Instead, the fundamental form f of Problem 2 (see
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Figure 5.18: Values of the first and second fundamental forms for the Problem 3. The
axes are (z (mm), y (mm), the fundamental form). There is a discontinuity for all the
fundamentals forms on the border of the lens.
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Figure 5.19: Values of the astigmatism and power for the Problem 3. There is a significant
discontinuity on the border of the lens.
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Figure 5.20: Values of the astigmatism and power for the Problem 3. We have only shown
the values in the middle of the lens, to avoid discontinuities around the lens.
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bottom left of Figure 5.13), showed a significant discontinuity in the middle of the lens,
for points y = 0 and z < 0. Now this discontinuity has disappeared.

Finally, Figure 5.19 shows the astigmatism and the power of the adjusted lens. Since
there are some discontinuities on the border of the lens, we can not appreciate the real
power and astigmatism values. For this reason, in Figure 5.20 we represent the same
power and astigmatism of the adjusted lens, but without displaying its border. In this
Figure 5.20 it is appreciated that the constraints of the equation (5.15) (page 69, Problem
2) are accomplished, which did not happen in Problem 2.

In conclusion, we may state that by using the new spherical coordinates (5.16) we can
fit correctly a progressive lens, except for the border. In next section it will be seen that,
in addition, the spherical coordinates exhibit better convexity than Cartesian coordinates.

5.3.3 Convexity in spherical coordinates

As shown by Proposition 1, the model in spherical coordinates exhibits better convexity
properties than the Cartesian model in Chapter 4 (page 21).

Proposition 1. Using the new model in spherical coordinates (5.16) (page (5.16)), the
feasible region of the optimization problem formulated in Example 2 (page 26)—which was
not conver—becomes a convex set.

Proof. Given the function

R:GCR> — R
(0“30@) — R(@Z,%) ’i:l,...,n,

and the spherical coordinates defined by (5.16), we find the radii R(6;, ;) solution to the
following optimization problem:

Rr(glin) 1
P4
subject to Ast(6;, i) =0 V(0;,¢:) € G
P —e< Pow(b;,¢;) <P +j V(0;, i) € G
R(3.%) = Pow(E.D) (5.31)
OR(0:,¢i) -0
P o=5 pi=5
OR(8:,¢i) -0
% lo=gpi=5

where Ast(0;, p;) and Pow(6;, ¢;) are defined in (5.28) and (5.29) (page 71).

Using the same data as in (4.21) (from Example 2), that is, P = 5D, ¢ = 0.12D,
p = 1.6, and (0;, ;) is a grid of angles, and where 0 < 6;, p; < 7, the solution of (5.31)
is a set of spheres of radius R centered at point R(-,-) = 0, such that ]A%mm < R < I%max,
where

~

Royin=(u—1)/(P+¢) = (1.6 —1)/(5+0.12) = 0.11719m = 117.19mm

Rae = (1 —1)/(P =€) = (1.6 = 1)/(5 — 0.12) = 0.12295m = 122.95mm.

Considering two different solutions of (5.31):

Solution 1 : R*(0;, ;)
Solution 2 : R%(6;, ¢;)

= Ropin V0 €[0,..., 7]
, (5.32)
:Rmax VQOZ'E[O,...,W],
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we have

CLRI (9“ @z) + bR2(QZ, QOZ) = R(@Z, (,02) for some .FA{ < [.ﬁLmzn, émax]

(5.33)
where a +b =1 and a,b > 0,

thus proving that the solution set is convex. O

The model in spherical coordinates will be used in the following sections to compute
progressive lenses. In addition, in the next sections progressive lenses will be calculated
from scratch, as it is done in an industrial environment.

5.4 The optimization model

The optimization model in Cartesian coordinates is described in Section 4.5 (page 27). In
order to convert this optimization model from Cartesian coordinates to spherical coordi-
nates some few changes explained in the following paragraphs must be done.

Parameters of the model

The parameters (z;,y;) € [~7,7] x [—=r,r] and (2},y}) € [~r,7] X [-r,7] are replaced by
the parameters:

o (0i,p0;) € [0,7] x[0,7], (1,7) € G ={1,...,n} x {1,...,n}, is a grid of angles (in
radians) used for the definition of the lens in spherical coordinates, where n denotes
the number of angles for each dimension of the grid. The grid is defined such that
(GHTn,cpHTn) = (§,%). Obviously, in the partition of G in spherical coordinates
G = FUN U B, the sets F, N and B are sets of angles (6;,¢;). In Cartesian
coordinates these sets were sets of points (z;,y;).

o (0,¢5) € 0,7 x[0,7], (¢,5') € G ={1,...,0} x {1,...,0}, is another grid of
angles (radians), with G’ much coarser than G (i.e., 0 < n), where o is the number
of angles used in the definition of a B-spline whose coefficients are the variables of
the optimization model.

A new parameter is used:

e T is a tolerance expressed in mm that appears when bounding the variable radius
(this parameter did not exist in the Cartesian coordinate model).

The other parameters (Pp, Py, p, F, N, G and their partitions, wy, wy and ws3) are
the same as the parameters defined in the Cartesian coordinate model in Section 4.5 (page
27).

Variables of the model

The variables (4.24) and (4.25) (page 28) of the model in Cartesian coordinates are re-
placed by these variables:

R > c(ly,¢5) >0, (i',5)€g. (5.34)
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Using a new B-spline in spherical coordinates we define the radius of the surface for the
grid G as

(01, 0;) ZZ c(0;, ) Bi(0:)Bo (), (i,4) € G, (5.35)
i'=1j5'=1
where B3 (6;) and B;’,(gpj), (i,7) € G,(i',5") € G', are the 1-dimensional three-degree B-
splines basis defined in [44, page 100].

We remark that the B-splines basis is defined using the grids (6;,¢;) € [0, 7] x [0, 7]
and (0, ¢}) € [0,7] x [0,7], (i,5") € G’ ={1,...,0} x {1,...,0}. Replacing these grids
of points from equations (3.22)-(3.29) (page 16) we obtain the new B-splines basis in
spherical coordinates.

Objective function

The objective function (4.26) (page 28) is replaced by the following objective function:

min Z <w1 (Ast(Gi, ¢j))2+

(.9 GQ
w2(<8Ast iy ©; >2 N <8Ast HZ,wj)> )+ (5.36)
)

w3(<apow( Z,%) <apow Z,% ))

where n is the number of angles in each dimension of the grid.

Similarly to Cartesian coordinates, the astigmatism and also its derivatives are squared
to avoid discontinuities around zero.

We may also note that, in models based on Cartesian coordinates, the partial deriva-
tives of the objective function are with respect to x and y instead of # and ¢, and the
objective function has a similar formulation (4.26) (page 28), where G represents a grid
of points (not a grid of angles). Expressions (5.36) and (4.26) are not exactly the same in
terms of numerical results, but both have the same goal of producing a surface with the
minimum astigmatism value and the smoothest possible distribution of power and astig-
matism (that is, with isolines of power and astigmatism separated as much as possible).

Constraints

Constraints (4.27), (4.28) and (4.29) (page 29 ) are replaced by these constraints:

Prp — e, < Pow(0;,0;) < Pr+e€, (i,j) € Fn, h=1,...k (5.37)
PN—(ShSPOU}(ei,QOj)SPN‘i‘éh (’i,j)ENh,hzl,...,l (538)
Ast(0;,0,)* < Bi (i,§) € Ap, h=1,...,m. (5.39)

Similarly, constraints (4.30) (page 29 ) are replaced by these ones, that impose condi-

tions in the midpoint of the grid (E 5) (and on the position and orientation of the lens

22
surface):



Chapter 5. Spherical coordinates 7

Tom .
R(3.%) = 5
OR(0i,pi) -0
S [ (5.40)
0i,pi
ks 0i=%.vi=%

Finally, the last set of constraints are the bounds of variables R(6;, ¢;) and a bound
of the power, for the entire surface of the lens:

R(0:, ¢i) < —F—F”+T (4,J) €G
Rbog) >-50 T (ij)eg (5.41)
Pow(b;,¢;) > Pr (4,7) € G;

The first two groups of constraints of (5.41) bound the feasible region and were helpful
for the convergence of the optimization solver (but they are not compulsory and are inac-
tive in the optimal solution). The last group of constraints of (5.41) imposes a minimum
value of power in all the points of the lens.

These last constraints (5.41) are not used in Cartesian coordinates and they have been
added to the model in spherical coordinates in order to help the problem to converge. As
these constraints apply for all n? points, the number of constraints in spherical coordinates
is much larger than the number of constraints in Cartesian coordinates.

Similarly to Cartesian coordinates, the constraints (5.37), (5.38) and (5.39) and the
last group of (5.41) refer to the properties of the lens (power and astigmatism). On the
other hand, the constraints (5.40) and the first two groups of constraints (5.41) refer to
the shape of the lens.

Finally, the optimization problem to be solved in spherical coordinates is minimizing
(5.36), subject to constraints (5.37), (5.38), (5.39), (5.40), (5.41) and (5.35) using the
variables (5.34).

The solution

Once the optimization problem has been solved, we obtain the optimal coefficients of the
B-spline surface c(¢;,, ¢}) > 0, (i, ) € G'. Using (5.35) we obtain R(0;, ;), (i,j) € G and
then from (5.17) we obtain the Cartesian coordinates (z;;, yi;, 2i;) € R?, (i,7) € G, where
(74, y;;) define a square surface in R?, as required by the free-form generator. Finally, a
file containing the points (x;;, yi;, 2i;) is sent to the free-form generator to physically cut
the lens.

5.5 Numerical results

5.5.1 Problem instances

We generated a set of 15 problem instances, denoted as P1, P2,... P15, which we obtained
using different sets of parameters. However, some parameters are common for all 15
problems, such as:

e Pr =5 D (power in the far region).

e Py =7 D (power in the near region).
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T = 0.045 m (tolerance of bound (5.41)).

p = 1.6 (refractive index of the lens material).

n = 61 (n? being the number of angles in grid G).

0 = 30 (0? being the number of angles in grid G’, the grid used for defining the
B-splines). Remember that the B-splines can be evaluated at any angle, not only
for the list of 0? angles. In particular, for each problem we have n? = 612 = 3721
points where the B-splines can be evaluated.

(0:,5),(i,7) € G (the particular angles used in grid G).
o (0, ¢),(i',5") € G" (the particular angles used in grid G').
Note that:

— the subset F of far region angles and its partition in k far subregions F = FyU---U
‘/T-ka

— the subset N of near region angles and its partition in [ near subregions N =

Nl U---uU M,
— and the partition of m subregions of astigmatism G = A; U---U A,,,

are different for each problem.

The grid of angles G is computed by the formula 6; = @; = 0.9817477042+0.01963495 (i—
1) rad, for ¢ = 1,...,n (where n = 61). Expressing the angles in degrees we have
0; = ;i = 33.75+ 1.125(i — 1)°, for i = 1,...,n. For example, 0; = ¢; = 0.9817477042
rad (or 33.75°); 031 = @31 = 1.5707963268 = 7 rad (or 90°); and 0g; = e = 2.1598449493
rad (or 123.75°). The grid of angles G’ is computed by the formula: ¢, = ¢, =
0.0 +3.0(i — 1)/30 = 0.1(i — 1) rad, for i’ = 1,...,0 (where 0 = 30).

