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Abstract. The contribution deals with a static case of discretized elasto-perfectly plas-
tic problems obeying Hencky’s law in combination with frictionless contact boundary
conditions. The main interest is focused on the analysis of the formulation in terms of
displacements, limit load analysis and related numerical methods. This covers the study
of: i) the dependence of the solution set on the loading parameter ζ, ii) relation between
ζ and the parameter α representing the work of external forces, iii) loading process con-
trolled by ζ and by α, iv) numerical methods for solving problems with prescribed value
of ζ and α.

1 INTRODUCTION

This contribution deals with a static case of discretized elasto-perfectly plastic problems
obeying Hencky’s law. In particular, we confine ourselves to the von Mises yield criterion
and a standard (conventional) finite element discretization of the problem. We study the
problem mainly in terms of displacements, however we also introduce the formulation in
terms of stresses since its knowledge is very useful from both, the theoretical and numerical
point of view. The related continuous problem is analyzed in many papers, we refer to
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e.g. [5, 12, 13, 19]. A discretization of the problem using discontinuous finite elements
can be found e.g. in [14].

Since the used discretization of the problem is not fully compatible with the continuous
setting of the problem which is formulated on nonseparable BD-spaces, we will pay our
attention to analysis of the discretized problem. We slightly extend known existence
results in dependence on the load parameter ζ. Furthermore, we establish a relation
between ζ and the parameter α representing the work of external forces. This is useful
for the evaluation and controlling the loading process and consequently for the limit load
analysis.

The limit load analysis is very important from the mechanical point of view in perfect
plasticity. We refer e.g. [2, 5, 12, 19] for various approaches. We propose the approach
based on the mutual relation between ζ and α. In particular, if α tends to +∞ then ζ
tends to its limit value ζlim. Therefore α seems to be more sensitive than ζ for controlling
the monotone loading process up to the limit load.

We introduce several numerical methods for solving this type of problems. In particular,
we consider a modified semi-smooth Newton method with damping and an augmented
Lagrangian method. Newton-like methods in plasticity are studied e.g. in [1, 9, 16, 17].
The augmented Lagrangian method can be found in [8].

Moreover, we consider the elasto-perfectly plastic material in combination with friction-
less contact boundary conditions following [10, 11]. For the sake of simplicity, we confine
ourselves to bounded contact zones. The presented results and methods can be used for
both, classical and contact, boundary conditions. In the case of the contact problem,
these methods can also be interpreted as methods of sequential quadratic programming.
Thus we solve a contact problem with a linearized material in each iteration.

For the sake of brevity, this contribution does not contain any proofs. For more de-
tails, we refer to [18] and [4] (in preparation). Numerical realization of these methods
in combination with the T-FETI domain decomposition method and numerical examples
can be found in PART II ([3]) of our contribution.

This contribution is organized as follows. In Section 2, the discretized problem is
formulated and analyzed mainly in terms of displacements. In Section 3 and 4, numerical
methods are presented. Concluding remarks can be found in Section 5.

2 SETTING OF THE DISCRETIZED PROBLEM

Let us consider two 3D bodies in mutual contact which are made of elasto - perfectly
plastic materials. The bodies are represented by bounded domains Ω1,Ω2 ⊆ R3 whose

Lipschitz boundaries are decomposed as follows: ∂Ωj = Γ
j

u ∪ Γ
j

f ∪ Γ
j

c, j = 1, 2, where Γj
u,

Γj
f , Γ

j
c are open and mutually disjoint. On Γj

u �= ∅, the structure is fixed, while surface

tractions are applied on Γj
f , j = 1, 2. Further, Γc := Γ1

c = Γ2
c is a bounded contact zone,

where the frictionless contact boundary conditions are prescribed.
For the sake of simplicity we shall suppose that Ω1,Ω2 are polyhedric domains. Let T j

h

2
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be regular partitions of Ω
j
, j = 1, 2 into tetrahedrons denoted by � with a discretization

parameter h > 0. Next we shall suppose that T 1
h |Γc = T 2

h |Γc , i.e. the nodes of both
partitions on Γc coincide. Let us denote Th := T 1

h ∪ T 2
h and introduce the following

finite-dimensional spaces:

