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Abstract. This study presents the asymptotic displacement and stress fields at the crack tip of 
frictional interface where slip can occur along the interface between two anisotropic 
composite laminates. The results show that real values corresponding to the order of stress 
singularities may exit at the crack tip of the frictional interface between two anisotropic 
layers. The order of stress singularity largely depends on the coefficient of friction within the 
interface and the material properties of anisotropic composite laminates such as fibre 
orientations.  

 
 
1 INTRODUCTION 

The investigations of damage mechanisms and failure criteria of composite materials, 
which may be caused by interfacial failure or crack growth due to stress concentration, are 
critical for the design and assessment of composite laminates [1]. These investigations require 
the knowledge of the deformation and stress fields in the vicinity of interfacial crack tip, when 
numerical methods such as finite element methods are adopted in singular stress analyses [2, 
3]. In classical fracture mechanics, the open model was developed by assuming that the crack 
surfaces are traction free and the interface between two dissimilar materials is perfectly 
bonded [4]. The use of this model leads to the stress singularity of inverse square root, the 
introduction of stress intensity factors, and the prediction of crack growth. This model 
however has inherent nature of displacement and stress oscillations near the singular points, 
which could be physically inadmissible. 

In order to resolve the difficulties associated with the oscillatory deformation and stress 
field, a contact model was then introduced, by assuming that a frictional contact exists near 
the tip of an interface crack [5-8]. This assumption is based on experimental observations, i.e. 
a limited frictional contact zone may exist near the tip of interface cracks in dissimilar 
bimaterials [9]. Due to the presence of frictional contact, only real values of the order of stress 
singularities associated with fracture modes may exist, so that stable displacement and stress 
fields can be achieved [10,11].  

The stress singularities near the singular points with a perfectly bonded interface between 
two anisotropic elastic materials have been widely investigated [12-15]. However, these 
studies mainly focused on singular stresses near the singular points at perfectly bonded 
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interfaces of composite materials. On the other hand, most existing studies on stress 
singularities of contact problems with a frictional interface are limited to isotropic materials. 
There is very limited research undertaken for the deformation and stress field near the crack 
tip of anisotropic composite materials with a frictional interface, such as cases for stress 
singularities in fibre reinforced composite laminates. 

In this study, the displacement and stress fields near the singular point are obtained on the 
basis of Ting’s theory and Stroh’s formulation for anisotropic materials [16,17]. The 
characteristic equations are developed from the given external and interfacial boundary 
conditions of the problems with a frictional interface. Therefore, the order of stress 
singularities is obtained by solving for the roots of the constructed characteristic equations. 
The obtained results show that only real values associated with the order of stress singularities 
may exist at interfacial crack tip in anisotropic composites with a frictional interface. This 
agrees with the conclusion for the stress singularities of isotropic bimaterials with a frictional 
interface. The research further investigates the influence of the friction coefficient of the slip 
interface and the material properties such as fibre ply-angles of composite laminates on stress 
singularities. The analytical angular distributions of displacements and stress components 
near the singular points are presented for the anisotropic composite materials with a frictional 
interface, which is useful for finite element analysis. 

2 ASYMPTOTIC FIELDS NEAR CRACK TIP 

Assume that the displacements ui, the strains ij and the stresses ij are independent of 
longitudinal coordinate x3 when the composite is sufficiently long, as shown in Fig. 1. The 
asymptotic displacements near a singular point in anisotropic materials is given by Ting [16] 
and Chen et al. [11] as 
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Figure 1: Traction-free open angle-ply laminated composite layers with frictional contact at the interface 

x1

x3

x2

Material  I, 

Material  II, 

Frictional contact zone

Traction-free 
open surfaces

r





o

1088



Hua-Peng Chen. 

