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Abstract

The interest in non-Markovian dynamics within the complex systems community has recently
blossomed, due to a new wealth of time-resolved data pointing out the bursty dynamics of many
natural and human interactions, manifested in an inter-event time between consecutive interactions
showing a heavy-tailed distribution. In particular, empirical data has shown that the bursty dynamics
of temporal networks can have deep consequences on the behavior of the dynamical processes
running on top of them. Here, we study the case of random walks, as a paradigm of diffusive processes,
unfolding on temporal networks generated by a non-Poissonian activity driven dynamics. We derive
analytic expressions for the steady state occupation probability and first passage time distribution in
the infinite network size and strong aging limits, showing that the random walk dynamics on non-
Markovian networks are fundamentally different from what is observed in Markovian networks. We
found a particularly surprising behavior in the limit of diverging average inter-event time, in which the
random walker feels the network as homogeneous, even though the activation probability of nodes is
heterogeneously distributed. Our results are supported by extensive numerical simulations. We
anticipate that our findings may be of interest among the researchers studying non-Markovian
dynamics on time-evolving complex topologies.

1. Introduction

Temporal networks [1, 2] constitute a recent new description of complex systems, that, moving apart from the
classical static paradigm of network science [3], in which nodes and edges do not change in time, consider
dynamic connections that can be created, destroyed or rewired at different time scales. Within this framework, a
first round of studies proposed temporal network models ruled by homogeneous Markovian dynamics [4]. A
prominent example is represented by the activity-driven model [5] (see also [6]), in which nodes are
characterized by a different degree of activity, i.e. the constant rate at which an agent sends links to other peers,
following a Poissonian process. The memoryless property implied by the Markovian dynamics greatly simplifies
the mathematical treatment of these models, regarding both the topological properties of the time-integrated
network representation [7], and the description of the dynamical processes unfolding on activity-driven
networks [8—13].

However, the Markovian assumption in temporal network modeling has been challenged by the increasing
availability of time-resolved data on different kinds of interactions, ranging from phone communications [14]
and face-to-face interactions [15], to natural phenomena [16, 17], biological processes [ 18] and physiological
systems [19-21]. These empirical observations have uncovered a rich variety of dynamical properties, in
particular that the inter-event times t between two successive interactions (either the creation of the same edge or
two consecutive creations of an edge by the same node), ¥(¢), follows heavy-tailed distributions [15, 22, 23]. This
bursty dynamics [22] is a clear signature that the homogeneous temporal process description is inadequate and
that non-Markovian dynamics lie at the core of such interactions. As a consequence, the interest in non-
Markovian dynamics within the complex systems community has recently blossomed, from the point of view of
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both mathematical modeling [24—31] and dynamical processes, especially regarding epidemic spreading
[32—-36]. Within the framework of non-Markovian networks modeling, the non-Poissoinan activity driven
(NoPAD) model [24, 37] offers a simple, mathematically tractable framework aimed at reproducing empirically
observed inter-event time distributions, overcoming the limitations of the classical activity-driven paradigm.
See [35] for arelated model also relaying on a non-poissonian intervent time distribution.

The bursty nature of temporal networks can have a deep impact on dynamical processes running on top of
them, ranging form epidemic spreading, percolation, social dynamics or synchronization; see [38] for a
bibliographical summary. Among the many dynamical processes studied on temporal networks, the random
walk stands as one of the most considered, due to its simplicity and wide range of practical applications [39, 40].
Traditional approaches are based on the concept of continuous time random walks [41], where the random walk
is represented as a renewal process [42], in which the probability per unit time that the walker exits a given node
through an edge is constant. This Poissonian approximation [41], which translates in a waiting time of the
walker inside each node with an exponential distribution, permits an analytic approach based on a generalized
master equation [39]. The Poissonian case has been considered in particular for activity-driven networks
[8,11,43].

However, if the inter-event time distribution ¢(¢) is not exponential, as empirically observed, the waiting
time of the random walker shows aging effects, meaning that the time at which the walker will leave one node
depends on the exact time at which it arrived at the considered node. Such memory effects are particularly
important when the inter-event time distribution lacks a first moment [44]. A way to neglect these aging effects is
by considering active random walks, in which the inter-event time of a node is reinitialized when a walker lands
on it, in such a way that intervent and waiting time distributions coincide. In opposition, in passive random walks
the presence of the walker does not reinitialize the inter-event times of nodes or edges, and thus the waiting time
depends on the last activation time [45]. The non-Poissoinan scenario has been considered in the general
context of a fixed network in which edges are established according to a given inter-event time distribution t;(t)
for active walkers [45-47] and for passive walkers [45], usually with the assumption of a finite average inter-event
time distribution, with the exception of [47].

