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Abstract
The interest in non-Markovian dynamicswithin the complex systems community has recently
blossomed, due to a newwealth of time-resolved data pointing out the bursty dynamics ofmany
natural and human interactions,manifested in an inter-event time between consecutive interactions
showing a heavy-tailed distribution. In particular, empirical data has shown that the bursty dynamics
of temporal networks can have deep consequences on the behavior of the dynamical processes
running on top of them.Here, we study the case of randomwalks, as a paradigmof diffusive processes,
unfolding on temporal networks generated by a non-Poissonian activity driven dynamics.We derive
analytic expressions for the steady state occupation probability andfirst passage time distribution in
the infinite network size and strong aging limits, showing that the randomwalk dynamics on non-
Markovian networks are fundamentally different fromwhat is observed inMarkovian networks.We
found a particularly surprising behavior in the limit of diverging average inter-event time, inwhich the
randomwalker feels the network as homogeneous, even though the activation probability of nodes is
heterogeneously distributed. Our results are supported by extensive numerical simulations.We
anticipate that ourfindingsmay be of interest among the researchers studying non-Markovian
dynamics on time-evolving complex topologies.

1. Introduction

Temporal networks [1, 2] constitute a recent new description of complex systems, that,moving apart from the
classical static paradigmof network science [3], inwhich nodes and edges do not change in time, consider
dynamic connections that can be created, destroyed or rewired at different time scales.Within this framework, a
first round of studies proposed temporal networkmodels ruled by homogeneousMarkovian dynamics [4]. A
prominent example is represented by the activity-drivenmodel [5] (see also [6]), inwhich nodes are
characterized by a different degree of activity, i.e. the constant rate at which an agent sends links to other peers,
following a Poissonian process. Thememoryless property implied by theMarkovian dynamics greatly simplifies
themathematical treatment of thesemodels, regarding both the topological properties of the time-integrated
network representation [7], and the description of the dynamical processes unfolding on activity-driven
networks [8–13].

However, theMarkovian assumption in temporal networkmodeling has been challenged by the increasing
availability of time-resolved data on different kinds of interactions, ranging fromphone communications [14]
and face-to-face interactions [15], to natural phenomena [16, 17], biological processes [18] and physiological
systems [19–21]. These empirical observations have uncovered a rich variety of dynamical properties, in
particular that the inter-event times t between two successive interactions (either the creation of the same edge or
two consecutive creations of an edge by the same node),ψ(t), follows heavy-tailed distributions [15, 22, 23]. This
bursty dynamics [22] is a clear signature that the homogeneous temporal process description is inadequate and
that non-Markovian dynamics lie at the core of such interactions. As a consequence, the interest in non-
Markovian dynamics within the complex systems community has recently blossomed, from the point of view of
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bothmathematicalmodeling [24–31] and dynamical processes, especially regarding epidemic spreading
[32–36].Within the framework of non-Markovian networksmodeling, the non-Poissoinan activity driven
(NoPAD)model [24, 37] offers a simple,mathematically tractable framework aimed at reproducing empirically
observed inter-event time distributions, overcoming the limitations of the classical activity-driven paradigm.
See [35] for a relatedmodel also relaying on a non-poissonian intervent time distribution.

The bursty nature of temporal networks can have a deep impact on dynamical processes running on top of
them, ranging form epidemic spreading, percolation, social dynamics or synchronization; see [38] for a
bibliographical summary. Among themany dynamical processes studied on temporal networks, the random
walk stands as one of themost considered, due to its simplicity andwide range of practical applications [39, 40].
Traditional approaches are based on the concept of continuous time randomwalks [41], where the randomwalk
is represented as a renewal process [42], inwhich the probability per unit time that thewalker exits a given node
through an edge is constant. This Poissonian approximation [41], which translates in awaiting time of the
walker inside each nodewith an exponential distribution, permits an analytic approach based on a generalized
master equation [39]. The Poissonian case has been considered in particular for activity-driven networks
[8, 11, 43].

However, if the inter-event time distributionψ(t) is not exponential, as empirically observed, thewaiting
time of the randomwalker shows aging effects,meaning that the time at which thewalkerwill leave one node
depends on the exact time at which it arrived at the considered node. Suchmemory effects are particularly
important when the inter-event time distribution lacks afirstmoment [44]. Away to neglect these aging effects is
by considering active randomwalks, inwhich the inter-event time of a node is reinitializedwhen awalker lands
on it, in such away that intervent andwaiting time distributions coincide. In opposition, in passive randomwalks
the presence of thewalker does not reinitialize the inter-event times of nodes or edges, and thus thewaiting time
depends on the last activation time [45]. The non-Poissoinan scenario has been considered in the general
context of afixed network inwhich edges are established according to a given inter-event time distributionψij(t)
for active walkers [45–47] and for passive walkers [45], usuallywith the assumption of a finite average inter-event
time distribution, with the exception of [47].