 3

where δ is a constant to be determined; variable  sincos p ; an over bar denotes the 
complex conjugate; q  and q̂  are arbitrary constants; and the coefficients kp  and }{ ka  
(k=1, 2, 3) are the eigenvalues and eigenvectors of the equation associated with the 
equilibrium equation [16], expressed here as  

2[ ( ) ]Tp p   Q R R T 0a                                                 (2) 

in which Q, R and T are 33 matrices associated with elasticity constants of the anisotropic 
elastic material. The stress components 1i and 2i  on the plane of x1 and x2 are  
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where vectors b  are related to material constants, calculated from  ab )( TR pT  .                       

From Eq. (3), it can be seen that the stresses become singular and are of the order r when r 
approaches zero if the real part of , Re(), is negative. The surface traction ti on the polar 
plane  near the singular point is calculated from Eq. (3) as  




 
3

1

11
21 ]ˆ)()([cossin)(










  qbqbrt iiiii                        (4) 

To determine the angular distributions of asymptotic fields, the displacements iu  in 
Cartesian coordinates (x1, x2, x3) are transferred in polar coordinates (r, , z) as  

 cossin 21 uuu                                                      (5.1) 
 sincos 21 uuur    ;    3uuz                                            (5.2) 

and the normal and tangential stress components on the plane  in the polar coordinates are 

 2sincossin 21
2

22
2

11                                         (6.1) 
  2cos2sin)( 2111222

1 r    ;       sincos 3132 z                  (6.2) 

In order to obtain real displacement and stress fields near the singular point, two real 
matrices S and L, associated with the non-singular complex coefficient matrices A={a1  a2  
a3} and B={b1  b2  b3}, are defined in [16] as  

)2( IABS  Tj   ,      TjBBL 2                                         (7.1) 
)2( IABS  Tj   ,      TjBBL 2                                         (7.2) 

where superscript T represents the transpose of a matrix; I is an identity matrix; and j 
indicates the standard imaginary unit with the property of 12 j . From Eq. (7), the real and 
imaginary parts of matrices 1AB  and 1BA  are then obtained from  
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111   LSLAB j   ,      111   LSLBA j                            (8.1) 
111   LSLAB j   ,      111   LSLBA j                            (8.2) 

It can be showed that 1SL  is anti-symmetric matrix with T)( 11   SLSL  and diagonal 
elements of zero and 1L  is symmetric and positive definite matrix with T)( 11   LL . 

3 ORDER OF STRESS SINGULARITY 
For the frictional contact problem shown in Fig. 1, the frictional interface is located on the 

plane 0 f , the continuity conditions of the stresses for material I and material II on the 
plane are given by 

0tt  )0()0( III                                                           (9) 

The interface boundary conditions governed by the Coulomb’s law of friction within the 
frictional interface 0f  are expressed here as  

00)( 0)( 22  III uu                                                      (10.1) 
 00)(cos 0)( 2212  II f                                               (10.2) 

00)(sin 0)( 2232  II f   where  00)(22 I                              (10.3) 

where the normal stress of material I within the frictional interface should remain 
compressive, and the coefficient of friction f is assumed to be constant within the slip 
interface in all directions. Angle φ is the direction of the tangential resultant stress with 
respect to positive axis x1, determined by 
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Application of the formulation for surface traction in Eq. (4) to the traction free boundary 
conditions for material I at    and material II at    leads to 

0qq I   IIjIIj ee ˆÊBB                                              (12.1) 
0qq  IIIIjIIIIj ee ˆBB                                              (12.2) 

Similarly, the stress continuity conditions within the frictional interface in Eq. (9) gives  

0qqqq  IIIIIIIIIIII ˆˆ BBBB                                             (13) 

Applying the asymptotic fields for stress components in Eq. (3) and the displacements in 
Eq. (1) into Eq. (10) for the frictional contact boundary conditions leads to 

  0]ˆˆ[ 010  IIIIIIIIIIII qqqq AAAA                                 (14.1) 
  0]ˆ[ 0cos1  IIIIf qq BB                                         (14.2) 
  0]ˆ[ 1sin0  IIIIf qq BB                                         (14.3) 
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From Eq. (12) and Eq. (13), the arbitrary constant vectors are obtained as  
IIIjI e qq BB 12ˆ 