In this paper, we contribute to this endeavor with the study of passive random walks on temporal networks
characterized by non-Markovian dynamics, by considering the case of networks generated by the NoPAD
model. In the NoPAD model, nodes establish connections to randomly chosen neighbors following a heavy-
tailed inter-event time distribution ¢, (t) ~ t7!7%,with0 < « < 2, depending on an activity parameter ¢
assigned to each node [24, 37]. We show that the dynamics of passive random walks on NoPAD networks
fundamentally departs from the one observed on classical Poissonian activity-driven networks. For the case
« > 1, when the average inter-event time is finite, we observe that the passive random walk behaves in the
infinite network limit as an active one with inter-event time distribution . (#) ~ t~®. For the more interesting
case < 1, weargue that a passive random walk behaves, in the large time limit, as a walker in a homogeneous
network. Our results are checked against extensive numerical simulations.

The paper is organized as it follows: in section 2 we introduce the definition of passive random walks on
NoPAD networks. Section 3 presents a general formalism for the walker occupation probability and first passage
time distribution, that can be further elaborated in Laplace space in the case & > 1, corresponding to an inter-
event time distribution with finite first moment. We present the application of this formalism for the standard
Poissonian activity driven model in section 4, recovering previously known results, which are in stark contrast
with those obtained in the following sections for the non-Markovian NoPAD model. In section 5 we consider
NoPAD networks with finite average inter-event times. The case of infinite average inter-event times is discussed
in section 6. Our conclusions are finally presented in section 7.

2. Passive random walks on NoPAD networks

In the NoPAD model [24, 37], nodes establish instantaneous connections with randomly chosen peers by
following a renewal process. Each node is activated independently from the others, with the same functional
form of the inter-event time distribution 1, (t) ~ t~“~!, witha > 0, between consecutive activation events,
which depends on an activity parameter ¢, heterogeneously distributed among the population with a probability
distribution 7)(c). The dynamics of a random walk on NoPAD networks is defined as follows: a walker arriving at
anode i at time ¢ remains on it until an edge is created joining i and another randomly chosen nodejata
subsequent time t’ > t, after a waiting time ¢’ — ¢ has elapsed. The walker then jumps instantaneously to node j
and waits there until an edge departing from j is created at a subsequent time ” > #’. To simplify calculations,
here we will focus on directed random walks: a walker can leave node i only when i becomes active and creates an
edge pointing to another node [8, 43]. We consider the case of a passive random walk: the internal clock of the
host node iis not affected by the walker’s arrival, and it must wait there until i creates a new connection. With
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this definition, a directed random walk on a NoPAD network can be mapped to a continuous time random walk
on a fully connected network in which each node has a different distribution of waiting times. We assume that all
nodes are synchronized atatime —#, < 0 (i.e. the internal clock of all nodes is set to zero at time — ¢, or, in other
words, we assume the all nodes become active at time —t,,) and that the random walk starts at time t = 0 froma
node with activity ¢, chosen for generality with probability distribution H(c).

For a general inter-event time distribution 1(#), it is important to recall that the relevant quantity to describe
the motion of a random walker is the waiting time distribution of residence inside each node. If 1 (¢) takes an
exponential form, the activation rate is constant, implying that the time to the next activation is independent of
the time of the last one. In this case, the waiting time distribution coincides with 1(#) and memory effects are
absent [42]. When () has a non-exponential form, the waiting time distribution is different from ¢(f) and
indeed it takes a non-local form: a walker arriving at a node with activity c at time ¢, it will jump out of it at the
next activation event of this node. Assuming the previous activation event took place at time ¢, < t, the next one
will take place at time t,,, where the inter-event time At = t,, — ¢, israndomly distributed according to (A 7).
The waiting time of the walker in node with activity cis thus givenby 7 = t,, — tand depends explicitly on the
immediately previous activation time t,. An exact description of the passive walker will thus require knowledge
of the complete trajectory of the walker in the network, and of the whole sequence of activation times of all
nodes [45].