In this paper, we contribute to this endeavorwith the study of passive randomwalks on temporal networks
characterized by non-Markovian dynamics, by considering the case of networks generated by theNoPAD
model. In theNoPADmodel, nodes establish connections to randomly chosen neighbors following a heavy-
tailed inter-event time distribution y ~ a- -( )t tc

1 , with 0<α<2, depending on an activity parameter c
assigned to each node [24, 37].We show that the dynamics of passive randomwalks onNoPADnetworks
fundamentally departs from the one observed on classical Poissonian activity-driven networks. For the case
α>1, when the average inter-event time isfinite, we observe that the passive randomwalk behaves in the
infinite network limit as an active onewith inter-event time distribution y ~ a-( )t tc . For themore interesting
caseα<1, we argue that a passive randomwalk behaves, in the large time limit, as awalker in a homogeneous
network.Our results are checked against extensive numerical simulations.

The paper is organized as it follows: in section 2we introduce the definition of passive randomwalks on
NoPADnetworks. Section 3 presents a general formalism for thewalker occupation probability andfirst passage
time distribution, that can be further elaborated in Laplace space in the caseα>1, corresponding to an inter-
event time distributionwith finitefirstmoment.We present the application of this formalism for the standard
Poissonian activity drivenmodel in section 4, recovering previously known results, which are in stark contrast
with those obtained in the following sections for the non-MarkovianNoPADmodel. In section 5we consider
NoPADnetworks withfinite average inter-event times. The case of infinite average inter-event times is discussed
in section 6.Our conclusions are finally presented in section 7.

2. Passive randomwalks onNoPADnetworks

In theNoPADmodel [24, 37], nodes establish instantaneous connections with randomly chosen peers by
following a renewal process. Each node is activated independently from the others, with the same functional
formof the inter-event time distribution y ~ a- -( )t tc

1, withα>0, between consecutive activation events,
which depends on an activity parameter c, heterogeneously distributed among the populationwith a probability
distribution η(c). The dynamics of a randomwalk onNoPADnetworks is defined as follows: awalker arriving at
a node i at time t remains on it until an edge is created joining i and another randomly chosen node j at a
subsequent time ¢ >t t , after a waiting time ¢ -t t has elapsed. Thewalker then jumps instantaneously to node j
andwaits there until an edge departing from j is created at a subsequent time  > ¢t t . To simplify calculations,
herewewill focus on directed randomwalks: a walker can leave node i onlywhen i becomes active and creates an
edge pointing to another node [8, 43].We consider the case of a passive randomwalk: the internal clock of the
host node i is not affected by thewalker’s arrival, and itmust wait there until i creates a new connection.With
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this definition, a directed randomwalk on aNoPADnetwork can bemapped to a continuous time randomwalk
on a fully connected network inwhich each node has a different distribution of waiting times.We assume that all
nodes are synchronized at a time- <t 0a (i.e. the internal clock of all nodes is set to zero at time-ta or, in other
words, we assume the all nodes become active at time-ta) and that the randomwalk starts at time t=0 from a
nodewith activity c, chosen for generality with probability distributionH(c).

For a general inter-event time distributionψc(t), it is important to recall that the relevant quantity to describe
themotion of a randomwalker is thewaiting time distribution of residence inside each node. Ifψc(t) takes an
exponential form, the activation rate is constant, implying that the time to the next activation is independent of
the time of the last one. In this case, thewaiting time distribution coincides withψc(t) andmemory effects are
absent [42].Whenψc(t) has a non-exponential form, thewaiting time distribution is different fromψc(t) and
indeed it takes a non-local form: awalker arriving at a nodewith activity c at time t, it will jumpout of it at the
next activation event of this node. Assuming the previous activation event took place at time tp<t, the next one
will take place at time tn, where the inter-event timeD = -t t tn p is randomly distributed according toψc(Δ t).
Thewaiting time of thewalker in nodewith activity c is thus given by τ=tn−t and depends explicitly on the
immediately previous activation time tp. An exact description of the passivewalker will thus require knowledge
of the complete trajectory of thewalker in the network, and of thewhole sequence of activation times of all
nodes [45].

This requirement can be however relaxed in the case ofNoPADnetworks. In the class of activity driven
networks, after an activation event, thewalker jumps to a randomly chosen node. Thus, in the limit of an infinite
network, each node traversed in the path of thewalker is essentially visited for the first time. Therefore, the
randomwalkerwaiting time distribution depends not on thewholewalker path, but only on the temporal
distance to the synchronization point. In these terms, we consider as thewaiting time distribution the forward
inter-event time distribution [41], + ¢( )h t t t,c a , defined as the probability that awalker arriving on a nodewith
activity c at time ¢t (hence at a time + ¢t ta measured from the synchronization point of all nodes in the network)
will escape from it, due to the activation of the node, at a time ¢ +t t , or, in other words, that it will wait at the
node for a time interval t.When the inter-event time distribution is exponential, corresponding to amemory-
less Poisson process, one has y+ ¢ º( ) ( )h t t t t,c a c , independent of both the aging time ta and the arrival time ¢t
of thewalker [42]. For general forms of the inter-event time distributionψc(t), aging effects take place and the
function hc depends explicitly on the arrival time ¢t [44].