Among the parameters that differ for each problem we find ¢, h = 1,...,k, 0, h =
1,....0,and B, h=1,...,m.

Optimization problem for a particular instance (P5)

Let us consider a particular instance, e.g., P5. For this problem we have k = 4 far regions,
[ = 3 near regions, and m = 11 astigmatism regions. The tolerances ¢,,h = 1,...,4, of
far region constraints (5.37) are, respectively, 0.03, 0.06, 0.12 and 0.25. For near region
constraints (5.38), tolerances 0, h = 1,2, 3 are 0.03, 0.12, 0.25. Finally, the 11 tolerances
B, for astigmatism constraints (5.39) were 0.03, 0.12, 0.25, 0.03, 0.06, 0.12, 0.10, 0.15,
0.20, 0.25, 0.06. These tolerances are expressed in diopters (D).

The four, three and 11 regions corresponding, respectively, to far, near and astigmatism
regions (defined by sets Fj,, Ny, and Aj,) are shown in Figures 5.21, 5.22 and 5.23, using
different colors and patterns for each subregion. In the same manner as for Cartesian
coordinates, the near, far and astigmatism regions are concentric, to guarantee a gradual
change in power and a gradual change in astigmatism.
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Figure 5.21: The four far regions of problem P5, each displayed in a different color and
pattern.

Figure 5.22: The three near regions of problem P5, each displayed in a different color and
pattern.

Figure 5.23: The 11 astigmatism regions of problem P5, each displayed in a different color
and pattern.
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Figure 5.24: Conversion of (z,y) near point from Cartesian to spherical coordinates.

>,

Expressing the far, near and astigmatism regions in angles

Far, near and astigmatism regions are defined using the grids of angles F,, NV}, and Aj,.
Unfortunately, the designers of progressive lenses are limited to having the information
about those grids in Cartesian coordinates (in mm). This is not a problem in a Cartesian
model, because the constraints can be expressed in points (x,y). But in our spherical
model, this information about the regions must be converted to angles (0, ¢). The con-
version from (x,y) to (0, ) depends on R(f,¢) as can be seen in (5.16). As R(0, ) is
the solution of our problem, we have an issue to solve.

For instance, let us consider the near region in Cartesian coordinates (mm) of the right
image of Figure 5.24, which corresponds to the set

{(z,y) e R*: (z —3)* + (y + 15)* < 5%},

that is, a circle of radius 5 mm centered at point (3 mm,—15 mm). Converting this
region into spherical coordinates is not an easy task. We will focus on the conversion
of the particular point (z,y) in the near region of the right image of Figure 5.24. The
left image of the figure shows two progressive lenses with the same Pr (power in far
region) and different Py (power in near region). It can be seen in this left image that the
conversion of point (z,y) from Cartesian to spherical coordinates depends not only on the
shape of the lens, but also on Pr and Py. In this figure, point (z,y) has two spherical
coordinate projections in the R3 space in spherical coordinates. In the image we can
appreciate that 6, # 6, because Ta #+ 7. This means that the grids of angles (for far,
near and astigmatism regions), which are parameters of the optimization model, depend
on the solution of the problem (the R(6;,¢;)). In order to solve this issue, a progressive
lens of the same Pr and Py (and p) must be pre-calculated to obtain approximate radii
values for the far and near regions; the (z,y) points are thus converted from Cartesian
to spherical coordinates by using this approximate radius, and the inverse of equation
(5.16). Using this technique, we can convert all the (far, near and astigmatism) regions
from Cartesian to spherical coordinates.

In the case of this project, Pr, Py and p were the same for all 15 instances; therefore,
once the radii for the far and near regions had been approximated, these approximations
could be used for all 15 problems. The radius considered for the corridor region was
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approximated by the mean of the radii of the far and near regions. The complete procedure
for generating and solving the 15 instances was thus as follows:

e First, compute a single progressive lens by fixing Pp, Py and p using Cartesian
coordinates.

e Compute approximate radii for the far and near regions.

e Compute the average of these two radii. This new radius will be used for the
corridor region, and for the other astigmatism regions that lie outside the far and
near regions.

e Using these three radii, compute all the far, near, corridor and astigmatism regions
for instances P1, P2, P3,..., P15 in spherical coordinates.

e Solve the 15 instances using the model in spherical coordinates.

It may be useful, in future research based upon this project, to improve the instance
generator. For instance, one potential improvement would be using for the corridor an in-
terpolated value (instead of an average) of the radii in the far and near regions, depending
on the distance of the corridor points from the far and near regions.

Objective function

The objective function (4.26) was used for all 15 instances, using the different weights wy,
wy, and ws:

e w; =0,wy =0, w3 =0, for problems P1 and P2 (that is, the objective function is a
constant).

e wi =1,wy =0,w3 =0, for problems P3, P4 and P5.

e w; =0,wy; =1, w3 =0, for problems P6, P7 and P8.

e w; = 0,wy; = 0,ws =1, for problems P9, P10 and P11.
e w; = 1,wy = 1,ws =0, for problems P12, P13.

e w; =1,wy =0,w3 =1, for problems P14 and P15.

In order to simplify our problem we did not use weights others than 0 or 1. Using
other weights in the objective function makes it difficult to comprehend the results in the
optimal solution. The units of the objective function are D? for problems P3, P4 and
P5; rD_(;Z for problems P6, P7, P8, P9, P10 and P11; and the sum of D? and D2 for

a rad
problems P12, P13, P14 and P15.

Finally, Table 5.1 reports the number of constraints for the 15 instances generated.
The number of variables is always the same, 0> = 30?> = 900, which is the number of
points in the grid G’. In general we have around 16000 (nonlinear) constraints, and most
of them are inequalities.

As stated above, the number of constraints in spherical coordinates is much bigger
than the number of constraints in Cartesian coordinates due to the group of constraints
(5.41) (page 77) (that are not used in Cartesian coordinates). Note that the number of
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Problem n. of constraints

P1 18057
P2 15870
P3 15870
P4 15936
P5 15870
P6 15836
pP7 15836
P8 15836
P9 15870
P10 15836
P11 15836
P12 15870
P13 15936
P14 15870
P15 15836

Table 5.1: Number of constraints for each problem. The number of variables was always

900.

variables are very similar (900 variables in spherical coordinates—o = 30—and 961 in
Cartesian coordinates—o = 31—). Note also that the grid of the points is always very
similar in both models: there are 3481 points in Cartesian coordinates (n? = 59? = 3481
points) and 3721 points in spherical coordinates (n? = 612 = 3721 points).

5.5.2 Computational environment

As in Chapter 4, the optimization model was implemented using the AMPL modeling
language linked with three different interior points solvers: LOQO, IPOPT and KNITRO.
The same two servers as in Chapter 4 were used: server 1 and server 2. The servers and
the versions of the solvers are fully described in Section 4.6.4 (page 34).

As for Cartesian coordinates, KNITRO with the active set (algorithm 3) and the SQP
(algorithm 4) algorithms did not converge.

5.5.3 Stopping criteria

First, we chose one of the solvers (LOQO) with different stopping criteria in order to find
tolerances for obtaining a sufficiently good quality progressive lens at the optimum. The
quality of the lens must be evaluated in terms of optics, by analyzing the isolines of the
optimal lens as well as the value of the objective function.

We ran the 15 problems using five different stopping criteria with LOQO, obtained by
adjusting the tolerances sigfig (the number of equal digits in the primal and dual objective
functions) and inftol (infeasibility tolerance for the primal and dual problems). Table 5.2
reports the values of the primal and dual objective functions in the last iteration for
problem P12. We chose problem P12 because the objective function is affected by the
square of the astigmatism as well as its partial derivatives. The relative error (last column
of Table 5.2) is defined as: |primal o.f. — dual o.f.| /|primal o.f.|.
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Stopping criteria primal o.f. dual o.f. relative error
sigfig = 2,inftol = 1072 10.14186825 -1257.362782  124.9774321
sigfig = 4,inftol = 107%  1.634879469  1.395858085  0.146201227
sigfig = 6, inftol = 1073 1.62718076  1.580678331  0.028578527
sigfig = 8,inftol = 1073 1.626118778  1.625710862  0.000250853
sigfig = 8,inftol = 10712 1.626114492 1.626114214 1.7096E-07

Table 5.2: Primal objective value, dual objective value and relative error at the optimum,
using LOQO 6.0.6 and five different stopping criteria for problem P12.

Astigmatism [D.] Astigmatism [D.]

Yimm.]
°

Yimm.]
)

Figure 5.25: Astigmatism of the lens of P12 using LOQO 6.0.6 and two different stopping
criteria: sigfig=2, inftol=10"2 (left) and sigfig=4, inftol=10"° (right).
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Figure 5.26: Astigmatism of the lens of problem P12 using LOQO 6.0.6 and four differ-
ent stopping criteria: sigfig=4, inftol=10"° (top left); sigfig=6, inftol=10"2 (top right);
sigfig=8, inftol=10"3 (bottom left); and sigfig=8, inftol=10"'? (bottom right).
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Problem  sigfig 4 sigfig 6 sigfig 8 sigfig 8
inftol 107 inftol 1073 inftol 1073 inftol 107'2
P1 313 34 124 411
P2 385 29 30 461
P3 54 50 69 87
P4 60 53 86 94
P5 54 50 69 87
P6 36 55 109 131
pP7 95 62 126 160
P8 36 55 109 131
P9 41 84 105 115
P10 33 49 63 68
P11 41 44 55 60
P12 42 48 63 74
P13 41 44 57 69
P14 36 44 58 65
P15 36 48 64 68

Table 5.3: Number of iterations for each problem with LOQO 6.0.6 and different stopping
criteria.

Numerically, from the first line of Table 5.2, we can conclude that the first stopping
condition sigfig= 2, inftol= 10~3 does not provide a suficiently high-quality solution. To
evaluate the solutions in terms of the optical properties of the lens produced, Figure 5.25
shows the astigmatism map for the lens obtained using LOQO and two different stopping
criteria; the units of these maps are diopters (D) for the isolines and the axes x and y are
displayed in mm. We see that the left image (sigfig=2, inftol=107?) is blurrier than the
right one (sigfig=4, inftol=107%). From an optics perspective, using sigfig=4, inftol=10"°
is prefereable to obtain a good quality lens.

Figure 5.26 shows the lenses obtained with the four last stopping criteria of Table 5.2
(i.e., the tighter ones). We observe that the four lenses obtained are of similar quality,
thus, the most preferred will consequently be the stopping criteria that solves the problem
faster (in terms of number of iterations, and thus also in terms of seconds). Table 5.3
shows the number of iterations required for all 15 instances and the four stopping crite-
ria. If we were considering only P12, we would choose the stopping condition sigfig=4,
inftol=10"°; but for P1 and P2, the objective function is constant, and we see that the
fastest executions were obtained with sigfig=6, inftol=10"3. Note that using sigfig=4,
inftol=107° for problems P1 and P2 required a large number of iterations to converge.