This requirement can be however relaxed in the case of NoPAD networks. In the class of activity driven
networks, after an activation event, the walker jumps to a randomly chosen node. Thus, in the limit of an infinite
network, each node traversed in the path of the walker is essentially visited for the first time. Therefore, the
random walker waiting time distribution depends not on the whole walker path, but only on the temporal
distance to the synchronization point. In these terms, we consider as the waiting time distribution the forward
inter-event time distribution [41], h.(t, + t', t), defined as the probability that a walker arriving on a node with
activity cat time ¢’ (hence ata time #, + t’ measured from the synchronization point of all nodes in the network)
will escape from it, due to the activation of the node, at a time ¢’ + ¢, or, in other words, that it will wait at the
node for a time interval t. When the inter-event time distribution is exponential, corresponding to a memory-
less Poisson process, one has h.(t, + t/, t) = 1.(t), independent of both the aging time ¢, and the arrival time ¢’
of the walker [42]. For general forms of the inter-event time distribution 1(#), aging effects take place and the
function h. depends explicitly on the arrival time ¢/ [44].

3. General formalism

In this section we develop a general formalism to compute the steady state occupation probability and the first
passage time properties of the passive random walk in infinite NoPAD networks. In the case of an inter-event
time distribution with finite first moment, and in the limit of an infinitely aged network (¢, — 00) we can pass to
Laplace space to provide closed-form expressions.

3.1. Occupation probability

We consider here the occupation probability P (c, f|cy), defined as the probability that a walker is at a node with
activity cat time ¢, provided it started at time t = 0 on a node with activity ¢,. To compute it, let us define the
probability ®,(c, t|cy) that a walker starting at ¢, has performed n hops at time ¢, landing at the last hop, made at
time ¢”, with 0 < #” < r, atanode with activity c. These two probabilities are trivially related by the expression

P(c, tle)) = > Dulc, tleo)- (D
n=0
For n = 0 (the node ¢y does not become activated during the whole time ), we have

Qo(c, tlco) = hey(tar 1) @)
where 6, is the Kronecker symbol and we have defined

he(ty + 1/, 1) = f C et + 1, ) dr 3
t

as the probability that a walker arriving at time ¢’ on a node chas not left it up to time ¢ + ¢'.
To calculate ®,(c, t|cg) for n > 1 we make use of a self-consistent condition. Defining W, (|cy) as the
probability that the nth jump of a walker starting at ¢, takes place exactly at time ¢, we can write

B, (c, flco) = fo (o) (Ve (e + £y £ — ¢ d. (4)
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This equation expresses the sum of the probabilities of the events in which the walker performs its nth jump at
anytime ¢’ < t,arrives in this jump ata node ¢, given by the probability 7(c), and rests at that node c for a time
larger than t — t’. To compute W,(f|cy) we apply another self-consistent condition, namely

%mmzzlﬁaﬂmmmwmm+ﬂt—wmt ©)

This equation implies the (n — 1)th jump taking place at time ¢', and landing on a node ¢’, with probability
n(c’), and the last jump taking place, from ¢/, at time t — t'. The expression is averaged over all possible values of
the activity ¢’ of the intermediate step. The iterative equation (5), complemented with the initial condition
Wi(t|co) = ﬁco(ta, t), provides a complete solution for the steady state probability, via equations (4) and (1).

3.2. First passage time distribution

We now consider the first passage time probability F (¢, c|cq), defined as the probability that a walker starting ata
node of activity ¢, arrives for the first time at another node of activity c exactly at time . To compute it, we define
W, (t|c, co) as the probability that the walker performs his nth hop at time t, irrespective of where it lands, in a
trajectory that has never visited before a node of activity c. We can thus write*

t o
F(t, cleo) = he,(ta, t)(c) + fo dt"> " u(t'le, co) >, n(cNher(ta + 1/, t — t)n(c). (6)
n=1 c=c
In this equation, the first term accounts for the walker arriving at ¢ in a single hop, while for the second term we
consider that the walker has performed an arbitrary number of hops n > 1 atatime ¢/, that the last of these hops
lands on a node with activity ¢’ = ¢, and from this node the walker performs a final hop, after a waiting time
t — t’ thatlands it on a node with activity c. The probability W,(t|c, cy) can be recovered from the recurrent
relation

t
W(tlc, co) = fo dt",_1(t'le, co) >, n(c)her(ta + 1/, t — 1), 7

c'=c
which considers the (n — 1)th hop taking place at time ¢’, landing at a node of activity ¢’ = ¢, and performinga
lasthop after a time t — /.