3.General formalism

In this sectionwe develop a general formalism to compute the steady state occupation probability and the first
passage time properties of the passive randomwalk in infiniteNoPADnetworks. In the case of an inter-event
time distributionwithfinite firstmoment, and in the limit of an infinitely aged network (  ¥ta )we can pass to
Laplace space to provide closed-form expressions.

3.1.Occupation probability
Weconsider here the occupation probability ( ∣ )P c t c, 0 , defined as the probability that awalker is at a nodewith
activity c at time t, provided it started at time t=0 on a nodewith activity c0. To compute it, let us define the
probability F ( ∣ )c t c,n 0 that awalker starting at c0 has performed nhops at time t, landing at the last hop,made at
time t , with <  <t t0 , at a nodewith activity c. These two probabilities are trivially related by the expression

å= F
=

¥

( ∣ ) ( ∣ ) ( )P c t c c t c, , . 1
n

n0
0

0

For n=0 (the node c0 does not become activated during thewhole time t), we have

dF =( ∣ ) ˜ ( ) ( )c t c h t t, , , 2c a c c0 0 ,0 0

where d ¢c c, is theKronecker symbol andwe have defined

ò t t+ ¢ = + ¢
¥˜ ( ) ( ) ( )h t t t h t t, , d 3c a

t
c a

as the probability that awalker arriving at time ¢t on a node chas not left it up to time + ¢t t .
To calculate F ( ∣ )c t c,n 0 for n 1wemake use of a self-consistent condition. Defining Y ( ∣ )t cn 0 as the

probability that the nth jumpof awalker starting at c0 takes place exactly at time t, we canwrite

ò hF = Y ¢ + ¢ - ¢ ¢( ∣ ) ( ∣ ) ( ) ˜ ( ) ( )c t c t c c h t t t t t, , d . 4n

t

n c a0
0

0
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This equation expresses the sumof the probabilities of the events inwhich thewalker performs its nth jump at
any time ¢ <t t , arrives in this jump at a node c, given by the probability η(c), and rests at that node c for a time
larger than - ¢t t . To compute Y ( ∣ )t cn 0 we apply another self-consistent condition, namely

òå hY = Y ¢ ¢ + ¢ - ¢ ¢
¢

- ¢( ∣ ) ( ∣ ) ( ) ( ) ( )t c t c c h t t t t t, d . 5n
c

t

n c a0
0

1 0

This equation implies the (n−1)th jump taking place at time ¢t , and landing on a node ¢c , with probability
h ¢( )c , and the last jump taking place, from ¢c , at time - ¢t t . The expression is averaged over all possible values of
the activity ¢c of the intermediate step. The iterative equation (5), complementedwith the initial condition
Y =( ∣ ) ˜ ( )t c h t t,c a1 0 0

, provides a complete solution for the steady state probability, via equations (4) and(1).

3.2. First passage time distribution
Wenow consider thefirst passage time probability ( ∣ )F t c c, 0 , defined as the probability that awalker starting at a
node of activity c0 arrives for the first time at another node of activity c exactly at time t. To compute it, we define
Ȳ ( ∣ )t c c,n 0 as the probability that thewalker performs his nth hop at time t, irrespective of where it lands, in a
trajectory that has never visited before a node of activity c.We can thuswrite4

ò å åh h h= + ¢ Y ¢ ¢ + ¢ - ¢
=

¥

¢¹
¢( ∣ ) ( ) ( ) ¯ ( ∣ ) ( ) ( ) ( ) ( )F t c c h t t c t t c c c h t t t t c, , d , , . 6c a

t

n
n

c c
c a0

0 1
00

In this equation, the first term accounts for thewalker arriving at c in a single hop, while for the second termwe
consider that thewalker has performed an arbitrary number of hops n�1 at a time ¢t , that the last of these hops
lands on a nodewith activity ¢ ¹c c , and from this node thewalker performs afinal hop, after awaiting time
- ¢t t that lands it on a nodewith activity c. The probability Ȳ ( ∣ )t c c,n 0 can be recovered from the recurrent

relation

ò å hY = ¢Y ¢ ¢ + ¢ - ¢-
¢¹

¢¯ ( ∣ ) ¯ ( ∣ ) ( ) ( ) ( )t c c t t c c c h t t t t, d , , , 7n

t

n
c c

c a0
0

1 0

which considers the (n−1)th hop taking place at time ¢t , landing at a node of activity ¢ ¹c c , and performing a
last hop after a time - ¢t t .

3.3. Inter-event time distributionswithfinite average
While the previous formalism is exact forNoPADnetworks of infinite size, it cannot be developed further in
absence of detailed information about the functional formof the forward inter-event time distribution ¢( )h t t,c ,
which is in general very hard to obtain [41]. Progress is possible, however, when the firstmoment of the inter-
event time distributionψc(t), defined as

òt y=
¥

¯ ( ) ( )u u ud , 8c c
0

isfinite.When this condition applies, and in the limit of very large aging time  ¥ta , the forward inter-event
time distribution does no longer depend on itsfirst argument and it is given by [41, 42, 48]

òt
y=

¥
( )

¯
( ) ( )h t u u

1
d . 9c

c t
c

In this double limit of infinite network size and aging time, the passive randomwalker behaves effectively as an
active randomwalker inwhich thewaiting time distribution is given the forward inter-event time distribution hc
(t).

