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Abstract. This contribution is a continuation of our contribution denoted as PART I,
where the discretized contact problem for elasto-perfectly plastic bodies was studied and
suitable numerical methods were introduced. In particular, frictionless contact boundary
conditions and Hencky’s material model with the von Mises criterion are considered. Here
we describe some implementation details and present several numerical examples.

1 INTRODUCTION

This contribution is a continuation of PART I ([2]). We briefly describe some imple-
mentation details and present several numerical examples. Some of the results will appear
in [3].

Algorithms ALG1-ALG4 introduced in PART I ([2]) have a common feature: in each
iteration it is necessary to solve a quadratic programming problem. For numerical real-
ization of this inner problem, we use a combination of the TFETI domain decomposition
method [5] and the SMALSE-M method [6], similarly as in [1, 4]. The whole contact
problem for elastic-perfectly plastic bodies is implemented in MatLab within the MatSol
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library [8]. Another approach for numerical realization of contact problems for elasto-
plastic bodies can be found in [10].

This contribution is organized as follows. The algebraic formulation of the discretized
problem is introduced in Section 2. In Section 3, some details concerning numerical
realization of the inner problem are mentioned. In Section 4, numerical results of sev-
eral model examples for elasto-perfectly plastic problems (with and without contact) are
presented. Concluding remarks can be found in Section 5.

2 ALGEBRAIC FORMULATION OF THE PROBLEM

In accordance with PART I ([2]), we consider two polyhedric domains Ω1,Ω2 ⊆ R3,

whose boundaries are decomposed as follows: ∂Ωj = Γ
j

u ∪ Γ
j

f ∪ Γ
j

c, j = 1, 2, where Γj
u,

Γj
f , Γ

j
c are open and mutually disjoint. On Γj

u �= ∅, the structure is fixed, while surface

tractions are applied on Γj
f , j = 1, 2. Further, Γc := Γ1

c = Γ2
c is a bounded contact zone,

where the frictionless contact boundary conditions are prescribed.
Since we apply the TFETI domain decomposition method [5], we decompose Ω1 and

Ω2 into disjoint polyhedric subdomains Ωj,p ⊂ Ωj, p = 1, 2, . . . , sj, j = 1, 2, see Figure
1. Continuity of a solution between two adjacent subdomains and the satisfaction of
the Dirichlet condition will be taken into account by adding equality constraints into the
definition of K, see below.

Figure 1: Scheme of the geometry and domain decomposition

Let T j,p
h be a regular partition of Ω

j,p
, j = 1, 2, p = 1, 2, . . . , sj, into tetrahedrons

such that the nodes on the contact and common parts of boundaries of two adjacent
subdomains coincide. On any Ωj,p, we construct the spaces of continuous and piecewise
linear displacements over T j,p

h . Thus any global displacement vector v ∈ Rn has the
following structure

v =
(

vT
1,1,v

T
1,2, . . . ,v

T
1,s1

,vT
2,1, . . . ,v

T
2,s2
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where vj,p denotes the displacement vector on Ωj,p, j = 1, 2, p = 1, 2, . . . , sj. Furthermore,
the set of kinematically admissible displacement vectors is given by

K := {v ∈ Rn | BEv = o, BIv ≤ o} .

By means of the matrix BE ∈ RmE×n, we express the gluing conditions among neighboring
subdomains and the satisfaction of the homogeneous Dirichlet boundary condition, while
the matrix BI ∈ RmI×n is used to express the non-penetration condition on Γc.

The algebraic formulation of problem (P)h,ζ , ζ ≥ 0, introduced in PART I ([2]) reads
as follows:

find u ∈ K :

{

Jζ(u) ≤ Jζ(v) ∀v ∈ K,

Jζ(v) := Ψ(v)− ζfTv, v ∈ Rn.

Here f =
(

fT1,1, . . . , f
T
1,s1

, fT2,1, . . . , f
T
2,s2

)T ∈ Rn is the load vector corresponding to the applies
volume and surface forces. The function Ψ is the algebraic form of the inner energy
functional and has the following structure:

Ψ(v) =
(

Ψ1,1(v1,1)
T , . . . ,Ψ1,s1(v1,s1)

T ,Ψ2,1(v2,1)
T , . . . ,Ψ2,s2(v2,s2)

T
)T

.

Similarly, one can rewrite problems (P)∗h,ζ , (S)h,ζ,r, (S)αh , (P)αh introduced in PART I
([2]) into the algebraic form.

3 NOTES TO NUMERICAL REALIZATION OF INNER PROBLEMS

As we have mentioned, algorithms ALG1-ALG4 introduced in PART I ([2]) lead to the
quadratic programming problems in each iteration. The scheme of these inner subprob-
lems solved in the k-th iterative step is the following:

find uk ∈ Kk : Jk(u
k) ≤ Jk (v) ∀v ∈ Kk, (1)

where

Jk(v) :=
1

2
vTK

ρ
kv − fTk v, v ∈ Kk, (2)

and
Kk :=

{

v ∈ Rn ; B̃Ev = cE,k, BIv ≤ cI,k

}

.