3.3. Inter-event time distributions with finite average

While the previous formalism is exact for NoPAD networks of infinite size, it cannot be developed further in
absence of detailed information about the functional form of the forward inter-event time distribution h.(¢', t),
which is in general very hard to obtain [41]. Progress is possible, however, when the first moment of the inter-
event time distribution ¥ (t), defined as

ﬁZLmu%WNM ®)

is finite. When this condition applies, and in the limit of very large aging time t, — 00, the forward inter-event
time distribution does no longer depend on its first argument and it is given by [41, 42, 48]

1 o0
h.(t) = — (1) du.
0 ﬁﬁ e (u)du ©)

In this double limit of infinite network size and aging time, the passive random walker behaves effectively as an
active random walker in which the waiting time distribution is given the forward inter-event time distribution &,
®.

Under the assumption of a finite average inter-event time, defining the Laplace transforms

@, sy = [ @ule, tlnye ar, (10)
W) = [ leoe s (1n
no = [ hwe, (12)
fio(s) = j; Y h (e, (13)

4 We neglect here the case ¢y = c. Its consideration will imply an additional term 6 (¢) 6, in equation (6), where 6() is the Dirac delta
function.
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we can write equation (4) in Laplace space as

®,(c, slco) = () Wy(slco) e (5),

while equation (5) takes the form

W, (slco) = Z n(C/)\Ilnfl(slc())hc’(s)-

Equation (15) can be easily solved, yielding

n—1
W,(slco) = [Z n(C’)hc/(S)] W (slco).

Considering that W(t|co) = h,(¢), we can combine equations (16) and (14) to obtain

0 0 n—1
Pmmwzgﬁﬁmammm+wﬁwmm§12mwmm]

n=0 n=1L ¢’

1(C)Fre(s)hey(s)

= ECQ (5) 66,60 + = .
L= > n(he(s)

A Moinet et al

(14)

15)

(16)

(17)

From equation (17) we can obtain the probability P(c, t) of observing the walker at a node c at time ¢, irrespective

of the position ¢, of origin, as

P(c, t) = ZH(CO)P(C) l‘|Co)a

o
which, from equation (17), can be written in Laplace space as
1(O)he() ), H(co)hey(s)
1 - ZCW(C’) hei(s)

For the first passage time distribution, Laplace transforming equation (7), we obtain

W(sle, o) = Wu_1(sle, co) Y eV her(s).

c'=c

P(c, s) = H()h.(s) +

Since Wy(sl¢, ¢p) = h,,(s), we have, solving the recursion relation equation (20),

n—1
W,(sle, co) = hCO(S)(Z n(C’)hu(S)] .

Introducing equation (21) into the Laplace space counterpart of equation (6), we finally have

Y n(Eho()
I Zc/icn (C/) hC’ (S)

E(s, cleo) = hey(9)1(€) + hey()1(c)

_ hey($)n(€) '
L= (c)he(s)

The mean first passage time (MFPT), defined as

T(cleo) = fow ¢ F(t, clco)dt,

can be obtained, from the Laplace transform in equation (22), as [41]

_dEGs, deo)

T(clco) = &

4. Poissonian activity-driven networks

(18)

(19)

(20)

2D

(22)

(23)

(24

To check the expressions obtained in the previous section, we start by considering Poissonian AD networks, for
which the random walk problem has been already studied [8, 43]. In this case, the inter-event time distributions
for each node takes an exponential form, . (t) = ce™, where the value of cis extracted from the distribution 7

(¢). This fact renders the results in section 3 exact. The system completely lacks memory, and it holds

he(t', t) = . (t) = ce~, while i (t'|t) = e . With the corresponding Laplace transforms h(s) = ¢/(c + s)
and h.(s) = 1/(c + s), the probability P(c, t) of observing the walker in a node cat time t can be written, from

equation (19), as
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HO |, 16 2o Hco) 7

P(c s) = ; (25)
c+s c+51_2,77(c)c+5
The steady state occupation probability P, (c) = lim,_,,, P(c, t) can be obtained in Laplace space as the
alternative limit P, (c) = lim,_,¢sP(c, s),leading to
o) = — 19, (26)