Under the assumption of a finite average inter-event time, defining the Laplace transforms

òF = F
¥

-( ∣ ) ( ∣ ) ( )c s c c t c t, , e d , 10n n
st

0
0

0

òY = Y
¥

-( ∣ ) ( ∣ ) ( )s c t c te d , 11n n
st

0
0

0

ò=
¥

-( ) ( ) ( )h s h t e , 12c c
st

0

ò=
¥

-˜ ( ) ˜ ( ) ( )h s h t te d , 13c c
st

0

4
Weneglect here the case =c c0 . Its considerationwill imply an additional term d d( )t c c,0 in equation (6), where δ(t) is theDirac delta

function.
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we canwrite equation (4) in Laplace space as

hF = Y( ∣ ) ( ) ( ∣ ) ˜ ( ) ( )c s c c s c h s, , 14n n c0 0

while equation (5) takes the form

å hY = ¢ Y
¢

- ¢( ∣ ) ( ) ( ∣ ) ( ) ( )s c c s c h s . 15n
c

n c0 1 0

Equation (15) can be easily solved, yielding

å hY = ¢ Y
¢

¢

-⎡
⎣⎢

⎤
⎦⎥( ∣ ) ( ) ( ) ( ∣ ) ( )s c c h s s c . 16n

c
c

n

0

1

1 0

Considering that Y =( ∣ ) ( )t c h tc1 0 0
, we can combine equations (16) and(14) to obtain

å å å

å

d h h

d
h

h

= F = + ¢

= +
- ¢

=

¥

=

¥

¢
¢

-

¢ ¢

⎡
⎣⎢

⎤
⎦⎥( ∣ ) ( ∣ ) ˜ ( ) ( ) ˜ ( ) ( ) ( ) ( )

˜ ( ) ( ) ˜ ( ) ( )
( ) ˜ ( )

( )

P c s c c s c h s c h s h s c h s

h s
c h s h s

c h s

, ,

1
. 17

n
n c c c c c

n c
c

n

c c c
c c

c c

0
0

0 ,
1

1

,

0 0 0

0 0

0

From equation (17)we can obtain the probability P(c, t) of observing thewalker at a node c at time t, irrespective
of the position c0 of origin, as

å=( ) ( ) ( ∣ ) ( )P c t H c P c t c, , , 18
c

0 0

0

which, from equation (17), can bewritten in Laplace space as

å
å

h

h
= +

- ¢
¢ ¢

( ) ( ) ˜ ( )
( ) ˜ ( ) ( ) ( )

( ) ( )
( )P c s H c h s

c h s H c h s

c h s
,

1
. 19c

c c c

c c

0
0

0

For thefirst passage time distribution, Laplace transforming equation (7), we obtain

å hY = Y ¢-
¢¹

¢¯ ( ∣ ) ¯ ( ∣ ) ( ) ( ) ( )s c c s c c c h s, , . 20n n
c c

c0 1 0

Since Y =¯ ( ∣ ) ( )s c c h s, c1 0 0
, we have, solving the recursion relation equation (20),

å hY = ¢
¢¹

¢

-⎛
⎝⎜

⎞
⎠⎟

¯ ( ∣ ) ( ) ( ) ( ) ( )s c c h s c h s, . 21n c
c c

c

n

0

1

0

Introducing equation (21) into the Laplace space counterpart of equation (6), wefinally have

å
å

å

h h
h

h

h
h

= +
¢

- ¢

=
- ¢

¢¹ ¢

¢¹ ¢

¢¹ ¢

( ∣ ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

F s c c h s c h s c
c h s

c h s

h s c

c h s

,
1

1
. 22

c c
c c c

c c c

c

c c c

0 0 0

0

Themeanfirst passage time (MFPT), defined as

ò=
¥

( ∣ ) ( ∣ ) ( )T c c t F t c c t, d , 230
0

0

can be obtained, from the Laplace transform in equation (22), as [41]

= -
=

( ∣ ) ( ∣ ) ( )T c c
F s c c

s

d ,

d
. 24

s
0

0

0

4. Poissonian activity-driven networks

To check the expressions obtained in the previous section, we start by considering PoissonianADnetworks, for
which the randomwalk problemhas been already studied [8, 43]. In this case, the inter-event time distributions
for each node takes an exponential form, y = -( )t cec

ct , where the value of c is extracted from the distribution η
(c). This fact renders the results in section 3 exact. The system completely lacksmemory, and it holds

y¢ º = -( ) ( )h t t t c, ec c
ct , while ¢ = -˜ ( ∣ )h t t ec

ct .With the corresponding Laplace transforms hc(s)=c/(c+s)
and = +˜ ( ) ( )h s c s1c , the probability P(c, t) of observing thewalker in a node c at time t can bewritten, from
equation (19), as