We conclude that the most suitable stopping criteria for LOQO 6.06 are sigfig= 6 and
inftol=1073. Since each solver might have different parameters or tolerances, we chose
for the remaining solvers those which are closest to sigfig= 6 and inftol=10"3, as shown
below.

5.5.4 Comparison of solvers

From this point forward, we will consider the same combination of solvers and servers
and the same stopping condition as in Cartesian coordinates. The solvers, servers and
stopping condition are described in Section 4.6.4 (page 34).
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Problem LOQO IPOPT IPOPT IPOPT KNITRO KNITRO
6.0.6 3.8.1 3.12.8 3.9.3 10.1.0alg1 10.1.0 alg 2

P1 34 80 80 79 150 24
P2 29 39 39 39 21 18
P3 20 44 44 44 36 22
P4 23 26 26 o6 62 22
P5 20 44 44 44 36 22
P6 55 o1 o1 o1 198 33
pP7 62 46 46 46 376 48
P8 95 ol ol ol 198 93
P9 84 49 49 49 93 25
P10 49 54 o4 o4 49 39
P11 44 51 51 51 53 34
P12 48 52 52 92 261 158
P13 44 66 66 66 262 43
P14 44 50 20 50 47 26
P15 48 51 51 51 48 26

Table 5.4: Number of iterations for each problem using the six different solvers.

All of the solvers reported the solutions obtained as “optimal” (LOQO and IPOPT)
or either “locally optimal” or a “satisfactory solution” (KNITRO). It is worth noting
the following: although the problem is nonlinear and nonconvex, which means each solver
could provide a different local minima, visualizing the obtained lenses allowed us to observe
that the six solutions found for each problem were the same (except for some negligible
numerical differences).

Table 5.4 shows the number of iterations for the 15 problems and six solvers. The
number of iterations for LOQO and IPOPT were between 29 and 84, while KNITRO
exhibited greater variability: it performed between 21 and 376 iterations with the direct
algorithm 1, and between 18 and 158 with the conjugate gradient algorithm 2. That is,
in some cases KNITRO was the best solver (for example for instances P2 and P15) but
it was the worst in others (for example, P12).

Figure 5.27 shows the number of iterations for the 15 problems P1-P15 using the six
different solvers. Note that the number of iterations for the different versions of IPOPT are
similar, and are superposed in the figure. Note that KNITRO with the direct algorithm
1 is the only solver that uses more than 180 iterations for some problems. It is the case
of problems P6, P7, P8, P12 and P13, that are the problems with wy # 0. KNITRO
with algorithm 2 (conjugate gradient) used fewer iterations than the other solvers (except
for P12), but we will see later that KNITRO with this algorithm 2 provided the largest
objectives.

Using spherical coordinates all the 15 problems converged with fewer than 2000 iter-
ations with any of the 6 solvers. In fact, all the problems converged with fewer than or
equal to 376 iterations (the maximum number of iterations was 376 iterations for problem
P7 using KNITRO with the direct algorithm 1). However, using Cartesian coordinates,
2 or 3 problems (out 72) did not converge using IPOPT solver, and 13 problems (out 72)
did not converge using KNITRO with the conjugate gradient algorithm 2. (See Table
4.3 (page 36).) This is an indication that the spherical coordinate model converges faster
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Figure 5.27: Number of iterations for each problem using the six different solvers.

(in terms of number of iterations) than the Cartesian coordinate model. For example,
LOQO for the Cartesian coordinate model used between 42 and 192 iterations, while for
the spherical coordinate model it required between 29 and 84 iterations. Note that differ-
ences with other solvers are larger, because some instances in Cartesian coordinates did
not converge.

The CPU time, reported in Table 5.5, was proportional to the number of iterations.
Recall that the first two solvers (LOQO and IPOPT 3.8.1) were executed on server 1
and the other four on server 2; this explains the different times between the first IPOPT
version and the other two, while all of them had similar number of iterations (server 2
was on average 2.8 times faster than server 1).

In comparing the CPU time for spherical versus Cartesian coordinates, we want to dis-
card the problem instances that did not converge. Recall that some problems in Cartesian
coordinates did not converge, and used 2000 iterations (and consequently large CPU time).
We chose LOQO solver because all problem instances converged using both, spherical (15
problem instances) and Cartesian coordinates (72 problem instances). Using LOQO, the
CPU time with the spherical coordinates was between 112 and 925 seconds, while it was
between 42 and 289 seconds with the Cartesian coordinate model, on the same server 1.
That means that the Cartesian coordinate model is faster (in CPU time) than the spher-
ical coordinate model. However, depending on the solver, not all the problems converged
using the Cartesian coordinate model (see Table 4.3)—and all the problems converged
using the spherical coordinate model.

In Section 4.6.5 (page 35) we defined the velocity as the number of iterations divided
by the CPU time (seconds). Table 5.6 shows the velocity for the 15 problems and the six
different solvers in spherical coordinates. Note that velocity depends on the server (server
2 is faster than server 1), on the objective function (calculating gradients is much slower
than not calculating them) and on the coordinates model. In Table 5.6 there is a horizontal
line separating 3 groups of problem instances, depending on the objective function: in
P1 and P2 the objective function is a constant (very fast); in P3, P4, P5 the objective
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Problem LOQO IPOPT IPOPT IPOPT  KNITRO KNITRO
6.0.6 3.8.1 3.12.8 3.9.3 10.1.0 alg 1 10.1.0 alg 2

(server 1) (server 1) (server 2) (server 2) (server 2) (server 2)
P1 112 211 90 93 128 51
P2 115 122 63 73 51 65
P3 165 134 66 75 60 65
P4 163 158 75 78 78 66
P5 165 135 74 68 62 64
P6 688 562 200 169 598 327
P7 769 512 184 158 1094 314
P8 616 562 201 174 601 325
P9 925 522 191 154 184 163
P10 265 539 219 172 179 295
P11 462 512 182 164 192 250
P12 616 278 204 180 852 861
P13 572 718 244 207 e 278
P14 472 510 179 161 170 187
P15 561 549 182 164 174 179

Table 5.5: CPU time (seconds) for each problem using the six different solvers.

Problem LOQO IPOPT IPOPT IPOPT  KNITRO KNITRO
6.0.6 3.8.1 3.12.8 3.9.3 10.1.0 alg 1 10.1.0 alg 2

(server 1) (server 1) (server 2) (server 2) (server 2) (server 2)
P1 0.3 0.4 0.9 0.8 1.2 0.5
P2 0.3 0.3 0.6 0.5 0.4 0.3
P3 0.3 0.3 0.7 0.6 0.6 0.3
P4 0.3 0.4 0.7 0.7 0.8 0.3
P5 0.3 0.3 0.6 0.6 0.6 0.3
P6 0.1 0.1 0.3 0.3 0.3 0.2
P7 0.1 0.1 0.2 0.3 0.3 0.2
P8 0.1 0.1 0.3 0.3 0.3 0.2
P9 0.1 0.1 0.3 0.3 0.3 0.2
P10 0.1 0.1 0.2 0.3 0.3 0.1
P11 0.1 0.1 0.3 0.3 0.3 0.1
P12 0.1 0.1 0.3 0.3 0.3 0.2
P13 0.1 0.1 0.3 0.3 0.3 0.2
P14 0.1 0.1 0.3 0.3 0.3 0.1
P15 0.1 0.1 0.3 0.3 0.3 0.1

Table 5.6: Velocity (iterations/seconds) for each problem using the six different solvers.



Chapter 5. Spherical coordinates 88

function is the calculation of the astigmatism (medium velocity); and finally in P6-P15 the
objective function uses the calculation of the power and/or astigmatism gradients (very
slow). Comparing the velocity for the spherical coordinate model versus the Cartesian
coordinate model, we note that each iteration is much slower in spherical than in Cartesian
coordinates. For example, for LOQO, the velocity in Cartesian coordinates is between
0.4 and 1.9 (see Table 6.13 in the Appendix, page 113), while in spherical coordinates the
velocity is between 0.1 and 0.3 (see the first column of Table 5.6). That means that each
iteration in spherical coordinates takes between 4 and 6 more time than for Cartesian
coordinates (0.4/0.1=4, 1.9/0.3=6.3)

In order to evaluate the solutions, not only in terms of the optical properties of the
lens produced, but also in terms of optimization, we checked the objective functions
and constraints at optimal points. The objective functions are shown in Table 5.7. We
see that, in general, KNITRO with algorithm 2 (conjugate gradient) provides the largest
objectives (which is not surprising, since the conjugate gradient is meant to approximately
solve Newton’s equations); the lowest objectives are provided by LOQO and KNITRO
with algorithm 1 (direct solver); while the objectives for IPOPT were in between. The
last column of Table 5.7 reports for each problem the difference between the minimum and
the maximum objective functions obtained, divided by the objective function of LOQO
(taken as a baseline). The largest of these ratios was 0.73 for P5 (and P3). Figure 5.28
shows the maps of power and astigmatism for P5 using LOQO; KNITRO with direct
algorithm 1; and KNITRO with conjugate gradient algorithm 2. Observe that these three
lenses are quite the same in terms of optics.

However, the lens obtained using KNITRO with conjugate gradient algorithm 2 is a
little bit different around the point (z = 22.5 mm, y = 5 mm), and it is also the lens
with a larger objective function. Note that the differences in the values of the objective
functions are not significant in terms of the lens’ optical properties. The difference in
the isolines around the point (x = 22.5 mm, y = 5 mm) does not affect the quality of
the lens. We can conclude that the solutions using any of the six different solvers and
spherical coordinates are the same in terms of optics.

Recall that in the Cartesian coordinate model not all the solutions reported as optimal
by all the solvers were equivalent. The largest relative error of the objective function
with respect to LOQO in spherical coordinates was 0.73, while in Cartesian coordinates
was 2.17 (using solver KNITRO with conjugate gradient algorithm 2, for family F11
and type T2). A relative error of 2.17 is enormous because it means that one objective
function—KNITRO with conjugate gradient algorithm 2—is more than three times the
other objective function—using LOQO.

To check the (primal feasibility of the) constraints, we will focus again on the astig-
matism and power maps, for instance P5 in Figure 5.28. Note that the power and the
astigmatism in the far, corridor, and near regions, have all the required values. In addi-
tion, the maximum and minimum of the whole lens for the astigmatism and power are
also in accordance with constraints (4.27)—(4.29). The astigmatism for all the points is
smaller than 1.2 - 2.0 = 2.4D, and the power is between 5D and 7D. Similar behavior
was observed for the remaining problems (astigmatism and power maps for these are not
reported here, in order to save space).