    ;  IIIIjII e qq BB 12 
    ;    IIIIII qq BB 1ˆ 

                (15) 

By using Eq. (15), the characteristic equations in Eq. (14) can be rewritten as  

  0][ 010 2  IIje qBΩΩ                                                    (16.1) 
  00cos1)1( 2  IIj fe qB                                                 (16.2) 
  01sin0)1( 2  IIj fe qB                                                 (16.3) 

where coefficient matrix Ω  related to material constants is defined, by using Eq. (8), as 

)()( 111111 
 IIIIIIIIIIIIIIIir jj LLLSLSBABAΩΩΩ            (17) 

in which the real part )( 11 
 IIIIIIr LSLSΩ  is anti-symmetric matrix with properties of 

rr
    and 0r

 , and the imaginary part )( 11 
 IIIi LLΩ  is symmetric matrix with 

properties of ii
   .  

It is found that if  is a root, so is +n where n is an integer. For stress singularities with  
0)Re(1   , the root  of 01 2  je  can be ignored. By considering Eqs. (16.2) and 

(16.3), where the corresponding coefficient vectors are linearly independent, we have  

 TII ffk  sin1cosˆ qB                                         (18) 

where k̂  is an arbitrary constant and may be a complex number. Substituting Eq. (18) into Eq. 
(16.1) produces the characteristic equation for obtaining the nontrivial solution for the 
arbitrary constants to solve for the root , expressed here as   
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The root  of Eq. (19), bounded by −1<Re()<0, may characterise the order of stress 
singularities at the tip of frictional interface between the anisotropic composite laminates, 
expressed explicitly after considering the properties of matrices rΩ  and iΩ  in Eq. (17) as  
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Consequently, the order of stress singularity is determined from the characteristic equation 
Eq. (20) of the crack at the frictional interface between two anisotropic composite materials.    

4 FIELDS AT CRACK TIP 
From Eq. (18), the corresponding arbitrary constant vectors in Eq. (15) can be found, and 

the real arbitrary constant k is introduced to have the relationship )1(ˆ 2jekk   in order to 
obtain real displacement and stress fields around the tip of the frictional interface. By using 
the obtained arbitrary constant vectors, Eq. (11) becomes   
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Substituting the characteristic equation in Eq. (20) into Eq. (21) and considering the 
properties of matrices rΩ  and iΩ  in Eq. (17) give the uncoupled equation to solve for the 
angle  as  

0]cos)sincos(     

sin)sincos][(sincos[     

]cos)cos(sin)sin][(sincos[

333132

1311122321

31321312232122













iii

iiirr

rrrriii

ff
fff

ffff
           (22) 

After angle φ is determined from Eq. (22), the value of  is obtained from Eq. (20) without 
requiring the iterative procedure. From the obtained arbitrary constant vectors, the stress 
components I

i2  in Eq. (3.2) at the frictional interface at 0  are expressed as       

 TT ffkr   sin1cossin4)}0({ 2 I
i2                                (23) 

Furthermore, the displacements in Eq. (1) for material I I
iu  and for material II II

iu  at the 
frictional interface at 0  are given, respectively, as   
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Similarly, the displacements of material I I
iu  at    and of material II II

iu  at    
are obtained from 
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Consequently, from the properties of matrices rΩ  and iΩ , the shifts within the frictional 
interface in x1 and x3 directions are calculated from  
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From Eq. (25) and Eq. (17), the gap in the front of the frictional interface tip between material 
I at    and material II at    is expressed as    
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The boundary conditions for the frictional contact problems described in Eq. (10) require 
compressive normal stress within the frictional interface and positive gap in the front of its 
end point to keep separation propagating forward, as discussed in [5,10]. From Eq. (23), the 
compressive normal stress within the frictional interface   2

22 sin40)( krI   requires the 
arbitrary constant 0k  to remain the normal contact. Since −1<Re()<0, the requirement of 
positive gap in Eq. (27) leads to 

)sin(cos 232122
iii wwfw                                                (28) 

We found that stress singularities can appear at the tip of frictional interface between two 
anisotropic layers if the material constants satisfy the requirement given in Eq. (28). This is 
different from the conclusion given in [5] that no stress singularities can appear in the 
frictional contact problems for isotropic materials.  