5
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å
å

h

h
=

+
+

+ - ¢
+

¢
¢

¢ +

( ) ( ) ( ) ( )

( )
( )P c s

H c

c s

c

c s

H c

c
,

1
. 25

c

c

c s

c

c

c s

0
0

0

0

The steady state occupation probability =¥ ¥( ) ( )P c P c tlim ,t can be obtained in Laplace space as the
alternative limit =¥ ( ) ( )P c sP c slim ,s 0 , leading to

h
=

á ñ
¥ -

( ) ( ) ( )P c
c

c

c

1
, 26

1

independent of the initial distributionH(c0), where há ñ = å ¢ ¢-
¢ ( )c c cc

1 is the average of the inverse activity in
the network. Thus, as time increases, the average occupation probability crosses over from the initial distribution
at time t=0 of randomwalkers,P0(c)=H(c), to the steady state occupation probability, h~¥( ) ( )P c c c, at
large times [43].

Thefirst passage time probability in Laplace space, equation (22), in the Poissonian case, reads

å
h

h
=

+ - ¢
¢¹

¢
¢ +( )( ∣ ) ( )

( ) ( )
( )F s c c

c c

c s c
,

1
. 27

c c

c

c s

0
0

0

Thefirst derivative of equation (27) evaluated at s=0 leads to theMFPTon a nodewith activity c, when the
walker starts from anodewith activity c0,

h
h

= á ñ - +-⎡
⎣⎢

⎤
⎦⎥( ∣ )

( )
( ) ( )T c c

c
c

c

c c

1 1
. 280

1

0

TheMFPTof nodes with activity c, irrespective of the activity c0 of the starting node, can be obtained by
averaging over the initial position of thewalker, = å( ) ( ) ( ∣ )T c H c T c cc 0 00

. If such position is chosen uniformly
at random in the network,H(c0)=η(c0), equation (28) becomes

h
=

á ñ
- + á ñ

-
-( )

( )
( )T c

c

c c
c

1
. 29

1
1

This expression provides a correction to the result in [8], derived by a puremean-field calculation. Thefirst term
of equation (29) can be obtained by following themeanfield argument in [8], and it indicates that theMFPTof
nodes with activity cwill be inversely proportional to the density of nodes in that activity class c, given by h ( )c .
The second term takes into account the probability of not arriving earlier on nodeswith activity c, while the third
term,which is constant in c, accounts for the escape time from the starting node of thewalker.We note that,
while the second term is always negligible with respect to the others, the third constant term can be relevant for
nodes of small activity c, if the activity distribution η(c) is power law distributed, h ~ g-( )c c [5].

4.1. Numerical application
Toprovide an example application, we consider the simplest case of anADnetworkwith two different activities
1 and ò<1, with an activity distribution

h d d= + -( ) ( ) ( )c p p1 . 30c c, ,1

If we assumeH(c)=η(c), equation (25) reduces to

åh h
=

+
¢

¢ +¢

-⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( ) ( )P c s

c

s c s

c

c s
, . 31

c

1

Fromhere, we can obtain


å h ¢

¢ +
=

- + +
+ +¢

( ) ( )
( )( )

( )c

c s

p p s

s s

1

1
, 32

c

which leads to




=
+

- + +
º - - -

+-( ) ( )
[( ) ]

( )( ) ( )P s
p s

s p p s
pt

s
t p p

t s
,

1

1

1
1 1

1
, 33c c

c
1

with = + -( )t p p1c . This expression in Laplace space can be trivially anti-transformed, yielding the
occupation probability

  = - - -¥
-( ) ( ) ( )( ) ( )P t P t p p, 1 1 e , 34c

t tc

with    h= á ñ = - +¥
-( ) ( ) [ ] [( ) ]P c p p p11 . The occupation probability relaxes exponentially to the

steady state with a time scale tc that can become very small when both p and ò tend to zero [43].
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For thefirst passage time distribution, application of equation (27) leads directly to

 =
+

( ∣ ) ( )F s
p

p s
, 1 , 35

indicating an exponential distribution in real time  = -( ∣ )F t p, 1 e pt . TheMFPT is obtained as

 =( ∣ ) ( )T
p

1
1

, 36

independent of ò. On the other hand,





=

-
- +

( ∣ ) ( )
( )

( )F s
p

p s
, 1

1

1
, 37

leading to   = - - -( ∣ ) ( ) ( )F t p, 1 1 e p t1 , fromwhich one can obtain theMFPT




=
-

( ∣ )
( )

( )T
p

1
1

1
, 38

diverging in the limits ò→0 or p→1.