() ¢
independent of the initial distribution H(co), where (¢™1) = 3", n(c’) /¢’ is the average of the inverse activity in
the network. Thus, as time increases, the average occupation probability crosses over from the initial distribution
attime t = 0 of random walkers, Py(c) = H(c), to the steady state occupation probability, Py, (c) ~ n(c)/c,at
large times [43].
The first passage time probability in Laplace space, equation (22), in the Poissonian case, reads

F(s, cleg) = 1) @7)
@o+9(1 =X aeH==)
The first derivative of equation (27) evaluated at s = 0 leads to the MFPT on a node with activity ¢, when the
walker starts from a node with activity ¢,
1 1
T (clco) = [(c1> - M] + —. (28)
n(c) ¢ Co

The MFPT of nodes with activity ¢, irrespective of the activity ¢, of the starting node, can be obtained by
averaging over the initial position of the walker, T'(¢) = 3, H (co) T (c|co). If such position is chosen uniformly
atrandom in the network, H(cy) = 1(cp), equation (28) becomes

() 1
ne ¢
This expression provides a correction to the result in [8], derived by a pure mean-field calculation. The first term
of equation (29) can be obtained by following the mean field argument in [8], and it indicates that the MFPT of
nodes with activity ¢ will be inversely proportional to the density of nodes in that activity class ¢, given by 77(c).
The second term takes into account the probability of not arriving earlier on nodes with activity ¢, while the third
term, which is constant in ¢, accounts for the escape time from the starting node of the walker. We note that,
while the second term is always negligible with respect to the others, the third constant term can be relevant for
nodes of small activity ¢, if the activity distribution 7(c) is power law distributed, 77(c) ~ ¢~ 7 [5].

T(o) =

+ {c7h. (29)

4.1. Numerical application
To provide an example application, we consider the simplest case of an AD network with two different activities
land e < 1, with an activity distribution

() =p O,c + A — p)é.1. (30)

If we assume H(c) = 7)(c), equation (25) reduces to

P(C, 5) — T](C) [Z 77(5/) ) . (31)

s(c+ s\ +s
From here, we can obtain

> ne) A -—petp+s

(32)
P (e +s)(1 +5s)
which leads to
p(l +s) _ 1
P(e, s) = =pt.— —tp(1 — p)(1 - 6) (33)
s[A = p)e+p + 5] P s P b
with t. = p + (1 — p)e. Thisexpression in Laplace space can be trivially anti-transformed, yielding the
occupation probability
P(e, t) = Po(e) — tp(1 = p)(1 — €)e /%, (34)

with Po(e) = n(e)/[e (c™H] = p/[(1 — p)e + p]. The occupation probability relaxes exponentially to the
steady state with a time scale ¢, that can become very small when both p and e tend to zero [43].

6
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For the first passage time distribution, application of equation (27) leads directly to

Fs, e|l) = —2—, (35)

pt+s

indicating an exponential distribution in real time F (¢, €|1) = pe ?’. The MFPT is obtained as
1

T(ell) = —, (36)
p
independent of e. On the other hand,
F(s, l|e) = M, (37)
el —p)+s
leadingto F(t, 1l¢) = €(1 — p)e 1~ from which one can obtain the MFPT
1
T(le) = —, (38)
e(1 —p)

diverging in thelimitse — Oorp — 1.

5. Non-Poissonian activity-driven networks with finite average inter-event time

We now consider the more interesting case of non-Poissonian Activity-Driven (NoPAD) networks, in which the
inter-event time distribution is different from exponential. To fix notation, we will focus in particular in the
power law form

Ye(t) = ac(et + 1)1+, (39)

with @ > 0 to allow for normalization. Here we will consider the case & > 1 corresponding to finite average
inter-event time of value

= foc u(u) du = [(a — D] (40)
0

In this case, for an infinitely aged network, f, — 400, the forward recurrence time no longer depends on the
aging time and one has, from equation (9),

he(t) = %ftm Ge(w)du = (@ — De(et + 1), (41)
hi(t) = fo ho(uydu = (1 + ety . (42)

In the limit of large ¢ > 1, which correspond to s < 1 in the Laplace space, and by virtue of the Tauberian
theorems [41], we can write, for 1 < a < 2,