Vh = {v = (v1, v2) ∈ (C(Ω
1
))3×(C(Ω

2
))3 | v|� ∈ (P1(�))3 ∀� ∈ Th, v = 0 on Γ1

u∪Γ2
u},

Sh = {τ ∈ (L2(Ω1))3×3
sym × (L2(Ω2))3×3

sym | τ |� ∈ (P0(�))3×3
sym ∀� ∈ Th},

where Pk(�), k ≥ 0 integer, stands for the space of all polynomials of degree less or equal
k defined in � ∈ Th. The spaces Vh and Sh are the simplest finite element approximations
of displacements and stresses (or strains), respectively. We shall consider the following
scalar product and norm on Sh:

〈σ, τ〉 :=

∫

Ω1∪Ω2

σ : τ dx =
∑
�∈Th

|�| σ|� : τ |� ∀σ, τ ∈ Sh,

‖τ‖E :=
√
〈C−1τ, τ〉 =

(∑
�∈Th

|�| C−1τ |� : τ |�

)1/2

∀τ ∈ Sh.

Here C = (cijkl)
3
i,j,k,l=1 is the fourth order symmetric elasticity tensor of generalized

Hooke’s law for an isotropic homogeneous material, i.e.

τ = Ce ⇔ τ = λ tr(e) δ + 2µe = (3λ+ 2µ)tr(e) δ + 2µeD, e, τ ∈ R3×3
sym,

where δ is the (3× 3) identity matrix, tr(e), eD denote the trace and deviatoric part of a
tensor e, respectively, and λ, µ > 0 are Lame’s coefficients. On Vh, we shall consider the
energy norm related to the small strain assumption:

|||v||| := ‖Cε(v)‖E ∀v ∈ Vh.

We define the convex sets of kinematically admissible displacement fields, plastically
and statically admissible stress fields, respectively, as follows:

Kh := {v ∈ Vh | [v]n ≤ 0 on Γc} ,
Ph :=

{
τ ∈ Sh | ‖τD|�‖F ≤ γ ∀� ∈ Th

}
,

Λh
ζL = {τ ∈ S | 〈τ, ε(v)〉 ≥ ζL(v) ∀v ∈ Kh} .

Here [v]n := (v1−v2).n ≤ 0, where n is the outward unit normal vector to ∂Ω1, represents
the non-penetration condition on Γc. Further ‖.‖F , γ > 0 denote the Frobenius norm,
and the initial yield stress, respectively. The linear functional L : Vh → R represents an
applied (fixed) load including volume and traction forces and ζ ≥ 0 is the load parameter.
We shall also assume that L satisfies the following condition:

∃z ∈ Kh : L(z) > 0. (1)

3
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The dual and primal formulation of the discretized problem depending on ζ ≥ 0 reads
as follows:

(P)∗h,ζ minimize S(τ) = 1

2
‖τ‖2E on Λh

ζL ∩ Ph,

(P)h,ζ minimize Jζ(v) = Ψ(ε(v))− ζL(v) on Kh,

respectively. The functional S is quadratic and strictly convex. Therefore a unique
solution to (P)∗h,ζ exists if and only if

Λh
ζL ∩ Ph �= ∅. (2)

It is known that there exists the so-called limit load parameter ζlim > 0 (possibly ζlim =
+∞) such that (2) holds if and only if ζ ∈ [0, ζlim].