The values of the objective function (4.26) reported in Table 5.7 are related to the
optical quality properties of the solutions. The optical quality depends on the separa-
tion of the astigmatism isolines: the larger the isoline separation, the lower the change
in astigmatism and the better the lens. For instance, of the two different solutions for
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Figure 5.28: Astigmatism (left) and power (right) of the lens of problem P5 using LOQO
6.0.6 (top), KNITRO with direct algorithm 1 (middle) and KNITRO with conjugate

gradient algorithm 2 (bottom).
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Max. diff.
Prob- LOQO IPOPT IPOPT IPOPT KNITRO KNITRO (relative
lem 6.0.6 3.8.1 3.12.8 3.9.3 10.1.0 alg 1 10.1.0 alg 2 LOQO)

P1 1.0000  1.0000  1.0000  1.0000 1.0000 1.0000 0.00
P2 1.0000  1.0000  1.0000  1.0000 1.0000 1.0000 0.00
P3 0.2575 0.2824  0.2824  0.2824 0.2566 0.4455 0.73
P4 0.8872 09113 0.9113 0.9113 0.8859 1.0057 0.14
P5 0.2575 0.2824  0.2824  0.2824 0.2566 0.4455 0.73
P6 0.9106 0.9234 0.9234 0.9234 0.9100 1.1671 0.28
pP7 0.4348 0.4494  0.4494  0.4494 0.4354 0.6841 0.57
P8 0.9106 09234 0.9234 0.9234 0.9100 1.1671 0.28
P9 15.5478 15.5529 15.5529 15.5529 15.5434 16.1208 0.04
P10 11.8692 11.8786 11.8786 11.8786 11.8733 11.8832 0.00
P11 121851 12.1957 12.1957 12.1957 12.1815 12.1842 0.00
P12 1.6272 1.6470 1.6470 1.6470 1.6261 1.6304 0.01
P13 29763 29892 29892  2.9892 2.9739 3.3132 0.11
P14 16.9738 16.9763 16.9763 16.9763 16.9709 16.9802 0.00
P15 13.9853 13.9923 13.9923 13.9923 13.9826 14.2659 0.02

Table 5.7: Objective function for each problem using the six different solvers.

problem P12 shown in Figure 5.25, the right one is better, since isolines are more sepa-
rated. However, such a control on the separation of isolines is already implicitly included
in the model: the second term in the objective function (4.26) (the one weighted by ws)
attempts to minimize the astigmatism gradient (similarly, the third term minimizes the
power gradient), favoring lens with separated isolines.

We may finally remark that using identical stopping conditions (opttol= 107?), did
not produce the same results when using KNITRO with direct algorithm 1 and conjugate
gradient algorithm 2: it performed faster but worse with algorithm 2 than with algorithm
1. Again, this can be explained by the Newton direction being computed approximately
by a conjugate gradient at each interior point iteration. Using KNITRO with the active
set algorithm (algorithm 3) and the SQP algorithm (algorithm 4) the problems did not
converge. We also, unsuccessfully, tried other active set codes, such as MINOS (which
implements a projected Lagrangian method for nonlinearly constrained problems): in 10
million iterations (3 hours of CPU time) on server 2, MINOS did not converge, and the
surface obtained—although it looked like a progressive lens—was very rough.

In summary, we were able to solve 15 different instances with six different solvers
when using the model in spherical coordinates. In all cases, we obtained high-quality
progressive lenses. As stated above, all of the lenses obtained were equivalent for the six
solvers.

Recall that this did not happen in Cartesian coordinates. Note that not all the problem
instances converged for the 6 solvers in Cartesian coordinates and some of the solutions
reported as optimal for different solvers were different (the power and astigmatism maps

differed).
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5.6 Using B-splines of four—, five— and six—degree

At the end of Section 3.7 (page 17) we stated that using B-splines of a degree greater than 3
might be better than using three-degree B-splines due to a major degree of differentiability.
In this section we will use B-splines of three—, four—, five— and six—degree. In theory, higher
degree B-splines would be better, but in practice we will see in this section that this is
not the case.

In this section the optimization model defined in Section 5.4 of this chapter (page 75)
is used by replacing the definition of the radius of the surface (5.35) with:

zaSOJ ZZ 9/,7S0_] B4 ) (@j)» (Zv]) €g, (542)

i'=1j5'=1

(0:,5) ZZ e}, ¢} B3 (0:) B3 (¢;),  (i,5) €6, (5.43)

i'=1j'=1
or

0:, ;) ZZ o0y, ) By (0:) B (), (i,4) € G, (5.44)
=1 j'=1

where Bi%(ei)? B?’(@j)? B?’(Gi)a B;‘l’(gpj)a Bz‘5’(‘9i)> B?’(SOJ')’ Bi5’<9i>7 B]G’(ij)a (Z>]> €g, (i,aj/> S
G', are the 1-dimensional four-degree (5.42), five-degree (5.43) and six-degree (5.44) B-
splines basis defined in [44, page 100] using a recursive formula. That means that the
B-splines defined in (3.22)- (3.29) (page 16) have been increased up to six-degree. In
this section the three-degree B-splines defined at (5.35) (page 76) and used in previous
sections will also be used.

Once the optimization model is defined, the 15 problems P1-P15 defined in Section
5.5.1 (page 77) are solved using B-splines of degree 3, 4, 5 and 6. In this section, the
solver IPOPT 3.8.1 is used on server 1 with the stopping criteria 1072 that was also used
in Section 5.5.4 (page 84). Table 5.8 reports the convergence of problems P1-P15 using
four-degree B-splines, and only 5 out of 15 problems converged. However, using three—,
five— and six-degree B-splines, all the 15 problems converged. Since 5-degree B-splines
are calculated using 4-degree B-splines, we discarded a problem of implementation in
B-splines of 4-degree (as it could be imagined).

Table 5.9 shows the number of iterations required for all 15 instances considering three-
, four—, five— and six-degree B-splines. The last row shows the mean of the number of
iterations for the 15 problems and each degree. Considering only the number of iterations,
any of the degrees except 4-degree would be more or less equivalent (the mean of the
number of iterations is 1.8 times for six-degree compared to three-degree but very similar
for four— and five—degree -1.3 and 1.1 the number of iterations of three-degree-).

However, considering the CPU time, the three-degree B-splines are much faster than
the higher degree B-splines. Table 5.10 reports the number of seconds for each problem
and the degree required to achieve the optimum. The four-degree model was on average
2.5 times slower than the three-degree model; the five-degree model was on average 3.7
times slower than the three-degree model and finally the six-degree model was on average
14.1 times slower than the three-degree model.

Table 5.11 reports the values of the primal objective functions at the optimal solution
for each problem and each degree. As the calculation of the objective function is computed
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Problem 4-degree

P1 Optimal

P2 Iterations limit (1.000)
P3 Iterations limit (1.000)
P4 Local infeasibility
P5 Iterations limit (1.000)
P6 Optimal

p7 Optimal

P8 Optimal

P9 Iterations limit (1.000)
P10 Optimal

P11 Iterations limit (1.000)
P12 Iterations limit (1.000)
P13 Local infeasibility
P14 Iterations limit (1.000)
P15 Iterations limit (1.000)

Table 5.8: Convergence for each problem with IPOPT 3.8.1 and four-degree B-splines.

Problem 3-degree 4-degree b5-degree 6-degree

P1 80 72 69 87
P2 39 - 42 73
P3 44 - 20 78
P4 26 - 26 78
P5 44 - 20 78
P6 o1 74 68 96
pP7 46 45 56 93
P8 ol 74 68 96
P9 49 - 47 95
P10 o4 80 46 107
P11 51 - 46 99
P12 52 - 74 83
P13 66 - 79 123
P14 20 - 48 93
P15 o1 - 48 96
mean 22.3 69.0 26.5 91.7

Table 5.9: Number of iterations for each problem with IPOPT 3.8.1 and B-splines of
different degrees.
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Problem 3-degree 4-degree 5-degree 6-degree

P1 211 327 545 1272.84
P2 122 - 510 1233.53
P3 134 - 572 1465.81
P4 158 - 589 1086.51
P5 135 - 4477 1080.46
P6 562 1341 2222 8532.65
pP7 512 973 1931 8182.59
P8 262 1313 2246 8734.84
P9 022 - 1665 7719.15
P10 539 1436 1669 8763.61
P11 512 - 1661 8424.46
P12 o978 - 2758 7250.05
P13 718 - 2934 9555.73
P14 510 - 2013 7713.33
P15 549 - 1697 7940.07
mean 421.6 1078.0 1563.9 5930.4

Table 5.10: Number of seconds for each problem with IPOPT 3.8.1 and B-splines of
different degrees.

Problem 3-degree 4-degree 5-degree 6-degree

P1 1.00 1.00 1.00 1.00
P2 1.00 - 1.00 1.00
P3 0.28 - 0.25 0.24
P4 0.91 - 0.91 0.83
P5 0.28 - 0.25 0.24
P6 0.92 7.23 0.85 0.55
pP7 0.45 0.40 0.53 0.25
P8 0.92 7.23 0.85 0.55
P9 15.55 - 21.84 11.30
P10 11.88 53.30 16.74 11.63
P11 12.20 - 16.94 13.04
P12 1.65 - 1.53 0.86
P13 2.99 - 3.75 2.42
P14 16.98 - 23.10 12.59
P15 13.99 - 18.56 14.88

Table 5.11: Primal objective value for each problem with IPOPT 3.8.1 and B-splines of
different degrees.
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Figure 5.29: Astigmatism (left) and power (right) of the lens of problem P6 using IPOPT
and B-splines of three-degree (top) and five-degree (bottom).

using B-splines of different degrees, this value mixes the quality of the solution with the
precision of the calculation of the solution for each model. I.e., having a smaller value
does not necessarily means having a better solution, because the objective function has
been calculated using a different model. It would be interesting to calculate the objective
function of the solutions for each problem and three-degree B-spline using the six-degree
B-spline model. This can be done as a future task.

The number of iterations, CPU time (number of seconds), and objective function for
all problems P1-15, using three-degree B-splines of this section are exactly the same as
the results from Section 5.5.4 (page 84) using IPOPT 3.8.1 on server 1. This because the
same model, solver and server have been used.

Figures 5.29 and 5.30 show the lenses obtained for problem P6 using B-splines of differ-
ent degrees. It is appreciated that the three-degree and five-degree power and astigmatism
maps are very similar (Figure 5.29). However, the maps using four-degree and six-degree
are very rough (Figure 5.30), specially for the four-degree maps. In terms of optics, the
quality of the solutions using four-degree and six-degree is not acceptable. Solutions with
maps derived from three-degree and five-degree B-splines are very similar but not identi-
cal (see, for example, the map of power around the point (r = 20 mm,y = —10 mm)).
In terms of optics, three-degree and five-degree solutions are of equal quality and produce
high-quality lenses.

The quality of the lenses obtained using odd degree numbers (three— and five—degree) is
much better than the quality obtained using even degree numbers (four— and six—degree).
[43] explains that the odd-degree and the even-degree B-splines produce different results,
which we have also oberved here.