G 1 — 75 4+ 2= (i) +o(s™, 43)
o — 1\c
a—1
he(s) ~1— rm(i) +o(so, (44)
c

a—2

e(s) =~ Fz—(i) +o(s22), (45)
(s c

where o(x) denotes a function f(x), such that lim,_,o % = 0,and ", = I'(z) is the Gamma function [49]. These
expressions, combined with equation (19), yield

n(c)c @D
s{c~@=D)

By taking the limit + — o0, the steady state occupation probability finally reads

P(c, s) ~ + o(s7Y). (46)

—(a—1)
Pe(o) = % 47)
In order to confirm this result, we have performed numerical simulations of the passive directed random
walk on an NoPAD network with an inter-event time distribution given by equation (39) and power-law
distributed activity 17(c) o< ¢~7, where the activity takes values in the interval [, 1]. In figure 1 we show the
theoretical prediction equation (47) (dashed lines), obtained in the limit of infinite network size, compared with
direct simulation in finite networks of size N = 10° for different values of the inter-event time exponent a > 1

7
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Figure 1. Steady state occupation probability of a directed passive random walk on an infinitely aged NoPAD network, P, (c), with
inter-event time distribution given by equation (39), for different values of the exponent ce. We consider an activity distribution 7
(¢) ~ ¢ "withe = 1072 and exponent (a)y = 1.80and (b)y = 2.50. Dashed lines correspond to the analytical result of equation (47).
The steady state distribution is computed from W = 10° different walks, stopped at time t = 10°. Network size N = 10°.

(hollow symbols). Simulations are performed in the limit of infinite aging time, t, — 00. The first activation of
every node takes thus place at a time, measured from the beginning of the random walk t = 0, given by the
distribution in equation (41). We keep track of the whole history of the network, each successive activation of
each node taking place at inter-event times given by equation (39). Walks are stopped at time time t = 10°,
where the occupation probability is computed. As we can see, even for the moderate network size considered
here, the infinite network limit provides an excellent approximation for the steady state distribution.

Interestingly, when taking the limit o — 2 in equation (47), we recover the result established for Poissonian
AD networks, i.e. P, (c) = 17(c)c™!/(c!). This result is general for any v > 2, as can be seen from the
corresponding leading order expansions in Laplace space for this range of a values, namely,

O TR (48)
1
he(s) ~ 1 — c(a——Z) S5 (49)
~ 1
he(s) =~ my (50)

which, substituted on equation (19), lead again to equation (26) in the steady state.
For the first passage time distribution, equation (22) may be expanded in the limit s < 1. Inserting the
expansion of the forward inter-event time distribution equation (43), we obtain

F(s, cleg) > 1 — (cé—“ + % S n(c’)c'l—a]rmsa—l. 1)

In the time domain, this translates into a power-law behavior at large times, F (¢, c|cg) ~ . This distribution
lacks a first moment in the regime 1 < o < 2, implying that the MFPT is infinite. In figure 2 we perform
numerical simulations to evaluate the first passage time probability when the inter-event time distribution is
power-lawwith 1 < « < 2 and the activity is bi-valued, with 7(c) of the form equation (30). For both values of «
considered, one can observe a power-law decay in the actual random walks (performed as described for figure 1),
corresponding to the expected behavior in the infinite network limit F (¢, c|cy) ~ ™. At the mean-field level,
the average time to reach a node with a given activity cis equal to the average number of independent trials
required to land on a node with activity ¢ (equal to 1/7(c)), times the average waiting time spent on a node.
Therefore, this time trivially diverges when the average waiting time is infinite, as indicated here by a first passage
time distribution lacking the first moment.

6. Non-Poissonian activity-driven networks with infinite average inter-event time

We consider now an inter-event time distribution of the form equation (39) with 0 < « < 1, which implies that
the average time between two consecutive activation events of an agent with activity ¢ is infinite. For such values
of a, the dependency of the forward waiting time distribution on the aging time cannot be eliminated even in the
limit of strongly aged networks, so that the use of the Laplace transform does not yield any substantial
simplification. Nevertheless, some insight may be obtained concerning the dynamics of the random walk
starting on a strongly aged network.