Here Kρ
k ∈ Rn×n is a symmetric and positive semidefinite matrix representing the function

Σo,ρ(uk), ρ ∈ [0, 1], introduced in PART I ([2]). Let us recall that Σo,1(uk) = C, i.e.
we obtain the elastic stiffness matrix for ρ = 1 (see ALG2). The computed vector uk

represents either δuk in ALG1, ALG3, ALG4, or uk in ALG2. The form of the load vector
fk depends on the particular algorithm, but always it contains f . For ALG1, ALG2,
ALG4, it holds that B̃E = BE and cE,k = o. For ALG3, the contraints L(v) = α is

additionally included into B̃Ev = cE,k.

3

1001



Martin Cermak, Jaroslav Haslinger, Stanislav Sysala

The TFETI domain decomposition method has been analyzed e.g. in [5, 6, 7]. All
constraints appearing in the definition ofKk will be released by using Lagrange multipliers,
see Figure 1. In particular, we use two types of the Lagrange multipliers, namely λI ∈
RmI , λI ≥ o related to the inequality constraints, and λE ∈ Rm̃E related to the equality
constraints. To simplify our notation, we denote

λ =

[

λE

λI

]

, B =

[

B̃E

BI

]

, ck =

[

cE,k

cI,k

]

,

and
Λ = {λ = (λT

E,λ
T
I )

T ∈ Rm̃E+mI : λI ≥ o}.

Then the Lagrangian associated with (1) reads as

Lk(v,λ) =
1

2
vTK

ρ
kv − fTk v + λT (Bv − ck), v ∈ Rn, λ ∈ Λ. (3)

Using convexity of Lk and of the constraints, we can use the classical duality theory to
reformulate problem (1) to get

Jk(u
k) = min

v∈Kk

Jk(v) = min
v∈Rn

sup
λ∈Λ

Lk(v,λ) = max
λ∈Λ

inf
v∈Rn

Lk(v,λ). (4)

The max-inf problem in (4) is solved by algorithm SMALSE-M [6]. This algorithm is
based on the active set strategy and it combines three steps: CG with preconditioning
based on orthogonal projectors, expansion, and proportioning.

4 NUMERICAL EXPERIMENTS

In this section, we illustrate the efficiency of the proposed algorithms on several model
examples. First, we will apply ALG1, ALG2 and ALG3 to a model contact problem
for two bodies. Then we will compare the loading paths computed by ALG1, ALG3 and
ALG4 for a plane strain problem considering only one body without the contact boundary
conditions.

4.1 3D contact problem

Let Ω1 and Ω2 be two (3000×1000×1000) blocks with the configuration seen in Figure
1. Observe that Ω1, Ω2 are fixed along the left, and right lateral face, respectively. The
contact zone occupies 80% of the area of the faces. The load L is represented by the
constant surface traction f = (0, 0, 100) acting on the upper face of Ω2 and corresponds
to ζ = 1. Ω1 and Ω2 are decomposed into 24 subdomains. The mesh Th contains 6 000
nodes and 18 434 tetrahedrons. Both bodies Ωi are made of the same elasto-perfectly
plastic material which is characterized by the Young modulus E = 206 900, the Poisson
ratio ν = 0.29 and γ = 450

√

2/3 representing the initial yield stress.
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In the first set of numerical experiments, we investigate convergence of ALG1 and
ALG2 in dependence on ζ, ρ, and r, respectively. In particular, we initiate ALG1,2 using
the zero displacements, strain and stress vectors and choose the stopping criterion given
by the relative displacement error (see PART I [2]) with the tolerance εu = 1e− 4.

For ALG1, the dependence of number of iterations on ζ and ρ is shown in Table 1.

Table 1: Number of iterations in dependence on ζ and ρ for ALG1

ζ \ ρ 0.00 0.05 0.10 0.15 0.20 0.30 0.50 1.00

1.00 5 5 6 6 6 7 8 10
1.30 7 11 13 16 18 24 30 48
1.50 11 41 65 87 107 143 205 331

One can observe that the smallest number of iterations is for ρ = 0 and this number
increases with increasing ζ and ρ. On the other hand, if we use ALG1 without damping,
then convergence for ρ = 0 is problematic for higher values of ζ. But the influence of
damping turns out to be minimal for ρ > 0.

If ALG2 is used, convergence is faster for r between 0.10 and 0.30 independently of ζ.
Moreover for r < 0.05 or r > 0.50 and higher values of ζ, convergence is too slow.

The stress and displacement fields obtained by ALG1 and ALG2 are very similar.
Furthermore, the results obtained for other stopping criteria mentioned in PART I ([2])
are also similar.

In the second set of experiments we compare the loading paths obtained by ALG1,
ALG2 and ALG3 for the fixed values r = 0.2, ρ = 0 and ρ = 0.1.

For ALG1,2, we use adaptively chosen values of ζ:

0 = ζ0 < ζ1 < ζ2 < . . . < ζi < . . . < ζN .