In order to increase the lens quality obtained using six-degree B-splines, we also ran
the P6 problem using tighter tolerances:

e LOQO 6.0.6: sigfig= 4, inftol= 107°.
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Figure 5.30: Astigmatism (left) and power (right) of the lens of problem P6 using IPOPT
and B-splines of four-degree (top) and six-degree (bottom).

Solver Stopping CPU time Number of Primal objective
condition (seconds) iterations values

LOQO inftol =1.0e — 6 215 16860 0.548436563

[POPT tol = 10e — 6 173 12735 0.539232799

Table 5.12: CPU time (seconds) —on server 1-—, number of iterations and primal objective
value using strict tolerances for problem P6 with six-degree B-splines.

e IPOPT 3.8.1, server 1, tol= 1074

However, using these strict tolerances, the lenses we obtained had not improved and the
number of iterations and seconds increased significantly, as can be seen in Table 5.12.

Figure 5.31 shows the lenses obtained using the tighter stopping conditions for problem
P6 and using the six-degree B-spline. It is appreciated that none of these figures is of a
high enough quality because all of them are very rough. In addition, the times required
to obtain the optimum is very high, as can be seen in Table 5.12.

Increasing the tolerance of B-splines of four and six-degree did not enhanced the
solution. The number of iterations has increased a lot but the solution has not improved.

Note that patent [13] uses splines of five-degree with control points spaced 10 mm or
20 mm, and the results seem to be reasonable. However, for our problem, using B-splines
of more than three-degrees does not offer any benefit. In addition, the control points of
our problem are spaced 4 mm in the case of Cartesian coordinates and 0.0196 radians in
the case of spherical coordinates.

To sum up, considering the quality of the solutions and CPU time, the three-degree
is the best choice. Lenses obtained using five-degree B-splines have the same optical
quality as lenses obtained using three-degree B-splines, but solving the model with five-
degree B-splines was on average 3.7 times slower than the three-degree model. For all of
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Figure 5.31: Astigmatism of the lens of problem P6 using six-degree B-splines and LOQO
inftol = 1.0e — 6 (left) and IPOPT tol = 10e — 6 (left).

these reasons, the three-degree B-splines model is the best model and is the model used
throughout this thesis.

According to [43], placing the knots and nodes in a different way for even degree B-
splines might avoid poor quality results. A further task would be to apply the shifting
method described in [43] to our spherical even degree B-splines, in order to see whether
it makes them work correctly.

5.7 Pros and cons of Cartesian and spherical coordi-
nates

Comparing the spherical and Cartesian coordinate models is not an easy task. Theoreti-
cally, the spherical model improves convexity, but in practice it requires an extra effort to
express the parameters in spherical coordinates. It is not easy to have an identical opti-
mization problem in Cartesian and in spherical coordinates, due to the issue of expressing
the far, near and astigmatism regions in angles instead of millimeters. However, as a rule,
the spherical coordinate model requires fewer iterations to converge, but each iteration is
slower, while the Cartesian coordinate model requires more iterations and each iteration
is faster. Depending on the stopping conditions, CPU time and the number of iterations
of both models may vary significantly, and thus they are difficult to compare. All of
the problems converged with all of the solvers using spherical coordinates, which was not
the case for Cartesian coordinates: some problems did not converge in fewer than 3000
iterations. In addition, the solutions obtained using spherical coordinates and different
solvers are more similar (the relative error is smaller) than using Cartesian coordinates.
We may conclude that the spherical coordinate model is slower in CPU time, but that
the results obtained are better.

Both models were implemented using the AMPL modeling language and were solved
using interior point methods with solvers LOQO, IPOPT, and KNITRO. Concerning the
KNITRO solver, two variants of interior point algorithm were used: one that uses a direct
method to solve Newton’s equations and another that uses an iterative conjugate gradient
method. [POPT and LOQO use a direct method. In this thesis we solved a set of 72
problem instances using Cartesian coordinates and a set of 15 problem instances using
spherical coordinates. As stated above, we did not find a method that achieved equivalence
between both methods, and expressing the parameters in spherical coordinates requires
an extra effort. However, we will compare some results in terms of the convergence of
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these two models.

The Cartesian coordinates model has 900 variables and between 6000 and 8000
constraints. The problem is solved using the different interior point solvers described
above. LOQO solver is installed on a server with eight 2.7GHz AMD Opteron 8384
Shanghay CPUs, with 32 cores and 128GB RAM. Using LOQO solver on this server, all
of the problem instances converged with fewer than or equal to 192 iterations within 289
seconds.

Note that in previous work by the same author [47], the Cartesian coordinate model
using LOQO on the same server took between 10 and 32 minutes to converge and between
248 and 1098 iterations, and only 5 cases out 9 converged using the same LOQO solver.

In the work of this thesis, some of the proposed instances did not converge using
Cartesian coordinates linked to KNITRO with the iterative conjugate gradient method
and linked to IPOPT solver, In addition, the relative error of the objective function with
respect to LOQO reached up to 2.17, which is enormous. The maximum relative error
should be about 0.30, thus some of the problem instances considered to be optimal in fact
produced some solutions that were of insufficient quality. The quality of the solution, is
one of the drawbacks when using Cartesian coordinates. The solvers that produced the
highest-quality lenses were LOQO and KNITRO with the direct method.

On the other hand, the spherical coordinates model has a similar number of vari-
ables (991), but has between 15000 and 18100 constraints. Some constraints have been
added in comparison with the Cartesian coordinate model in order to help the conver-
gence. All of the problems converged using all of the interior point proposed solvers
(which was not the case for the Cartesian coordinates) and the maximum relative error
(with respect to LOQO) was 0.73 (instead of 2.17 for Cartesian coordinates). Thus, the
convergence of the problem has been improved considerably. Again, the best solvers were
LOQO and KNITRO with the direct method, but all solvers converged using the spherical
coordinate model for all of the problem instances proposed (which was not the case for
Cartesian coordinates).

Using the LOQO solver on the same machine, all of the problem instances converged
with fewer than or equal to 84 iterations within 925 seconds. That means that the num-
ber of iterations with respect to Cartesian coordinates decreased (for example from a
maximum of 192 iterations—Cartesian—to 84—spherical—), but the number of seconds
increased (from a maximum of 289 seconds—Cartesian—to 925 seconds—spherical—).
The reason for this is that the convexity of the problem has improved, but spherical coor-
dinates required large calculations for each iteration, which increased the CPU time. The
CPU time for each iteration and the total CPU time increased with respect to Cartesian
coordinates.

We thus conclude that the spherical coordinates solved all of the problem instances and
produced higher quality lenses than the Cartesian coordinates (the relative error between
solvers is much lower), the convexity is better (although the problem is still nonconvex),
the number of iterations is lower but the required CPU to converge the problem has
increased with respect to Cartesian coordinates.

Given the complexity of both models, it is difficult to obtain theoretical results for a
general setting, other than the small example used in the Proposition 1. The objective
functions of both the Cartesian and the new spherical models are nonconvex. A (yet
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open) problem would be to study the convexity of the objective function and the feasible
set around the optimal solution. However, this would require and analytical computation
and study of a very large Hessian and a multidimensional set in a neighborhood of the
optimal point, which has not yet been done.

In addition, we observed that in all instances tested using spherical coordinates, the
different solvers always converged to the same solution. This indicates that, near the
optimum, the problem (objective function and feasible set) is convex; but even more
important, it raises the question of whether this local minimum is indeed a global one. A

definitive answer to those questions is part of the further work research to be done in this
field.
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Conclusions and contributions

This thesis develops two different methods for designing progressive lenses using interior
point solvers. Progressive lenses are used to correct presbyopia and have a complex design.
The upper part of the progressive lens is used for far vision, the lower part is used for near
vision, and the middle part is used for intermediate distances. This thesis only considers
a side of the lens, that which is farthest from the eye. The upper part of this surface has
less power than the bottom zone. Unfortunately, modifying the power across the surface
lens vertically creates lateral aberrations in form of astigmatism. The main properties of
a progressive lens are its power and astigmatism, which are calculated using the principal
curvatures of the surface, i.e, using the second partial derivatives of the surface. The
power is the product of the mean principal curvatures of the lens surface multiplied by
a constant; and the astigmatism is the product of the principal curvatures difference
multiplied by the same constant. The optimization models proposed in this thesis use
these definitions of power and astigmatism in order to design progressive lenses.

The first model is based on Cartesian coordinates, and improves a previous model de-
scribed in [47]. The second model uses spherical coordinates and exhibits better convex-
ity properties than previous models. When spherical coordinates are used in ophthalmic
optics, the center of the coordinates is referenced at the center of rotation of the eye.
However, the spherical coordinate model proposed in this thesis is entirely unrelated to
this model. The far zone of a progressive lens can be approximated by a sphere because
the power of the lens in this region and, consequently, its curvature is nearly constant.
The center of this sphere will be the center of the new proposed model using spherical
coordinates. If the center of the spherical coordinates were not placed as explained, the
model would not exhibit better convexity properties.

The new Cartesian and spherical coordinate models have been implemented using the
AMPL modeling language and solved using interior point solvers. Their implementation
has allowed us to successfully compute real-world progressive lenses. The optics of these
progressive lenses are of high-quality; not only are they similar to the progressive lenses
obtained using previously existing Cartesian coordinate models, but they also are of the
same quality as other progressive lenses that are sold on the market. However, we would
like to point out that the design of these lenses differs: the corridors of the lenses obtained
using spherical coordinates are usually slightly longer, and either the far or the near
region may be larger or smaller than those of lenses obtained using Cartesian coordinates.
All of these lenses are accepted on the progressive lens market. One limitation worth
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commenting on is that we were unsuccessful in obtaining equivalence between the two
sets of data required for calculating the lenses using Cartesian coordinates and spherical
coordinates. Such equivalence is possible only if the lenses are solved in both coordinate
systems. This is because the parameters in Cartesian coordinates are the coordinates
(x, y) of the different zones (far, near, corridor and astigmatism zones), and the same
parameters in spherical coordinates are the (6, ¢). Converting these points from Cartesian
to spherical coordinates requires the value of the radius to each point or the value of the
coordinate z for each point, which are the solution of the model in spherical and Cartesian
coordinates, respectively.

For both models, we compared different interior point solvers. Both models were
solved using the interior points solvers LOQO, IPOPT, and two variants of KNITRO:
one that solves the Newton’s equation using a direct method (factorization) and the other
through an iterative conjugate gradient. Using Cartesian coordinates, the LOQO solver
and KNITRO with the direct method worked correctly in all cases in fewer than 3000
iterations, but some instances with IPOPT (3 instances out of 72) and with KNITRO
using the iterative conjugate gradient method (13 instances out of 72) did not converge.
Using spherical coordinates, all of the proposed solvers converged in all instances.

The new Cartesian coordinate model greatly reduced the CPU time and the number of
iterations with respect to the previous Cartesian model [47]. However, the main drawback
of the Cartesian coordinate model is that not all the problems converged using all the
proposed interior point solvers (with fewer than 3000 iterations) and that the relative error
was quite large. In the previous Cartesian coordinate model, the percentage of problems
that did not converge was higher.