Let us recall the expression of the double Laplace transform of the forward waiting time distribution, namely
[41,44,50,51],
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Figure 2. Distribution of the first passage time for a directed passive random walk on an infinitely aged NoPAD network, F (¢, c|co),
with inter-event time distribution given by equation (39), for different values of the exponent a.. We consider a bi-valued activity
distribution with ¢ = e (with7(e) = p) orc = 1 (with (1) = 1 — p). We plot the first passage time distribution to nodes with c = ¢,
with the walker starting from nodes with ¢, = 1 (hollow symbols), along with the expected behavior F (¢, c|cg) ~ t~“ (dashed lines).
Number of walkers W = 10° p = 0.5,¢ = 0.1. Network size N = 10°.

he(u, s) = j:o dz‘foOC dt'h.(t', t)e e st

1 ’Q/JC(M) — 77[]5(5) (52)
1 — ¥:(u) s—u )

Let us first consider the limit of strongly aged network and very large ¢, with ct > ct, >> 1, corresponding to
s € u < 1.Inthis case, one can expand

u — o
he(u, s) ~ MIT’ (53)
which, upon inverse transformation, leads to
o Sin(ma) 4
hc(tu) t) =t ——t . (54)

On the other hand, in the limit of strong aging, ct, > 1, but small t<t,, one can expand
U () ~ 1 4+ al' ,u%~“inequation (52) to obtain

he (i, 5) ~ 1 M, (55)
s sal’ uc™®
which, disregarding a constant term, leads to
hettor 0 2= (e 0t 22T g, (56)
™

where 7). (t) = ftw Y (t)dt' = (et + l)ﬂ. The behavior of ¥, (t) can be approximated to ;. (t) ~ 1if ¢t < 1,
while for ct > 1,itholds ¥;.(¢) ~ (ct)~*. The behavior of h.(t,, t) can thus be summarized in the following

three regimes:
@ clety)* ! forct < 1
he(t, t) w 17 e for 1< of < oty (57)
sin(ma)

t =l fort > t,.

™

Interestingly, at large times, i.e. ¢t >> 1, the forward waiting time distribution is independent of c. Besides,
the tail of the distribution is proportional to t& t=“~1, so that the probability that the forward waiting time is
greater than 7, is constant and does not depend on ¢,. This means that the interval [¢,, +00[ carries a constant
probability weight with respect to the other two terms, although its size decreases when ¢, grows. This, along with
the fact that the total weight is constant and equal to 1 because £, is normalized, implies that the weight carried in
atime window [0, fy] tends to zero when ¢, tends to infinity. In fact, one could argue that the weights calculated
from equation (57) are not exact because they neglect higher order corrections (in particular the distribution in
equation (57) is not normalized). The reasoning is thus true under the implicit assumption that the weights

9
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Figure 3. Ratios R(t,, t)) = [he(te 0) — B (ta 1)1/ he(ta ty) asafunction of t,, obtained from numerical simulations of a renewal
process with an inter-event time distribution of the form equation (39) with different values of . The asymptotes a(ty/,)! =
calculated from equation (57) are plotted as dashed lines. Reference time f, = 10°andc = 1.

calculated from equation (57) and carried in the intervals [0, #;] and [#y, +00[ are proportional to their
corresponding real weights, which is not guaranteed.

In order to check these assumptions, on figure 3 we compare the ratio of the real weights
R(ty to) = [hc(tar 0) — hc(tar to)]/ hie(ta to), evaluated from a numerical simulation of a renewal process with
an inter-event time distribution of the form equation (39), and the ratio evaluated from equation (57), whose
dominant order, with the conditions 1 < ¢ty < ct,, is equal to (o /t,)! % We observe a good agreement
between the simulations and the analytical estimation, which allows us to make the following reasoning: let us
consider a NoPAD network with inter-event time distribution given by equation (39) with @ < 1,and an
arbitrary activity distribution n(c) excluding zero-valued activities. Then there exists a node with a minimum
activity ¢y, > 0,and also a time #, such that ¢, to > 1. Then if the nodes are synchronized at t = —1, with
t, > tpand we start an activated random walk dynamics at time # = 0, the probability that the time ¢, at which
the walkers escape from their first hosts is greater than #, is almost equal to 1. This holds a fortiori for all the
following waiting times of the walker occurringat times t = t,, f3,...,f because ; is extracted from the
distribution h.(t, + t;_1, 7). Besides, the conditional probability that#; = 7 given that#, > t,isindependent
of cas we see from equation (57), which means that all the hops for all the walkers are performed with waiting
times that practically do not depend on the activity of the hosts.