The functional Ψ : Sh → R in the primal problem (P)h,ζ has the following form:

Ψ(e) = −1

2
‖Σ(e)‖2E + 〈e,Σ(e)〉 ∀e ∈ Sh,

where

Σ(e)|� =

{

Ce|�, ‖(Ce|�)D‖F ≤ γ,
1
3
(3λ+ 2µ)tr(e|�)δ + γ eD

‖eD‖F
, ‖(Ce|�)D‖F ≥ γ,

Notice that Σ is the Fréchet derivative of Ψ, i.e. Σ(e) := DΨ(e) ∀e ∈ Sh.
The functional Ψ is convex. However, it has only a linear growth at infinity and it is not

strictly convex, in general. It means that the coercivity of Jζ and uniqueness of a solution
to (P)h,ζ are not generally guaranteed. It is known that for ζ < ζlim the functional Jζ

is coercive and the solution set to (P)h,ζ , denoted by Kh,ζ in what follows, is non-empty
and bounded. If ζ = ζlim, then Kh,ζ is either empty or unbounded. For ζ > ζlim, it holds
that Kh,ζ = ∅. For sufficiently small ζ, the problem (P)h,ζ has a unique solution which
also solves the corresponding contact problem for elastic bodies.

The following relationship between the dual and primal problem [19] holds:

inf
v∈Kh

Jζ(v) = sup
τ∈Λh

ζL∩Ph

{−S(τ)} ∀ζ ≥ 0,

where we set sup{−S(τ)} = −∞ if Λh
ζL ∩ Ph = ∅, i.e. if ζ > ζlim. If there exists a solution

uζ ∈ Vh of (P)h,ζ , then σζ = Σ(ε(uζ)) solves (P)∗h,ζ , i.e. Σ represents the stress-strain
relation.

In perfect plasticity, it is typical to investigate a loading process up to the limit load
represented by ζlim, which is not known a priori. So increasing ζ, we would like to know
how far we are from ζlim. To this end, it will be useful to know how the parameter α ≥ 0
representing the work of external forces L(uζ), uζ ∈ Kh,ζ , depends on ζ.

The following assertions hold provided that (1) is satisfied:

4
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i) Let 0 ≤ ζ1 < ζ2 ≤ ζlim and (P)ζ2 has a solution. Then

L(uζ1) < L(uζ2) ∀uζi ∈ Kh,ζi , i = 1, 2.

ii) Let α ≥ 0 be given. Then

∃! ζ := ζ(α) ≤ ζlim, ∃uζ ∈ Kh,ζ : L(uζ) = α.

iii) If α → +∞ then ζ(α) → ζlim.

iv) The function α �→ ζ(α) is linear for sufficiently small α (elastic branch).

v) The function α �→ ζ(α) is continuous and nondecreasing on R+.

Thus the parameter α is more sensitive for controlling the loading process than ζ. If the
curve representing the relation between α and ζ is far from to be linear, one can expect
that ζ is close to ζlim.

To control the loading process through the parameter α, we define the following prob-
lem: given α ≥ 0,

(S)αh find (ζ, u) ∈ R+ ×Kh : u ∈ Kh,ζ , L(u) = α.

From the previous results, we know that problem (S)αh has a solution for any α ≥ 0, whose
first component is unique. Moreover, (S)αh can be equivalently expressed as the following
saddle-point problem:

find (ζ, u) ∈ R+ ×Kh : Lα(ω, u) ≤ Lα(ζ, u) ≤ Lα(ζ, v) ∀(ω, v) ∈ R+ ×Kh.

with
Lα(ω, v) := Ψ(ε(v)) + ω(α− L(v)) = Jω(v) + αω, ω ∈ R+, v ∈ Kh.

The existence of a saddle-point of Lα yields

min
v∈Kh

sup
ω∈R+

Lα(ω, v) = max
ω∈R+

inf
v∈Kh

Lα(ω, v) = Lα(ζ, u) = Ψ(ε(u)). (3)

One can easily find that the min-sup problem in (3) can be written into the form

(P)αh

{

find u ∈ Kα
h : Ψ(ε(u)) ≤ Ψ(ε(v)) ∀v ∈ Kα

h , where

Kα
h := {v ∈ Kh | L(v) = α}.