The main advantage of using spherical coordinates is that the problem exhibits bet-
ter convexity properties. Improved convexity properties can be proved theoretically on
Proposition 1 (page 74), and in three aspects in practice: the number of iterations and
the relative error decreased (with respect to Cartesian coordinates), and all the problems
converged (which was not the case for the Cartesian coordinate model). However, as each
iteration took a lot of time, the CPU time is higher overall for the spherical than for the
Cartesian model.

The Cartesian coordinate model allows us to orient the power and astigmatism gra-
dients, thus producing a new particular type of progressive lenses. Theses lenses are
used when personalizing lenses for each user. For example when considering the user’s
eye movements or the axis of the cylinder of the prescription. This result was patented
during the research work for this thesis (see [46]).

The main contributions of this research are: a Cartesian coordinate model that im-
proves the model presented by [47]; the ability to orient power and astigmatism gradients
(patented in [46]); a new spherical coordinate model published in the article [45] and a
comparison of different interior point solvers (given in Sections 4.6.5 and 5.5.4). Several
conferences and other publications are reported in Section 2.3 (page 10).

However, there are two aspects of this thesis that could be ameliorated. The first
is to improve the third-degree B-spline basis used to represent the surface. Considering
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that calculating power and astigmatism uses the second partial derivatives of the surface,
the degree of the B-splines should be increased. However, five-degree B-splines did not
improve the quality of the solutions, and even degrees did not produce correct progres-
sive lenses. The shifting method described in [43] might improve the Cartesian and the
spherical coordinate models using even degree B-splines.

The second improvement involves studying the relationship between the data sets used
in the two models of Cartesian and spherical coordinates. As previously stated, we did not
succeed in obtaining the relationship of the parameters in both models without solving
one of the models beforehand. One improvement would be to approximate the radius
of the different zones using one or two precalculated radii. Enhancing this relationship
would improve the quality of the instance generator.
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Appendix

Results of the optimization problems using Cartesian
coordinates

Number of iterations for each family and each problem for six
different solvers in Cartesian coordinates

Family/Type | T1 T2 T3 | T4 T5 T6
F1 62 79 73] 72 66 62
F2 69 67 64| 71 146 64
F3 116 75 91 | 75 61 106
F4 83 82 89| 8 110 75
F5 43 81 45| 60 H3 75
F6 55 47 49 | 42 56 57
F7 55 107 46 | 55 106 H4
F8 71 103 55| 45 59 48
F9 8 8 90 | 81 102 83
F10 8 8 90| 8 94 79
F11 69 192 63 | 115 92 76
F12 54 62 47 | 90 153 47

Table 6.1: Number of iterations for each family and problem with LOQO 6.0.6 on “server
17,
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Family/Type | T1 T2 T3 | T4 T5 T6
F1 136 206 303 | 207 251 309
F2 123 333 254 | 420 374 273
F3 124 190 210 | 249 351 248
F4 254 231 544 | 276 365 329
F5 1269 436 808 | 178 168 2000
F6 698 186 698 | 180 273 169
F7 778 163 1195 | 208 215 190
F8 521 192 936 | 227 213 242
F9 72 247 380 | 443 227 249
F10 72 251 386 | 491 231 258
F11 406 262 242 | 2000 229 259
F12 197 201 540 | 163 158 182

Table 6.2: Number of iterations for each family and problem with IPOPT 3.8.1 on “server

17.

Family/Type | T1 T2 T3 | T4 T5 T6

F1 210 206 269 | 207 332 272
F2 957 267 376 | 389 422 297
F3 264 190 271 | 247 426 296
F4 271 228 388 | 267 376 325
Fb 465 486 685 | 551 537 2000
F6 2000 575 704 | 628 650 727
F7 697 731 856 | 523 527 541

F8 508 527 748 | 439 617 650
F9 329 251 306 | 352 225 414
F10 404 252 589 | 595 231 245
F11 313 252 388 ] 2000 226 264
F12 180 198 151 | 159 165 195

Table 6.3: Number of iterations for each family and problem with IPOPT 3.9.3 on “server

27,
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Family/Type | T1 T2 T3 | T4 T5 T6
F1 210 206 262 | 207 307 253
F2 349 467 336 | 395 325 313
F3 337 233 242 | 270 206 257
F4 272 268 295 | 263 260 303
F5 482 501 727 | 568 547 2000
F6 2000 553 748 | 626 658 792
F7 674 744 968 | 913 888 924
F8 510 545 745 | 610 617 659
F9 331 263 503 | 320 226 341
F10 384 245 402 | 335 235 247
F11 340 252 325 | 2000 229 265
F12 179 197 151 | 164 160 184

Table 6.4: Number of iterations for each family and problem with IPOPT 3.12.8 on “server

27,

Family/Type | T1 T2 T3 | T4 T5 T6
F1 52 293 358 97 50 20
F2 59 257 346 87 o7 110
F3 57 269 326 | 127 55 54
F4 205 572 T73 | 406 368 375
Fb 433 843 500 | 562 1025 645
F6 760 799 1131 | 1011 1371 646
F7 313 376 791 | 455 447 398
F8 40 284 319 | 146 38 45
F9 40 284 319 | 146 38 45
F10 40 281 397 | 137 38 45
F11 41 240 264 73 27 32
F12 61 134 154 67 o8 86

Table 6.5: Number of iterations for each family and problem with KNITRO 10.1.0 direct

algorithm 1 on “server 2”.
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Family/Type | T1 T2 T3 | T4 T5 T6

F1 859 701 2000 | 2000 1332 604
F2 746 260 1311 | 53 110 2000
F3 483 915 1008 | 46 91 920
F4 385 410 1103 | 1090 418 1250
F5 281 495 700 | 812 770 280
F6 739 1026 2000 | 1727 605 932
F7 772 671 699 | 696 758 834
F8 421 1222 385 | 448 513 970
F9 421 1222 385 | 448 513 970
F10 232 958 1214 | 48 211 2000
F11 2000 383 2000 | 883 2000 2000
F12 2000 148 158 | 2000 379 2000

Table 6.6: Number of iterations for each family and problem with KNITRO 10.1.0 con-
jugate gradient algorithm 2 on “server 2”.
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CPU time for each family and each problem for six different
solvers in Cartesian coordinates

Family/Type | T1 T2 T3 | T4 T5 T6
F1 42 50 50 | 49 46 42
F2 4 44 42 | 45 75 42
F3 65 48 56 | 48 42 61
F4 51 51 55 | 52 63 48
F5 102 175 105 | 136 120 156
F6 7 70 70|65 T8 T8
F7 84 134 67 | 78 134 76
F8 143 198 116 | 99 121 104
F9 155 156 162 | 143 175 147
F10 150 151 158 | 133 158 135
F11 116 289 108 | 181 149 126
F12 95 109 &7 | 149 252 &7

Table 6.7: CPU time (seconds) for each family and problem with LOQO 6.0.6 on “server
17.

Family/Type | T1 T2 T3 | T4 T5 T6

F1 76 104 150 | 103 118 149

EF2 67 148 114 | 173 171 123

F3 67 88 102 | 110 154 114
F4 131 117 261 | 126 177 146
F5 2052 264 1342 | 272 254 3579
F6 707 211 734 | 197 362 195
F7 785 182 1218 | 225 243 210
F8 888 364 1510 | 404 382 438
F9 106 356 564 | 619 330 374
F10 103 351 532 | 724 325 359
F11 571 376 341 | 3224 323 363
F12 319 284 821 | 234 238 260

Table 6.8: CPU time (seconds) for each family and problem with [IPOPT 3.8.1 on “server
17.
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Family/Type | T1 T2 T3 | T4 T5 T6
F1 45 39 49 38 57 48
F2 154 47 62 62 69 51
F3 46 36 47 | 43 82 ol
F4 47 42 63 47 68 54
F5 345 306 440 | 364 330 1463
F6 726 224 320 | 239 276 335
E7 283 286 319 | 209 204 211
F8 316 346 498 | 275 379 471
F9 189 146 171 | 195 129 227
F10 221 143 323 | 380 132 136
F11 212 143 213 | 1145 130 151
F12 108 115 91 95 98 114

Table 6.9: CPU time (seconds) for each family and problem with [IPOPT 3.9.3 on “server
27,

Family/Type | T1 T2 T3 | T4 T5 T6
F1 37 36 45 37 50 42
F2 53 72 52 59 52 49
F3 52 39 40 45 36 42
F4 44 44 48 44 43 49
F5 301 318 493 | 361 358 1405
F6 755 206 273 | 233 283 288
F7 249 273 359 | 325 320 339
F8 322 347 461 | 387 383 405
F9 184 149 276 | 177 129 188
F10 207 136 217 | 183 133 138
F11 188 140 178 | 1369 129 147
F12 102 112 &9 95 93 106

Table 6.10: CPU time (seconds) for each family and problem with IPOPT 3.12.8 on
“server 27.
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Family/Type | T1 T2 T3 | T4 T5 T6
F1 19 45 55 | 24 18 20
F2 20 44 52 | 23 21 25
F3 21 43 51 | 28 21 19
F4 159 311 423 | 250 224 231
F5 170 286 186 | 216 366 240
F6 281 288 403 | 561 476 246
F7 190 229 448 | 376 270 239
F8 35 108 172 95 33 36
F9 34 108 172 94 34 37
F10 34 106 156 | 81 34 36
F11 36 146 138 | 73 81 48
F12 46 80 90 | 46 44 56

Table 6.11: CPU time (seconds) for each family and problem with KNITRO 10.1.0 direct

algorithm 1 on “server 2”.

Family/Type | T1 T2 T3 | T4 T5 T6
F1 159 125 341 | 314 204 115
F2 151 68 225 | 24 31 320
F3 103 176 185 | 23 30 151
F4 337 250 629 | 767 294 686
F5 132 208 279 | 324 294 141
F6 382 475 833 | 777 336 443
F7 650 501 516 | 525 567 655
F8 180 470 240 | 178 299 562
F9 179 468 239 | 177 298 558
F10 107 376 713 | 41 136 1243
F11 1193 174 955 | 388 1121 1197
F12 1115 106 113 | 1085 232 1083

Table 6.12: CPU time (seconds) for each family and problem with KNITRO 10.1.0 con-
jugate gradient algorithm 2 on “server 2”.
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Velocity (iterations/seconds) for each family and each problem
for six different solvers in Cartesian coordinates

Family/Type | T1 T2 T3 | T4 T5 T6
F1 1.5 16 15|15 14 1.5
F2 1.6 1.5 15|16 19 1.5
F3 1.8 16 16|16 15 1.7
F4 16 1.6 16|16 1.7 1.6
F5 04 05 0404 04 0.5
F5 0.7 07 07106 07 0.7
F7 0.7 08 07]07 08 0.7
F8 05 05 05(05 05 0.5
F9 06 05 0606 06 0.6
F10 06 06 06|06 06 0.6
F11 06 0.7 0606 06 0.6
F12 06 06 0506 06 0.5

Table 6.13: Velocity (iterations/seconds) for each family and problem with LOQO 6.0.6

on “server 17.