5.Non-Poissonian activity-driven networkswithfinite average inter-event time

Wenow consider themore interesting case of non-PoissonianActivity-Driven (NoPAD)networks, inwhich the
inter-event time distribution is different from exponential. Tofix notation, wewill focus in particular in the
power law form

y a= + a- +( ) ( ) ( )( )t c ct 1 , 39c
1

withα>0 to allow for normalization.Here wewill consider the caseα>1 corresponding tofinite average
inter-event time of value

òt y a= = -
¥

-( ) [( ) ] ( )u u u cd 1 . 40c c
0

1

In this case, for an infinitely aged network,  +¥ta , the forward recurrence time no longer depends on the
aging time and one has, from equation (9),

òt
y a= = - + a

¥
-( )

¯
( ) ( ) ( ) ( )h t u u c ct

1
d 1 1 , 41c

c t
c

ò= = + a
¥

-˜ ( ) ( ) ( ) ( )h t h u u ctd 1 . 42c
t

c
1

In the limit of large t?1, which correspond to s=1 in the Laplace space, and by virtue of the Tauberian
theorems [41], we canwrite, for 1<α<2,

y t
a

- +
G
-

+a
a

a- ⎜ ⎟⎛
⎝

⎞
⎠( ) ¯ ( ) ( )s s

s

c
o s1

1
, 43c c

2

- G +a

a
a

-

-
- ⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( )h s

s

c
o s1 , 44c 2

1
1

G
+a

a
a-

-
- ⎜ ⎟⎛

⎝
⎞
⎠˜ ( ) ( ) ( )h s

c

s

c
o s , 45c

2
2

2

where o(x) denotes a function f (x), such that =
( )

lim 0x
f x

x0 , andΓz≡Γ(z) is theGamma function [49]. These
expressions, combinedwith equation (19), yield

h
á ñ

+
a

a

- -

- -
-( ) ( ) ( ) ( )

( )

( )P c s
c c

s c
o s, . 46

1

1
1

By taking the limit  ¥t , the steady state occupation probability finally reads

h
=

á ñ

a

a¥

- -

- -
( ) ( ) ( )

( )

( )P c
c c

c
. 47

1

1

In order to confirm this result, we have performed numerical simulations of the passive directed random
walk on anNoPADnetworkwith an inter-event time distribution given by equation (39) and power-law
distributed activity h µ g-( )c c , where the activity takes values in the interval [ò, 1]. Infigure 1we show the
theoretical prediction equation (47) (dashed lines), obtained in the limit of infinite network size, comparedwith
direct simulation infinite networks of sizeN=105 for different values of the inter-event time exponentα>1
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(hollow symbols). Simulations are performed in the limit of infinite aging time,  ¥ta . Thefirst activation of
every node takes thus place at a time,measured from the beginning of the randomwalk t=0, given by the
distribution in equation (41).We keep track of thewhole history of the network, each successive activation of
each node taking place at inter-event times given by equation (39).Walks are stopped at time time t=106,
where the occupation probability is computed. Aswe can see, even for themoderate network size considered
here, the infinite network limit provides an excellent approximation for the steady state distribution.

Interestingly, when taking the limit a  2 in equation (47), we recover the result established for Poissonian
ADnetworks, i.e. h= á ñ¥

- -( ) ( )P c c c c1 1 . This result is general for anyα�2, as can be seen from the
corresponding leading order expansions in Laplace space for this range ofα values, namely,

y t t- +( ) ¯ ¯ ( )s s s1
1

2
, 48c c c

2 2

a
-

-
( )

( )
( )h s

c
s1

1

2
, 49c

a -
˜ ( )

( )
( )h s

c

1

2
, 50c

which, substituted on equation (19), lead again to equation (26) in the steady state.
For thefirst passage time distribution, equation (22)may be expanded in the limit s=1. Inserting the

expansion of the forward inter-event time distribution equation (43), we obtain

åh
h- + ¢ ¢ Ga a

a
a-

¢¹

-
-

-
⎛
⎝⎜

⎞
⎠⎟( ∣ )

( )
( ) ( )F s c c c

c
c c s, 1

1
. 51

c c
0 0

1 1
2

1

In the time domain, this translates into a power-law behavior at large times, ~ a-( ∣ )F t c c t, 0 . This distribution
lacks afirstmoment in the regime 1<α<2, implying that theMFPT is infinite. Infigure 2we perform
numerical simulations to evaluate the first passage time probability when the inter-event time distribution is
power-lawwith 1<α<2 and the activity is bi-valued, with η(c) of the form equation (30). For both values ofα
considered, one can observe a power-law decay in the actual randomwalks (performed as described for figure 1),
corresponding to the expected behavior in the infinite network limit ~ a-( ∣ )F t c c t, 0 . At themean-field level,
the average time to reach a nodewith a given activity c is equal to the average number of independent trials
required to land on a nodewith activity c (equal to 1/η(c)), times the averagewaiting time spent on a node.
Therefore, this time trivially diverges when the averagewaiting time is infinite, as indicated here by afirst passage
time distribution lacking the firstmoment.

6.Non-Poissonian activity-driven networkswith infinite average inter-event time

Weconsider now an inter-event time distribution of the form equation (39)with 0<α<1, which implies that
the average time between two consecutive activation events of an agentwith activity c is infinite. For such values
ofα, the dependency of the forwardwaiting time distribution on the aging time cannot be eliminated even in the
limit of strongly aged networks, so that the use of the Laplace transformdoes not yield any substantial
simplification.Nevertheless, some insightmay be obtained concerning the dynamics of the randomwalk
starting on a strongly aged network.