5 NUMERICAL RESULTS 
For fibre reinforced composite laminates with a frictional interface shown in Fig. 1, the 

engineering constants for the orthotropic material are assumed to be EL=137.90GPa, 
ET=EZ=14.48GPa, LT=LZ=TZ=4.98GPa, and υLT=υLZ=υTZ=0.21, where E is Young's 
modulus and the subscripts L, T and Z refer to the fibre, transverse and thickness directions of 
an individual layer, respectively. Fig. 2 shows the results for the order of stress singularities as 
a function of the fibre orientation of material I 1 varying from 0 to 90 with 2 fixed to 
2=0 and the coefficient of friction f in the contact zone ranging from 0 to 3. From the results 
it is found that the stress singularity becomes weaker as the coefficient of friction f increases. 
The values of the order of stress singularities are significantly affected by the fibre orientation 
1 when the coefficient of friction becomes high, e.g. f=3. In the case of frictionless interface 
f=0, the order of singularities remains the same value of -0.5 for any fibre orientation angle. 

 
Figure 2: Root  as a function of the fibre orientation of material I 

1
 and the coefficient of friction f. 
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The normalised angular distribution functions of the displacements u , ru , zu  and the 
stress components  ,  r ,  z  in the crack tip of frictional interface between two 
anisotropic laminates are presented in Figs. 3 and 4, respectively. The fibre orientations for 
two composite materials 1=45 and 2=−45 and the friction coefficient of the slip interface 
f=0.5 are considered in this case. The order of stress singularity  =–0.477952 and the angle 
=-4.186 to axis x1 are accurately obtained for the contact problem by solving the coupled 
nonlinear equations only after a few iterations with the relative error for  less than 10-6. From 
the results in Fig. 3, it can be seen that the normal displacement u  is continuous at the 
frictional interface at =0, but not its slope, to maintain the normal contact at the frictional 
interface between two composite wedges. The displacements ru  and zu  however are not 
continuous at the frictional interface, so that the relative slips occur in the negative direction 
of coordinate r (x1) and the positive direction of coordinate z (x3) between two materials, 
respectively. The displacement distribution functions vary smoothly with the angle  within 
the regions of individual materials around the crack tip, and show that large deformation may 
occur on the free surfaces. The results in Fig. 4 demonstrate that the stress components θθ , 

 r ,  z  on the plane of coordinate  are continuous at the frictional interface between two 
materials at  = 0 because it is assumed that the normal contact is maintained at the frictional 
interface. The normal stress   gives a negative value at the frictional interface =0 to 
maintain the normal contact. The values of stress components gradually approach zero near 
the external open surfaces, vanishing at =180 and =−180 to satisfy the traction-free 
conditions on the surfaces of composite laminates . 

 

Figure 3: Normalised angular distribution functions of the displacements u , ru , zu  near the corner of the 
free-free fibre reinforced composite laminates (+45°/0°) with frictional interface of f = 0.5. 
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Figure 4: Normalised angular distribution functions of the stress components  ,  r ,  z  near the corner 
of the free-free fibre reinforced composite laminates (+45°/0°) with frictional interface of f = 0.5. 

6 CONCLUSIONS 
The obtained results show that stress singularities can appear at the tip of the frictional 

interface if their material constants satisfy the requirement propose. Only real values 
associated with the order of stress singularities may exist for the contact problems with a 
frictional interface in anisotropic composite laminates. The fibre orientation of composite 
materials has stronger influence on the stress singularity when the friction coefficient is 
higher. The effect of the friction coefficient at the slip interface on the stress singularities 
increases when stronger mismatch between two materials is present. Large deformation may 
occur on the traction-free surfaces near the crack tip, and the peak value of the normal stress 
may exist at the fictional interface for the case investigated.  
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