Family/Type | T1 T2 T3 | T4 T5 T6
Fl 1.8 20 2020 21 21
F2 1.8 22 22|24 22 22
F3 1.8 22 21[23 23 22
F4 1.9 20 21|22 21 23
F5 06 1.6 06|07 07 0.6
F5 1.0 09 1.0/09 08 09
F7 1.0 09 1.0/09 09 09
FS 06 05 06|06 06 0.6
F9 0.7 0.7 0.7]07 07 0.7
F10 0.7 0.7 0.7]07 07 0.7
F11 0.7 0.7 0.7]/06 07 0.7
F12 06 0.7 0.7]07 07 0.7

Table 6.14: Velocity (iterations/seconds) for each family and problem with IPOPT 3.8.1

on “server 17.
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Family/Type | T1 T2 T3 | T4 T5 T6
F1 46 52 55|54 H8 5T
F2 6.2 57 6.1|62 6.1 5.8
F3 5.7 53 HT7|5T 52 58
F4 5.8 54 6.1]57 55 6.0
F5 1.3 16 16|15 16 14
F5 28 26 22|26 24 22
F7 25 26 27(25 26 26
F8 16 15 1516 16 14
F9 1.7 1.7 1818 1.7 18
F10 1.8 1.8 18|16 1.8 1.8
F11 1.5 1.8 18|17 1.7 18
F12 1.7 17 17|17 1.7 1.7

Table 6.15: Velocity (iterations/seconds) for each family and problem with IPOPT 3.9.3

on “server 2”.

Family/Type | TI T2 T3] T4 T5 16
Fl 57 5.7 58|56 6.1 6.1
F2 65 65 65|67 62 6.4
F3 64 59 6.1|6.1 57 6.1
F4 62 6.1 62|59 6.1 6.2
F5 1.6 16 15|16 1.5 14
F5 27 27 27|27 23 27
F7 27 2.7 27|28 28 27
Fs 16 16 16|16 16 16
F9 18 18 18|18 1.8 18
F10 19 18 19|18 1.8 18
Fi1 18 18 18|15 1.8 18
F12 1.7 18 17|17 17 17

Table 6.16: Velocity (iterations/seconds) for each family and problem with IPOPT 3.12.8

on “server 27.
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Family/Type | T1 T2 T3 | T4 T5 T6
F1 28 6.5 66|40 2.7 2.5
F2 3.0 58 6.6|38 27 44
F3 27 62 64|45 26 29
F4 16 1.8 18|16 16 1.6
F5 26 29 27|26 28 27
F5 27 28 28|18 29 26
F7 16 16 18|12 1.7 1.7
F8 1.2 26 19|15 12 1.2
F9 1.2 26 19|15 11 12
F10 1.2 27 2517 11 1.3
F11 1.1 16 19|10 03 0.7
F12 1.3 1.7 1714 13 1.5

Table 6.17: Velocity (iterations/seconds) for each family and problem with KNITRO
10.1.0 direct algorithm 1 on “server 2”.

Family /Type | T1 T2 T3 | T4 T5 T6
F1 54 56 59|64 65 5.2
F2 49 38 58|22 35 6.2
F3 4.7 52 54|20 3.0 6.1
F4 1.1 16 18|14 14 138
F5 21 24 25|25 26 2.0
F5 1.9 22 24122 1.8 21
F7 1.2 1.3 14|13 13 1.3
F8 23 26 16|25 1.7 1.7
F9 24 26 16|25 1.7 1.7
F10 22 25 17112 16 1.6
F11 1.7 22 21]123 1.8 1.7
F12 1.8 14 14|18 16 1.8

Table 6.18: Velocity (iterations/seconds) for each family and problem with KNITRO

10.1.0 conjugate gradient algorithm 2 on “server 2”.
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Objective function for each family and each problem for six dif-

ferent solvers in Cartesian coordinates

Table 6.19: Objective function for each family and problem with LOQO

17.

Family/Type T1 T2 T3 T4 TS T6

F1 0.2961  0.2921  0.3055 | 0.2772  0.2842  0.2968
F2 0.3017  0.3054  0.3077 | 0.2923 0.2914  0.3040
F3 0.6334 0.6239  0.6339 | 0.5656  0.6059  0.6073
F4 0.6764  0.6523  0.6725 | 0.6578 0.6368  0.6551
F5 9.6047  8.1493 89523 | 7.0738 8.3500  8.1019
F5 2.7204  2.6200  2.6076 | 3.2013  2.3803  2.6856
F7 85879  6.2211  7.7933 | 6.5990  5.6722  7.3264
F8 16.8198 17.0141 17.5570 | 15.0898 14.8430 17.3963
F9 0.0017  0.0017  0.0017 | 0.0015 0.0015 0.0016
F10 0.0017  0.0017  0.0017 | 0.0015 0.0015 0.0015
F11 0.0016  0.0015 0.0016 | 0.0014 0.0014 0.0015
F12 8.5024  8.1693 8.0566 | 7.6308  7.7516 = 8.2046

6.0.6 on “server

Family/Type T1 T2 T3 T4 T5 T6
F1 0.4183  0.3877  0.4041 | 0.3128 0.4030  0.4152
F2 0.3380  0.3694  0.3373 | 0.3275 0.4090  0.4028
F3 0.6631  1.1871 0.6361 | 0.6028 0.6231  0.6407
F4 1.0916  0.6884  0.6892 | 0.6710 0.6729  0.6890
Fb 8.1843  8.0311  7.9502 | 6.9352  7.4485 T
F5 24116 2.6676  2.3079 | 2.1399 2.2390 2.6949
F7 6.1199 6.2388  5.9952 | 5.3535  5.5803  6.0930
F8 15.6667 15.3312 15.2042 | 13.2347 14.0493 15.0459
F9 0.0038  0.0037  0.0043 | 0.0033 0.0033  0.0039
F10 0.0038  0.0037 0.0042 | 0.0033 0.0033 0.0039
F11 0.0035 0.0034  0.0034 T 0.0030  0.0032
F12 8.2950  8.0403  7.8827 | 7.6177  7.6189  T7.7667

T No optimal solution was found within the limit of 2000 iterations.

Table 6.20: Objective function for each family and problem with [IPOPT 3.8.1 on “server

17.
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Family/Type T1 T2 T3 T4 T5 T6
F1 0.3270  0.3877 0.4042 | 0.3128 0.3168  0.3956
F2 0.3380  0.3953  0.4083 | 0.3275  0.4085  0.4226
F3 0.6631  1.1871 0.6361 | 0.6028 0.6231  0.6406
F4 0.7117  0.6884  0.6892 | 1.1891 0.6728  1.2370
F5 8.1485  8.0153  7.9498 | 6.8675  7.3686 T
F5 1 2.2920  2.2515 | 2.0368  2.1188  2.2648
F7 6.0962  6.0559 5.9364 | 6.1949 6.4638  6.8465
F8 15.5619 15.3276 15.2044 | 13.9573 14.0486 15.0461
F9 0.0038  0.0036  0.0043 | 0.0033 0.0033  0.0039
F10 0.0038  0.0037  0.0043 | 0.0033 0.0033  0.0039
F11 0.0035  0.0034  0.0034 T 0.0030  0.0032
F12 8.2948  8.0403  7.8827 | 7.6178 T7.6189  7.7666

T No optimal solution was found within t

he limit of 2000 iterations.

Table 6.21: Objective function for each family and problem with IPOPT 3.9.3 on “server

27,

Family /Type T1 T2 T3 T4 T5 T6
F1 0.3270  0.3877  0.3272 | 0.3128 0.3168  0.3955
F2 0.3380 0.3301  0.4101 | 0.3275 0.3270  0.3343
F3 0.6648  0.6492  0.6361 | 0.6029 0.6231  0.6407
F4 0.7117  0.6884  0.6892 | 0.6710  0.6729  0.6890
F5 8.1485  8.0152  7.9497 | 6.8673  7.3685 T
F5 ] 2.2920  2.2515 | 2.0376  2.1187  2.2648
F7 6.0963  6.0559  5.9363 | 5.3201  5.5498  5.9825
F8 15.5618 15.3293 15.2093 | 13.0445 14.0493 15.0459
F9 0.0038  0.0037 0.0043 | 0.0033 0.0033  0.0039
F10 0.0038  0.0036  0.0042 | 0.0033 0.0033 0.0039
F11 0.0035  0.0031  0.0034 ] 0.0030  0.0032
F12 8.2950  8.0402  7.8827 | 7.6178  7.6189  T7.7667

T No optimal solution was found within the limit of 2000 iterations.

Table 6.22: Objective function for each family and problem with IPOPT 3.12.8 on “server

27,
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Family/Type T1 T2 T3 T4 T5 T6

F1 0.2902  0.2863 0.2841 | 0.2755  0.2807  0.2865
F2 0.6259  0.6114  0.5976 | 0.5646  0.5854  0.5952
F3 0.6753  0.6511  0.6523 | 0.6340 0.6352  0.6520
F4 8.1278  8.0054  7.5849 | 7.2334 7.3661  7.6301
F5 2.3161  2.2683  2.2241 | 2.5632  2.0929  2.2383
F5 6.0816  6.0360  5.7099 | 5.2986  5.5286  5.8274
F7 15.5871 15.3910 14.5397 | 13.0798 14.0272 15.1060
F8 0.0019  0.0019 0.0016 | 0.0017  0.0018  0.0015
F9 0.0019  0.0019 0.0016 | 0.0017  0.0018  0.0015
F10 0.0019  0.0018 0.0016 | 0.0017  0.0018  0.0015
F11 0.0015 0.0015 0.0015 | 0.0014 0.0015  0.0015
F12 8.2709  8.0174  7.8606 | 7.5947  7.5962  7.5895

Table 6.23: Objective function for each family and problem with KNITRO 10.1.0 direct
algorithm 1 on “server 2”.

Family/Type | T1 T2 T3 T4 T5 T6
Fl 0.3336  0.3287 1 ¥ 0.3915  0.3204
F2 0.8343  0.8169 0.6484 | 0.7706  0.9795 t
F3 0.8872  0.7005 0.8225 | 0.8441  0.8448  0.7025
F4 8.1346 8.1228 7.9363 | 6.8543 7.3921  7.8683
F5 2.4486 24272 2.3795 | 2.0385 22571  2.3359
F5 6.0810  6.0395 t 53237  5.5564  5.9664
F7 15.5999 15.3448 15.2444 | 13.0861 14.0376 15.0965
F8 0.0051  0.0038  0.0051 | 0.0034 0.0045 0.0041
F9 0.0051  0.0038  0.0051 | 0.0034 0.0045 0.0041
F10 0.0052  0.0038  0.0043 | 0.0044  0.0045 t
Fi1 + 0.0048 t 0.0037 + t
F12 + 8.6063  7.9859 + 8.1753 t

1 No optimal solution was found within t

he limit of 2000 iterations.