Let us recall the expression of the double Laplace transformof the forwardwaiting time distribution, namely
[41, 44, 50, 51],

Figure 1. Steady state occupation probability of a directed passive randomwalk on an infinitely agedNoPADnetwork, ¥( )P c , with
inter-event time distribution given by equation (39), for different values of the exponentα.We consider an activity distribution η
(c)∼c− γwith ò=10−2 and exponent (a)γ=1.80 and (b)γ=2.50.Dashed lines correspond to the analytical result of equation (47).
The steady state distribution is computed fromW=106 different walks, stopped at time t=106.Network sizeN=105.
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ò ò

y
y y

= ¢ ¢

=
-

-
-

¥ ¥
- ¢ -( ) ( )

( )
( ) ( ) ( )

h u s t t h t t

u

u s

s u

, d d , e e

1

1
. 52

c c
ut st

c

c c

0 0

Let usfirst consider the limit of strongly aged network and very large t, with  ct ct 1a , corresponding to
s=u=1. In this case, one can expand

-a a

a+
( ) ( )h u s

u s

u
, , 53c 1

which, upon inverse transformation, leads to

pa
p

a a- -( ) ( ) ( )h t t t t,
sin

. 54c a a
1

On the other hand, in the limit of strong aging, cta?1, but small t=ta, one can expand
y a~ + G a

a a
-

-( )u u c1c in equation (52) to obtain

y
a

- -
-
G a

a a
-

-
( ) ( ) ( )h u s

s

s

s u c
,

1 1
, 55c

c

which, disregarding a constant term, leads to

pa
p

ya-( ) ( ) ( ) ˜ ( ) ( )h t t c c t t,
sin

, 56c a a c
1

where òy y= ¢ ¢ = +
a¥ -( )˜ ) ( ) (t t t ctd 1c t c . The behavior of ỹ ( )tc can be approximated to y ˜ ( )t 1c if ct 1,

while for ct 1, it holds y a-˜ ( ) ( )t ctc . The behavior of ( )h t t,c a can thus be summarized in the following
three regimes:

pa
p

a

pa
p

a a

pa
p

a a

-

- -

- -





 



⎧
⎨
⎪⎪

⎩
⎪⎪

( )

( )

( )

( )

( )

( )

h t t

c ct ct

t t ct ct

t t t t

,

for 1

for 1

for .

57c a

a

a a

a a

sin 1

sin 1

sin 1

Interestingly, at large times, i.e. ct?1, the forwardwaiting time distribution is independent of c. Besides,
the tail of the distribution is proportional to a a- -t ta

1, so that the probability that the forwardwaiting time is
greater than ta is constant and does not depend on ta. Thismeans that the interval +¥[ [t ,a carries a constant
probability weight with respect to the other two terms, although its size decreases when ta grows. This, alongwith
the fact that the total weight is constant and equal to 1 because hc is normalized, implies that theweight carried in
a timewindow [0, t0] tends to zerowhen ta tends to infinity. In fact, one could argue that theweights calculated
from equation (57) are not exact because they neglect higher order corrections (in particular the distribution in
equation (57) is not normalized). The reasoning is thus true under the implicit assumption that theweights

Figure 2.Distribution of the first passage time for a directed passive randomwalk on an infinitely agedNoPADnetwork, ( ∣ )F t c c, 0 ,
with inter-event time distribution given by equation (39), for different values of the exponentα.We consider a bi-valued activity
distributionwith c=ò (with η(ò)=p) or c=1 (with h = -( ) p1 1 ).We plot the first passage time distribution to nodeswith c=ò,
with thewalker starting fromnodeswith c0=1 (hollow symbols), alongwith the expected behavior ~ a-( ∣ )F t c c t, 0 (dashed lines).
Number of walkersW=106, p=0.5, ò=0.1. Network sizeN=105.
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calculated from equation (57) and carried in the intervals [ ]t0, 0 and +¥[ [t ,0 are proportional to their
corresponding real weights, which is not guaranteed.

In order to check these assumptions, onfigure 3we compare the ratio of the real weights
º -( ) [ ˜ ( ) ˜ ( )] ˜ ( )R t t h t h t t h t t, , 0 , ,a c a c a c a0 0 0 , evaluated from anumerical simulation of a renewal process with

an inter-event time distribution of the form equation (39), and the ratio evaluated from equation (57), whose
dominant order, with the conditions  ct ct1 a0 , is equal to a a-( )t ta0

1 .We observe a good agreement
between the simulations and the analytical estimation, which allows us tomake the following reasoning: let us
consider aNoPADnetworkwith inter-event time distribution given by equation (39)withα<1, and an
arbitrary activity distribution η(c) excluding zero-valued activities. Then there exists a nodewith aminimum
activity cmin>0, and also a time t0, such that c t 1min 0 . Then if the nodes are synchronized at = -t ta with
t ta 0 andwe start an activated randomwalk dynamics at time t=0, the probability that the time t1 at which

thewalkers escape from their first hosts is greater than t0 is almost equal to 1. This holds a fortiori for all the
followingwaiting times of thewalker occurring at times = ¼t t t t, , , k2 3 because tk is extracted from the
distribution t+ -( )h t t ,c a k 1 . Besides, the conditional probability that t1=τ given that t1�t0 is independent
of c as we see from equation (57), whichmeans that all the hops for all thewalkers are performedwithwaiting
times that practically do not depend on the activity of the hosts.

