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Abstract. A method for post-processing of finite element analyses to assess critical
macroscopic voids is presented. One single, global analysis of the structure or component is
carried out and then post-processed. By using a template model and the same constitutive
model as for the global model, a damage scaling function is defined once and then applied
to the result from the global model. The result is a database with critical relative sizes
for different void rotations at the integrations points in the global model.

1 INTRODUCTION

The presence of voids in metallic materials reduces its macroscopic mechanical strength.
Voids in materials are a result of the manufacturing processes and the strength reduction
is mainly due to two things: Increase in mean stress due to the reduction of solid ma-
terial, i.e. less load carrying section area, and; local increase in strains and stresses on
the boundary of the voids. Voids can exist at different spatial scales. In an engineering
finite element analysis the relative size of the voids are typically too small to be explic-
itly modelled and discretized. Instead, the effects of the voids has to be incorporated in
constitutive equations and considered indirectly through test data on macroscopic prop-
erties. Publication for ductile metals in this area seems to have started with for example
[1], [2] and [3] and has since grown vast. Since such constitutive models treat voids collec-
tively and in an averaging, homogenized fashion, they do not give any information about
the characteristics of individual voids. If one needs to formulate and supply specific ac-
ceptance criteria, for example to be used for non-destructive testing of components, for
individual voids another route has to be followed. There are alternatives to be used in
this case, cf. for example [4], but a more general methodology is presented here which is
easier to automatize in a finite element context.
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Commonly, in an engineering finite element analysis of a structure or component it
is assumed that there are no extraordinary voids present in the material. Only smaller,
i.e. for a given material and manufacturing process ordinary ones, whos effect on the
mechanical properties of the material are considered indirectly. Typically via tensile test
data in which these ordinary voids grow, coalesce and new ones nucleate until the specimen
is completely fractured.

In Fig. 1 a simple simulation of such a process, however without nucleation, is shown.
From the pictures it can be seen how plastic strains are accumulated at the void boundaries
and in bands between closest neighbours. When the stress dependent failure stress is
reached, cracks are initiated and propagated until the plate is separated into two parts,
i.e. it fractures.

The focus of the presented study has been to develop methods with an engineering ap-
proach, using finite element tools, to determine criteria for relative size and configuration
of individual voids with elliptical shape in a steel structure. The expected void sizes are
in the order of 10−3 mm.

The basic idea here is to run one single standard finite element analysis of a structure
of interest and corresponding loads, and then apply a scaling function to the result to find
the critical void configuration in a material/integration point that matches the weakest
link, in a macroscopic sense, of the void-free structure.

2 COMPUTING THE SCALING FUNCTION

First, the scaling function needs to be determined. This function will be dependent
on the constitutive model used, which needs to be the same used for the base model.
However, once the scaling function has been determined for a given constitutive model it
can be applied to any problem.

Here a standard isotropic elasto-plastic model with yield criteria according to Von Mises
and piecewise linear deformation hardening is used, and a stress triaxiality dependent
failure model. The Young’s modulus and Poisson’s ratio were set to 210 GPa and 0.3,
respectively. The constitutive parameters for the deformation hardening to necking were
fitted against test data and the result is shown in Fig. 2.

Due to lack of data for the specific material on the failure strain εf at different levels
of stress triaxiality χ, typical values were chosen and shown in Tab. 1. However, the
choice of constitutive parameters here is not important since the purpose of the present
paper is to present the method. It is only important that the constitutive model and
parameter values can distinguish between compressive and tensile stress states, which
here is embodied in the damage parameter.

Damage D is assumed to be accumulated according to the linear evolution law

Ḋ =
ε̇p
εf

(1)

where the dot represents time derivative or increment. The material fails, i.e. a crack
initiates, when the damage D reaches unity.
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Table 1: Failure strain at different levels of triaxiality

χ −1
3

0 1
3

2
3

1
εf 3 0.5 1 0.5 0.5

The scaling function is determined by numerical analyses of a template model, see
Fig. 3, for which the displacement based boundary conditions ∆x and ∆y, the ratio k
between the minor and major axis of the elliptic void and the rotation v is varied. Here
the dimensions of the template model is chosen as h = 1 and r = 0.2. The intervals for the
variables are chosen as {k|0.1 ≤ k ≤ 1}, {v|0◦ ≤ k ≤ 180◦}, {∆x| − 0.002 ≤ ∆x ≤ 0.002}
and {∆y|−0.002 ≤ ∆y ≤ 0.002}. Contact was defined for the void boundary to eliminate
material penetration. Based on these intervals, a total of 3402 template models were set
up and analyzed and in Fig. 5 the result is shown for the case v = 0◦ and k = 0.3. The
strains εx and εy are the linear global strains over the template model, ie. for the case
where no void is present.

3 APPLICATION TO BOLTED CONNECTION

The scaling function is applied to the results from a finite element analysis of a bolted
connection, see Fig. 6. In the analysis double symmetry is exploited when creating the
mesh. The weakest link in the base model is the bolt. So, the analysis is carried out
until failure of the bolt, and it is this stress state in the plates to which we’ll apply the
scaling function. Further, the strain state on the vertical symmetry plane is here assumed
to be in a state of plane strain. When the bolt fails, some of the integrations points or
elements in the plates has started to yield, and some are still in the elastic domain. To
exemplify the method of scaling the local solution, an element that is in elastic domain
is chosen from the plate. The position of the chosen element and the damage scaling
function corresponding to the elements stress state at bolt failure is shown in Fig. 7.

The final step in the procedure is to choose a critical damage level. A conservative
choice would be D < 1. Since D = 0 corresponds to elastic domain and yielding in both
compression and tension, it is recommended that a value larger than zero is choosen. This
way we allow the pressure dependent damage evolution come into play, and we’re able to
better separate compressive and tensile stress states. Here D = 0.025 is choosen as the
treshold value, and the result for the choosen element is plotted in Fig. 8. From this plot
the minimum ratio between the minor and major axis of the critical elliptic void can be
seen, for different rotation of the major axis from the global x-axis.

4 DISCUSSION

An engineering method to post-process results from a finite element analysis in order
to determine critical size and rotation of elliptical voids has been developed. The method
allows for assessment of critical voids for any integration point, or element, in the model
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and is far less costly than sub-modelling techniques. In the paper the method is applied
to one single element, but all elements in the model can be evaluated in the same manner
and the results visualized on the mesh as documentation to be used when performing
non-destructive testing such as ultrasonic testing or computed tomography scanning.

Extension of the method to three dimensions is straight forward. In the paper it is the
relative size of the voids that is determined. Further development of the method should
include the determination of absolute void sizes, by for example relating the template
model to a characteristic element size. Or, if element sizes are small in comparison
with the critical voids and boundary effects can’t be ruled out, some kind of moving
representative elementary volume. Finally, the effect of interaction between voids should
also be incorporated into the model.
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Figure 1: Plastic straining and fracture of plate with voids at different stages of loading.

5

1030



P. Noury, M. Unosson and M. Veljkovic

Figure 2: Deformation hardening.

Figure 3: Template element for numerical computation of scale function.
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Figure 4: Resulting damage D for v = 60◦, k = 0.15, εx = εy = 0.002.

Figure 5: Scaling function for v = 0◦ and k = 0.15.
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Figure 6: Equivalent Von Mises stress (MPa) at bolt failure.
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Figure 7: Damage for an element in the finite element model when scaling function is applied.
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Figure 8: Critical and non-critical voids for D = 0.025.
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