Table 6.24: Objective function for each family and problem with KNITRO 10.1.0 conju-
gate gradient algorithm 2 on “server 2”.
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Relative error of the objective function with respect to LOQO for
each family and each problem for five different solvers in Carte-

sian coordinates

Family /Type | T1 T2 T3 | T4 T5 T6
F1 0.41 0.33 0.320.13 042 040
F2 0.12 0.21 0.10] 0.12 0.40 0.33
F3 0.05 0.90 0.00 | 0.07 0.03 0.05
F4 0.61 0.06 0.02|0.02 0.06 0.05
F5 0.15 0.01 0.11] 0.02 0.11 T

F5 0.11 0.02 0.11] 0.33 0.06 0.00
F7 0.29 0.00 0.23]0.19 0.02 0.17
F8 0.07 0.10 0.13]0.12 0.05 0.14
F9 1.21 1.20 1.55 ] 1.15 1.18 1.50
F10 1.21 1.20 1.50 | 1.15 1.17 1.59
F11 1.16 1.21 1.18 T 1.09 1.20
F12 0.02 0.02 0.02|0.00 0.02 0.05

T No optimal solution was found within the limit of 2000 iterations.

Table 6.25: Relative error of the objective function with respect to LOQO for each family

and problem with IPOPT 3.8.1 on “server 1”.

Family/Type | T1 T2 T3 | T4 T5 T6
F1 0.10 0.33 0.32]0.13 0.11 0.33
F2 0.12 0.29 0.33]0.12 0.40 0.39
F3 0.05 0.90 0.00 | 0.07 0.03 0.05
F4 0.05 0.06 0.02|0.81 0.06 0.89
F5 0.15 0.02 0.11 | 0.03 0.12 T

F5 ] 0.13 0.14| 0.36 0.11 0.16
F7 0.29 0.03 0.24|0.06 0.14 0.07
F8 0.07 0.10 0.13]0.08 0.06 0.14
F9 1.21 1.20 1.55 ] 1.15 1.18 1.50
F10 1.21 1.20 1.55 ] 1.15 1.17 1.59
F11 1.16 1.21 1.18 T 1.09 1.20
F12 0.02 0.02 0.02|0.00 0.02 0.05

1 No optimal solution was found within t

he limit of 2000 iterations.

Table 6.26: Relative error of the objective function with respect to LOQO for each family

and problem with IPOPT 3.9.3 on “server 2”.
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Family/Type | T1 T2 T3 | T4 T5 T6
F1 0.10 0.33 0.07|0.13 0.11 0.33
F2 0.12 0.08 0.33]0.12 0.12 0.10
F3 0.05 0.04 0.00 | 0.07 0.03 0.05
F4 0.05 0.06 0.02|0.02 0.06 0.05
F5 0.15 0.02 0.11|0.03 0.12 ]

F5 ] 0.13 0.14 ] 0.36 0.11 0.16
F7 0.29 0.03 0.24]0.19 0.02 0.18
F8 0.07 0.10 0.13]0.14 0.05 0.14
F9 1.21 1.20 155 1.15 1.18 1.50
F10 1.21 1.20 1.50| 1.15 1.17 1.59
F11 1.16 1.06 1.18 T 1.09 1.20
F12 0.02 0.02 0.02|0.00 0.02 0.05

1 No optimal solution was found within t

he limit of 2000 iterations.

Table 6.27: Relative error of the objective function with respect to LOQO for each family
and problem with IPOPT 3.12.8 on “server 2”.

Family/Type | T1 T2 T3 | T4 T5 T6
F1 0.02 0.02 0.07]0.01 0.01 0.03
F2 0.00 0.04 0.03|0.01 0.00 0.02
F3 0.01 0.02 0.06 | 0.00 0.03 0.02
F4 0.00 0.00 0.03]0.04 0.00 0.00
F5 0.15 0.02 0.15]0.02 0.12 0.06
F5 0.15 0.13 0.15]0.20 0.12 0.17
F7 0.29 0.03 0.27]0.20 0.03 0.20
F'8 0.07 0.10 0.17]0.13 0.05 0.13
F9 0.07 0.16 0.09 | 0.14 0.18 0.02
F10 0.07 0.11 0.06 | 0.08 0.17 0.01
F11 0.05 0.01 0.05]0.00 0.06 0.02
F12 0.03 0.02 0.02]0.00 0.02 0.07

Table 6.28: Relative error of the objective function with respect to LOQO for each family
and problem with KNITRO 10.1.0 direct algorithm 1 on “server 2”.



Appendix 121
Family/Type | T1 T2 T3 | T4 T5 T6
Fl 0.13 013 T | T 038 o011
F2 0.14 0.11 0.27]0.26 0.14
F3 0.32 0.31 0.02]036 062 ¢
F4 0.31 0.07 0.22]0.28 0.33 0.07
F5 0.15 0.00 0.11]0.03 0.11 0.03
F5 0.10 0.07 0.09|0.36 0.05 0.13
E7 029 0.03 t |0.19 0.02 0.19
F8 0.07 0.10 0.13]0.13 0.05 0.13
F9 1.96 1.31 203|124 194 1.58
F10 1.98 1.31 1.54 | 1.87 1.92 ]
Fl11 t o217 ot 161 ¢
F12 T 005 001 T 005

1 No optimal solution was found within t

he limit of 2000 iterations.

Table 6.29: Relative error of the objective function with respect to LOQO for each family
and problem with KNITRO 10.1.0 conjugate gradient algorithm 2 on “server 2”.
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Relative error of the objective function with respect to LOQO for
each family and each problem for five different solvers in Carte-
sian coordinates without absolute value

Family /Type | T1 T2 T3 T4 T5 T6
F1 0.41 033 032 | 0.13 0.42 0.40
F2 0.12 0.21 0.10 | 0.12 0.40 0.33
F3 0.05  0.90 0.00 | 0.07 0.03 0.05
F4 0.61 0.06 0.02 | 0.02 0.06 0.05
F5 -0.15 -0.01 -0.11-0.02 -0.11 T
F5 -0.11  0.02 -0.11]-0.33 -0.06 0.00
F7 -0.29 0.00 -0.23|-0.19 -0.02 -0.17
F8 -0.07 -0.10 -0.13|-0.12 -0.05 -0.14
F9 1.21 120 1.55 | 1.15 1.18 1.50
F10 1.21 120 1.50 | 1.15 1.17 1.59
F11 1.16 121 1.18 T 1.09 1.20
F12 -0.02 -0.02 -0.02| 0.00 -0.02 -0.05

T No optimal solution was found within the limit of 2000 iterations.

Table 6.30: Relative error of the objective function with respect to LOQO for each family
and problem with IPOPT 3.8.1 on “server 1”7 without absolute value.

Family/Type | T1 T2 T3 T4 T5 T6
F1 0.10 0.33 032 | 0.13 0.11 0.33
F2 0.12 029 033 | 0.12 040 0.39
F3 0.05 090 0.00 | 0.07 0.03 0.05
F4 0.05 0.06 0.02 | 081 0.06 0.89
F5 -0.15 -0.02 -0.11|-0.03 -0.12 T
F5 T -0.13 -0.14 | -0.36 -0.11 -0.16
F7 -0.29 -0.03 -0.24 |-0.06 0.14 -0.07
F8 -0.07 -0.10 -0.13 | -0.08 -0.05 -0.14
F9 1.21 1.20 1.55 | 1.15 1.18 1.50
F10 1.21 1.20 1.55 | 1.15 1.17 1.59
F11 1.16 1.21  1.18 T 1.09 1.20
F12 -0.02 -0.02 -0.02 | 0.00 -0.02 -0.05
T No optimal solution was found within the limit of 2000 iterations.

Table 6.31: Relative error of the objective function with respect to LOQO for each family
and problem with IPOPT 3.9.3 on “server 2”7 without absolute value.
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Family/Type | T1 T2 T3 T4 T5 T6
F1 0.10 0.33 0.07 | 0.13 0.11 0.33
F2 0.12 0.08 0.33 | 0.12 0.12 0.10
F3 0.05 0.04 0.00 | 0.07 0.03 0.05
F4 0.05 0.06 0.02 | 0.02 0.06 0.05
Fb5 -0.15 -0.02 -0.11 | -0.03 -0.12 T
F5 T -0.13 -0.14]-0.36 -0.11 -0.16
E7 -0.29 -0.03 -0.24 |-0.19 -0.02 -0.18
F8 -0.07 -0.10 -0.13 |-0.14 -0.05 -0.14
F9 1.21 120 1.55 | 1.15 1.18 1.50
F10 1.21 120 1.50 | 1.15 1.17 1.59
F11 1.16 1.06 1.18 T 1.09  1.20
F12 -0.02 -0.02 -0.02 | 0.00 -0.02 -0.05
T No optimal solution was found within the limit of 2000 iterations.

Table 6.32: Relative error of the objective function with respect to LOQO for each family
and problem with IPOPT 3.12.8 on “server 2” without absolute value.

Family/Type | T1 T2 T3 T4 T5 T6
F1 -0.02 -0.02 -0.07 |-0.01 -0.01 -0.03
F2 0.00 -0.04 -0.03|-0.01 0.00 -0.02
F3 -0.01 -0.02 -0.06 | 0.00 -0.03 -0.02
F4 0.00 0.00 -0.03|-0.04 0.00 0.00
F5 -0.15 -0.02 -0.15| 0.02 -0.12 -0.06
Fb5 -0.15 -0.13 -0.15|-0.20 -0.12 -0.17
F7 -0.29 -0.03 -0.27 | -0.20 -0.03 -0.20
F'8 -0.07 -0.10 -0.17 | -0.13 -0.05 -0.13
F9 0.07 0.16 -0.09| 0.14 0.18 -0.02
F10 0.07 0.11 -0.06 | 0.08 0.17 0.01
F11 -0.05 -0.01 -0.05| 0.00 0.06 0.02
F12 -0.03 -0.02 -0.02 | 0.00 -0.02 -0.07

Table 6.33: Relative error of the objective function with respect to LOQO for each family
and problem with KNITRO 10.1.0 direct algorithm 1 on “server 2” without absolute

value.
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Family/Type | T1 T2 T3 T4 T5 T6
F1 0.13 0.13 T T 0.38 0.11
F2 0.14 0.11 0.27 | 0.26 0.14 T
F3 032 031 0.02 | 0.36 0.62 T
F4 031 0.07 022|028 033 0.07
Fb5 -0.15 0.00 -0.11]-0.03 -0.11 -0.03
F5 -0.10 -0.07 -0.09 | -0.36 -0.05 -0.13
E7 -0.29 -0.03 { |-0.19 -0.02 -0.19
F8 -0.07 -0.10 -0.13 | -0.13 -0.05 -0.13
F9 1.96 131 203 | 1.24 194 1.58
F10 1.98 131 1.54 | 1.87 1.92 T
F11 T 2.17 T 1.61 T T
F12 T 0.05 -0.01 T 0.05 T
T No optimal solution was found within the limit of 2000 iterations.

Table 6.34: Relative error of the objective function with respect to LOQO for each family
and problem with KNITRO 10.1.0 conjugate gradient algorithm 2 on “server 2” without
absolute value.