Problem (P)αh is related to (S)αh in the following sense: If α ≥ 0 and (ζ, u) is a solution
to (S)αh , then u is a solution to (P)αh . On the contrary, if u is a solution to (P)αh for some
α > 0, then (ζ, u) is a solution to (S)αh , where ζ = 1

α
〈Σ(ε(u)), ε(u)〉.

5

991



Martin Cermak, Jaroslav Haslinger, Stanislav Sysala

3 NUMERICAL METHODS FOR SOLVING (P)h,ζ

Since the solution set Kh,ζ to the primal problem (P)h,ζ need not be singleton in general,
we consider two different numerical methods: the modified semi-smooth Newton method
and the augmented Lagrangian method. A comparison of the methods and numerical
experiments can be found in PART II ([3]).

3.1 Modified semi-smooth Newton method

In Section 2, the function Σ representing the non-linear stress-strain relation has been
introduced. Notice that Σ is not smooth everywhere. Since Σ is Lipschitz continuous and
Sh is finite-dimensional, Σ is almost everywhere differentiable. Thus one can define the
generalized derivative ∂Σ(e) of Σ at any e ∈ Sh in the sense of Clark (see [6]). Clearly
∂Σ(e) = {DΣ(e)} for any e ∈ Sh satisfying ‖(Ce|�)D‖F �= γ ∀� ∈ Th. Let us define a
function Σo : Sh → L(Sh, Sh) such that Σo(e) ∈ ∂Σ(e) for any e ∈ Sh.

Further, the function Σ is strongly semi-smooth ([15]) on Sh as follows from e.g. [9,
16, 17]. This yields the following estimate:

∀v ∈ Vh, ∃c, r1 > 0, ∀δv ∈ Vh, |||δv||| ≤ r1 :
‖Σ(ε(v + δv))− Σ(ε(v))− Σo(ε(v + δv))ε(δv)‖E ≤ c|||δv|||2.

Notice that this estimate depends on the discretization parameter h. The dependence of
c on h has been investigated in [16]. Since the matrix representation of Σo(ε(v)) need not
be positive definite on Vh, we introduce the regularization of Σo as follows:

Σo,ρ := ρC + (1− ρ)Σo, ρ ∈ [0, 1].

Clearly Σo,0 = Σo and

〈Σo,ρ(ε(v))ε(w), ε(w)〉 ≥ ρ|||w|||2 ∀v, w ∈ Vh, ∀ρ ∈ [0, 1].

Newton-like methods introduced in this and the next section are based on the approx-
imation of the non-quadratic term Ψ by the quadratic one:

Ψ(ε(u)) ≈ Ψ(ε(uk)) + 〈Σ(ε(uk)), ε(u− uk)〉+

+
1

2
〈Σo,ρ(ε(uk))ε(u− uk), ε(u− uk)〉, (4)

for some u, uk ∈ Kh. To represent the admissible set of functions for differences u − uk,
we define the convex set

Kh,k := {δv ∈ Vh | δv + uk ∈ Kh}.

The k-th step of the modified Newton method reads as follows: If uk ∈ Kh is known then

uk+1 = uk + βkδu
k ∈ Kh,

6
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where δuk ∈ Kh,k is a solution to the minimization problem

min

{
1

2
〈Σo,ρ(ε(uk))ε(δv), ε(δv)〉+ 〈Σ(ε(uk)), ε(δv)〉 − ζL(δv), δv ∈ Kh,k

}
(5)

and the damping parameter βk is defined as follows:

βk = arg min
β∈(0,1]

Jζ(u
k + βδuk).

This algorithm will be denoted ALG1 in what follows. As the initial iteration we choose
some u0 ∈ Kh and set

ek := ε(uk), δek := ε(δuk), σk := Σ(ek), k = 0, 1, 2, . . . .

Let us note (5) has a unique solution for any ρ > 0. For ρ = 0, (5) need not have a
unique solution. If δuk = 0, then one can prove that uk solves problem (P)h,ζ . In such a
case, we formally set βk = 1 for the sake of completeness of the algorithm.