As a result, after its first jump, the probability that awalker is at a node of activity c is constant and equal to
h ( )c . In other words, if the initial distribution of thewalkers isH(c), the probability P(c, t) that thewalker is at a
nodewith activity c at time t is equal to η(c) if thewalker has escaped from its first host andH(c) otherwise, i.e.

h+ -( ) ( ) ˜ ( ) ( )( ˜ ( )) ( )P c t H c h t t c h t t, , 1 , . 58c a c a

In the limit of infinite ˜ ( )t h t t, ,c a vanishes, and the steady state of thewalker is given by h=¥( ) ( )P c c . That is, in
the large time regime, thewalker behaves as in a completely homogeneous network, inwhich jumpswere
performed independently of the node activity. This result recovers the observationmade in [30, 45]. In order to
check the validity of the time dependence expressed in equation (58), we have performed numerical simulations
of the activated randomwalk on aNoPADnetwork of sizeN=105where the activity takes three values,
c=0.1,1 or 10, eachwith probability η(c)=1/3.Walkers are initially hosted by nodeswith activity equal to
c=10, i.e.H(c)=δc,10. Figure 4 shows the reduced occupation probability

h h= - -( ) [ ( ) ( )] [ ( ) ( )]P c t P c t c H c c, ,r as a function of the time t forα=0.2 and ta=103,figure 4(a),
and for a = 0.5 and ta=105,figure 4(b), alongwith their expected value ˜ ( )h t t,c a . This last curve is evaluated
froman independent numerical simulation of a renewal process, and is found to be independent of the activity c.
We observe that the result stated in equation (58) perfectlymatches the numerical simulations in networks of
finite size.

7. Conclusions

In this paper we have explored the behavior of a passive node-centric randomwalk unfolding on non-
Markovian temporal networks generated by theNoPADmodel, which considers a power-law form
y ~ + a- -( ) ( )t ct 1c

1 of the inter-event time distribution between consecutive activation events of nodes with

Figure 3.Ratios = -( ) [ ˜ ( ) ˜ ( )] ˜ ( )R t t h t h t t h t t, , 0 , ,a c a c a c a0 0 0 as a function of ta, obtained fromnumerical simulations of a renewal
process with an inter-event time distribution of the form equation (39)with different values ofα. The asymptotes a a-( )t ta0

1

calculated from equation (57) are plotted as dashed lines. Reference time t0=103 and c=1.
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activity c.We have focused in particular on the behavior of the occupation probability and first passage time
distribution, in the case of a very large aging time ta, that is, when the time elapsed between the initial
synchronization of all nodes in the network and the start of the randomwalker is very large. The nature of the
NoPADmodel allows to simplify calculations in the limit of infinite network size, inwhich every node in the
path of thewalker is visited for the first time. In this approximation, we develop a general theory for thewalker
dynamics, that can be analytically solved in Laplace space if the inter-event time distribution of the nodes has a
finitefirstmoment. In this case, in the limit  ¥ta , thewaiting time of thewalker inside a node becomes
independent of its arrival time, and a passive randomwalkwith inter-event time distribution y ~ a- -( )t tc

1 ,
withα>1, behaves essentially as a active randomwalkwith y ~ a-( )t tc , inwhich the internal clock of each
node is reset after the lading of thewalker. Numerical simulations show that the actual passive randomwalk
process is verywell described by our theory for a sufficiently large network size.

If the inter-event time distribution lacks afirstmoment, which happens in the caseα<1, our theory is not
valid, since thewaiting time inside a node cannot be decoupled from the landing time. In the limit of very large
ta, however, we develop arguments hinting that the randomwalker will ‘feel’ a networkwith homogeneous
activity distribution, which implies that the probability that thewalker is at a node of activity c is equal to η(c) in
the large time limit. This result is straightforwardly extended to arbitrary aging times ta (including non-aged
networks ta=0) because after a transient regime of duration ¢t , the forwardwaiting time distribution

t+ ¢( )h t t ,c a willmeet the conditions expressed in equation (57), and the systemwill be in the same situation as
before, i.e.evolving as if the networkwas homogeneous. This observation generalizes the results in [30, 45],
referred to networks with identical inter-event time distribution for all nodes. Interestingly, this result is also
recovered taking the limitα→ 1 in the equation describing the occupation probability in the case of an inter-
event time distributionwith finitefirstmoment, a fact that provides additional evidence for its relevance.
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