The increments�ζi := ζi−ζi−1 decrease for increasing i and are determined in dependence
on convergence of ALG1,2. For any i = 1, 2, . . ., the corresponding displacements ui and
the values αi = L(ui) are computed. ALG1 is initiated by using the zero displacements
for ρ = 0 and ui−1 for ρ = 0.1. Let us note that the initial choice ui−1 for ρ = 0 leads to
the loss of convergence for larger i. ALG2 is initiated by using the zero strain and stress
vectors for any i = 1, 2, . . .. Further, we use the stopping criterion given by the relative
displacement error with the tolerance εu = 1e − 4. The loading process terminates if
αi > 7e9 for some i. This value of α is sufficiently large to estimate ζlim, see Figure 2.

For ALG3 we use ρ = 0. In the loading process, we keep the constant increment
�α = αel/2 ≈ 0.27e9, where αel is the maximal value of α, for which the solution to
(P)αh coincides with the solution to the corresponding contact problem for elastic bodies,
see the circle in Figure 2. Then α increases up to the value 7e9. For a fixed value of αi,
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i = 1, 2, . . ., we use the same stopping criterion and the tolerance as in ALG1,2. Algorithm
ALG3 is iniciated using ui−1 computed in the previous step.

The comparison of the loading paths for all ALG1-ALG3 is shown in Figure 2.

Figure 2: Comparison of loading paths.

One can see that the curves practically coincide. They are increasing and ζlim ≈ 1.55.
Notice that ALG3 converges here even for ρ = 0. This does not hold for ALG1.

Finally, the stress and displacements fields at the end of the loading process are depicted
in Figure 3 and 4, respectively. From Figure 3 on the left, one can detect plastic parts of
the bodies, where the maximal value γ = 450

√

2/3 is attained. From the right picture,
one can observe possible shear zones in the vicinity of the fixed parts of the bodies.

4.2 Plane strain problem without contact

The configuration of a 2D domain Ω is as Figure 5. On the left and bottom parts of its
boundary, we prescribe the homogeneous Dirichlet boundary conditions only in the normal
direction, i.e. the symmetry conditions are prescribed. On the top of the domain, the
surface traction in the normal direction is applied. The elasto-perfectly plastic material
is considered and characterized by the Young modulus E = 206 900, the Poisson ratio
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Figure 3: Von Mises stress for σ (left) and Cε(u) (right) at the end of the loading process.

Figure 4: Displacements at the end of the loading process.

ν = 0.29 and γ = 450
√

2/3.
First, we compare the loading paths obtained by ALG1 (ρ = 0), ALG3 (ρ = 0.1) and

ALG4 (ρ = 0) for fixed ρ similarly as in the previous example. To this end, we use the
mesh with 7600 elements and 3927 nodal points. Again, the obtained curves practically
coincide, see Figure 6.

Notice that we could not use ALG3 with ρ = 0 for determining the whole loading path
due to loss of convergence. Moreover, for ρ = 0.1, ALG4 is a little bit faster than ALG3.

Secondly, we will compare the loading paths in dependence on the discretization pa-
rameter h. To this end, we use ALG3 with ρ = 0.1 for three different meshes with 3960,
7600 and 20664 elements. The corresponding loading paths for α ∈ 〈0, 1008〉 are shown
in Figure 7. The computed values of ζ corresponding to α = 1008 are 1.077, 1.066, and

7

1005



Martin Cermak, Jaroslav Haslinger, Stanislav Sysala

���
��
��
��
��
��
��
��
��

������������������

�������������

f

Ω

1 9

10

Figure 5: Geometry of the problem.

Figure 6: Comparison of loading paths.

1.055, respectively. It means that the values of the limit load parameter decrease with
decreasing h, which is in accordance with the expected theoretical results.

Finally, we illustrate the stress and displacement states at the end of the loading
process, see Figure 8 and 9.
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Figure 7: Comparison of loading paths in dependence on the discretization parameter.

Figure 8: Von Mises stress for σ (left) and Cε(u) (right) at the end of the loading process.

5 CONCLUSIONS

This contribution deals with numerical realization of ALG1-ALG4, which were intro-
duced in PART I ([2]) as possible tools for solving elasto-perfectly plastic contact problems.
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Figure 9: Displacement at the end of the loading process.

The efficiency of the algorithms was tested on several model examples.
We see that convergence of ALG2 depends on the parameter r appearing in the aug-

mented Lagrangian. However it is not clear how to find an optimal value of r. Further,
we analyzed how the regularization parameter ρ influences convergence of ALG1, ALG3
and ALG4. The smaller value of ρ is, faster convergence is. On the other hand, we found
situations, when the choice ρ = 0 led to loss of convergence for all of these algorithms.

We also compared two different strategies for controlling the loading process: or by the
load parameter ζ or by the parameter α representing the work of external forces. Both
strategies have some advantages and disadvantages. For example, numerical realization
of (P)αh can be more complicated than for (P)h,ζ . On the other hand, (P)αh has a solution
for any α ≥ 0 and thus controlling the process by α is simpler than by ζ.
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