If ρ > 0, then {uk} is the minimizing sequence of the functional Jζ for any ζ ≥ 0. In
particular, if ζ ≤ ζlim, then one can prove convergence of {σk} to the solution of the dual
problem (P)∗h,ζ . In addition, if ζ < ζlim, then the sequence {uk} is bounded in Vh and its
accumulation points solve problem (P)h,ζ .

In addition, if we assume that

∃r2 > 0, ∃ε̃ := ε̃(ζ, r2) > 0 : 〈Σo(ε(w))ε(v), ε(v)〉 ≥ ε̃|||v|||2 ∀v, w ∈ Vh, |||u− w||| ≤ r2,

where u is a solution to (P)h,ζ , then this solution is unique and local convergence properties
of the method in terms of displacements can be proven for any ρ ∈ [0, 1]. In particular,
for ρ = 0, one can prove local quadratic convergence.

Remark 1 One can choose u0 = 0 for the initialization of ALG1. On the other hand,
if we are interested in the loading process, it is reasonable to choose u0 = uζ̃ , where

ζ̃ < ζ and uζ̃ is a numerical solution to (P)h,ζ̃ . Further in the next part (see [3]), we shall
consider and compare different stopping criteria, such as

|||δuk|||
|||uk + δuk|||+ |||uk|||

< εu,
‖Σ(ek + δek)− Σ(ek)‖E

‖Σ(ek + δek)‖E + ‖Σ(ek)‖E
< εσ or

|Jζ(u
k+1)− Jζ(u

k)|
|Jζ(uk+1)|+ |Jζ(uk)|

< εJ .

3.2 Augmented Lagrangian method

This method has been used and analyzed by Fortin and Glowinski for numerical solution
of a large class of problems with classical boundary conditions (see [8]). The method is
based on releasing the constraint e = ε(v) by using the augmented Lagrangian

Hζ,r(v, e, τ) = Ψ(e)− ζL(v) + 〈τ, ε(v)− e〉+ r

2
〈C(ε(v)− e), ε(v)− e〉,

7
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where r ≥ 0 is a penalty parameter. The related saddle-point problem (S)h,ζ,r reads as
follows: find a triplet (u, e, σ) ∈ Kh × Sh × Sh such that

Hζ,r(u, e, τ) ≤ Hζ,r(u, e, σ) ≤ Hζ,r(v, e, σ) ∀(v, e) ∈ Kh × Sh ∀τ ∈ Sh. (6)

It is known that any triplet (u, ε(u), σ), where u, σ solves (P)h,ζ , and (P)∗h,ζ , respectively,
is a solution of (6), where ζ ≤ ζlim.

We now introduce the algorithm ALG2 (in terminology of [8]). It is an Uzawa type
algorithm with a separate minimization of Hζ,r with respect to each of the first two
variables:

ALG2: (e0, σ0) ∈ Sh × Sh given; set k := 0

Find (uk+1, ek+1, σk+1) ∈ Kh × Sh × Sh as follows:

Step 1 Hζ,r(u
k+1, ek, σk) = arg min

{
Hζ,r(v, e

k, σk), v ∈ Kh

}

Step 2 Hζ,r(u
k+1, ek+1, σk) = arg min

{
Hζ,r(u

k+1, e, σk), e ∈ Sh

}

Step 3 σk+1 = Σ(ek+1)

set k := k + 1 and go to Step 1.

Step 1 is equivalent to the following variational inequality in Kh:

Find uk+1 ∈ Kh such that
〈Cε(uk+1), ε(v − uk+1)〉 ≥ Lr,ζ,k(v − uk+1) ∀v ∈ Kh,

}
(7)

where

Lr,ζ,k(v) :=
ζ

r
L(v)− 1

r
〈σk, ε(v)〉+ 〈Cek+1, ε(v)〉.

Problem (7) is nothing else than the weak formulation of a frictionless contact problem for
elastic bodies in which only the right hand side Lr,ζ,k changes during the iteration process.
Further, problems in Step 2 and 3 can be solved explicitely (see [8]). In particular,

ek+1 =
1

r

(
(1 + r)ωk − C−1Σ(ωk)

)
, ωk =

C−1σk + rε(uk+1)

1 + r
,

and
σk+1 = Σ(ek+1) = σk + rC(ε(uk+1)− ek+1).