Asaresult, after its first jump, the probability that a walker is at a node of activity cis constant and equal to
71(c). In other words, if the initial distribution of the walkers is H(c), the probability P(c, f) that the walker isata
node with activity cat time ¢ is equal to 7(c) if the walker has escaped from its first host and H(c) otherwise, i.e.

P(c, ) ~ H(O)he(ta, t) + n(c)(1 — he(ta, ). (58)

In the limit of infinite ¢, /1.(t,, t) vanishes, and the steady state of the walker is given by P (¢) = 7(c). That is, in
the large time regime, the walker behaves as in a completely homogeneous network, in which jumps were
performed independently of the node activity. This result recovers the observation made in [30, 45]. In order to
check the validity of the time dependence expressed in equation (58), we have performed numerical simulations
of the activated random walk on a NoPAD network of size N = 10° where the activity takes three values,

¢ = 0.1,1 or 10, each with probability n(c) = 1/3. Walkers are initially hosted by nodes with activity equal to

¢ = 10,1.e. H(c) = 0,10. Figure 4 shows the reduced occupation probability

B(c, t) = [P(c, t) — n(c)]/[H(c) — n(c)] asafunction ofthetime tforow = 0.2and ¢, = 107, figure 4(a),
andfor & = 0.5and t, = 10°, figure 4(b), along with their expected value h(t,, t). Thislast curve is evaluated
from an independent numerical simulation of a renewal process, and is found to be independent of the activity c.
We observe that the result stated in equation (58) perfectly matches the numerical simulations in networks of
finite size.

7. Conclusions

In this paper we have explored the behavior of a passive node-centric random walk unfolding on non-
Markovian temporal networks generated by the NoPAD model, which considers a power-law form
. (t) ~ (ct + 1)"1~% of the inter-event time distribution between consecutive activation events of nodes with
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Figure 4. Random walk dynamics on an aged NoPAD network with three-valued activity and infinite average waiting time. Activity
values are c=0.1,¢ = 1and ¢ = 10, with7(c) = 1/3. Initial distribution H(c) = ,,0. We plot for the three values of ¢ the reduced
occupation probability P.(c, t) = (P(c, t) — 1(c))/(H (c) — 1(c))as a function of time. (a): « = 0.2and t, = 10°.(b): @ = 0.5and
t, = 10°. The behavior predicted by equation (58) is plotted in dashed lines. Network size N = 10° and number of walkers W = 10°.

activity c. We have focused in particular on the behavior of the occupation probability and first passage time
distribution, in the case of a very large aging time ¢, that is, when the time elapsed between the initial
synchronization of all nodes in the network and the start of the random walker is very large. The nature of the
NoPAD model allows to simplify calculations in the limit of infinite network size, in which every node in the
path of the walker is visited for the first time. In this approximation, we develop a general theory for the walker
dynamics, that can be analytically solved in Laplace space if the inter-event time distribution of the nodes has a
finite first moment. In this case, in the limit ¢, — o0, the waiting time of the walker inside a node becomes
independent of its arrival time, and a passive random walk with inter-event time distribution ¢/, (t) ~ t~1~¢,
with a > 1, behaves essentially as a active random walk with ¢/, (¢) ~ ¢, in which the internal clock of each
node is reset after the lading of the walker. Numerical simulations show that the actual passive random walk
process is very well described by our theory for a sufficiently large network size.

If the inter-event time distribution lacks a first moment, which happens in the case o < 1, our theory is not
valid, since the waiting time inside a node cannot be decoupled from the landing time. In the limit of very large
t,, however, we develop arguments hinting that the random walker will ‘feel” a network with homogeneous
activity distribution, which implies that the probability that the walker is at a node of activity cis equal to 7(c) in
the large time limit. This result is straightforwardly extended to arbitrary aging times t, (including non-aged
networks f, = 0) because after a transient regime of duration t’, the forward waiting time distribution
h.(t, + t', 7) will meet the conditions expressed in equation (57), and the system will be in the same situation as
before, i.e. evolving as if the network was homogeneous. This observation generalizes the results in [30, 45],
referred to networks with identical inter-event time distribution for all nodes. Interestingly, this result is also
recovered taking the limit o — 1 in the equation describing the occupation probability in the case of an inter-
event time distribution with finite first moment, a fact that provides additional evidence for its relevance.
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