It can be shown that if a saddle-point (u, ε(u), σ) of Hζ,r on Kh × Sh × Sh exists then
the sequence

{
σk

}
tends to σ, i.e. σk → σ as k → ∞. Moreover σ is the solution to

(P)∗h,ζ .

8
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4 NUMERICAL SOLUTION OF (P)αh AND (S)αh
In this section, we briefly present Newton-like methods for solving (P)αh and (S)αh .

In the case of (S)αh we confine ourselves to the classical boundary conditions (without
contact). We will use notation introduced in the previous sections.

4.1 Numerical solution of (P)αh

Let us recall the definition of (P)αh :

(P)αh

{
find u ∈ Kα

h : Ψ(ε(u)) ≤ Ψ(ε(v)) ∀v ∈ Kα
h ,

Kα
h := {v ∈ Kh | L(v) = α}.

We describe the algorithm ALG3. Its k-th step reads as follows: If uk ∈ Kh is known
then

uk+1 = uk + δuk ∈ Kh,

where δuk ∈ Kα
h,k is a solution to the minimization problem

min

{
1

2
〈Σo,ρ(ε(uk))ε(δv), ε(δv)〉+ 〈Σ(ε(uk)), ε(δv)〉, δv ∈ Kα

h,k

}
,

where
Kα

h,k := {δv ∈ Vh | uk + δv ∈ Kα
h , L(δv) = α− L(uk)}.

We will also define

ζk =
1

α
〈Σ(ε(uk)), ε(uk)〉.

The algorithm starts from some u0 ∈ Kh. If we are interested in the loading process, then
we choose u0 as a solution to (P)α̃h , where α̃ < α. Notice that such an initialization does
not belong to Kα

h . On the other hand, uk ∈ Kα
h for any k ≥ 1. One can also use damping

for k = 1, 2, . . ., similarly as in Subsection 3.1.

4.2 Numerical solution of (S)αh
In this case, we restrict ourselves to the classical boundary conditions. Then Kh = Vh,

i.e. the whole space Vh is used. Problem (S)αh leads to the following system of non-linear
equations:

(S)αh find (ζ, u) ∈ R× Vh :

{
〈Σ(ε(u)), ε(v)〉 = ζL(v) ∀v ∈ Vh,

L(u) = α.

This problem will be solved by ALG4, whose the k-th step reads as follows: given (ζk, uk) ∈
R× Vh, find (δζk, δuk) ∈ R× Vh such that

{
〈Σo,ρ(ε(uk))ε(δuk), ε(v)〉 = (ζk + δζk)L(v)− 〈Σ(ε(uk)), ε(v)〉 ∀v ∈ Vh,

L(uk + δuk) = α

9
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and set
uk+1 = uk + δuk, ζk+1 = ζk + δζk.

One can easily find δuk, δζk. Indeed,

δuk = vk + ζkwk, ζk =
α− L(uk + vk)

L(wk)
,

where vk, wk ∈ Vh solve the following systems of linear equations:

〈Σo,ρ(ε(uk))ε(vk), ε(v)〉 = ζkL(v)− 〈Σ(ε(uk)), ε(v)〉 ∀v ∈ Vh,

〈Σo,ρ(ε(uk))ε(wk), ε(v)〉 = L(v) ∀v ∈ Vh.

A similar algorithm is also typical for the arc-length methods, see e.g. [7]. A generalization
of this algorithm to the contact boundary conditions seems to be more involved.

5 CONCLUSIONS

In this contribution the discretized contact problem for elasto-perfectly plastic bodies
has been investigated. We analyzed this problem and proposed a way how to evaluate
the loading path using the relation between the load parameter ζ and the parameter α
representing the work of external forces. Finally, several numerical methods for solving
this class of problems were mentioned.
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