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Abstract. We consider distance-based similarity measures for real-valued vectors of interest
in kernel-based machine learning algorithms. In particular, a truncated Euclidean similarity
measure and a self-normalized similarity measure related to the Canberra distance. It is proved
that they are positive semi-definite (p.s.d.), thus facilitating their use in kernel-based methods,
like the Support Vector Machine, a very popular machine learning tool. These kernels may be
better suited than standard kernels (like the RBF) in certain situations, that are described in
the paper. Some rather general results concerning positivity properties are presented in detail
as well as some interesting ways of proving the p.s.d. property.

1 Introduction

One of the latest machine learning methods to be introduced is the Support Vector
Machine (SVM). It has become very widespread due to its firm grounds in statistical
learning theory (Vapnik (1998)) and its generally good practical results. Central to
SVMs is the notion of kernel function, a mapping of variables from its original space
to a higher-dimensional Hilbert space in which the problem is expected to be easier.
Intuitively, the kernel represents the similarity between two data observations. In the
SVM literature there are basically two common-place kernels for real vectors, one
of which (popularly known as the RBF kernel) is based on the Euclidean distance
between the two collections of values for the variables (seen as vectors).

Obviously not all two-place functions can act as kernel functions. The conditions
for being a kernel function are very precise and related to the so-called kernel matrix
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being positive semi-definite (p.s.d.). The question remains, how should the similarity
between two vectors of (positive) real numbers be computed? Which of these simi-
larity measures are valid kernels? There are many interesting possibilities that come
from well-established distances that may share the property of being p.s.d. There has
been little work on this subject, probably due to the widespread use of the initially
proposed kernel and the difficulty of proving the p.s.d. property to obtain additional
kernels.

In this paper we tackle this matter by examining two alternative distance-based
similarity measures on vectors of real numbers and show the corresponding kernel
matrices to be p.s.d. These two distance-based kernels could better fit some applica-
tions than the normal Euclidean distance and derived kernels (like the RBF kernel).
The first one is a truncated version of the standard Euclidean metric in IR, which
additionally extends some of Gower’s work in Gower (1971). This similarity yields
more sparse matrices than the standard metric. The second one is inversely related
to the Canberra distance, well-known in data analysis (Chandon and Pinson (1971)).
The motivation for using this similarity instead of the traditional Euclidean-based
distance is twofold: (a) it is self-normalised, and (b) it scales in a log fashion, so that
similarity is smaller if the numbers are small than if the numbers are big.

The paper is organized as follows. In Section 2 we review work in kernels and
similarities defined on real numbers. The intuitive semantics of the two new kernels
is discussed in Section 3. As main results, we intend to show some interesting ways
of proving the p.s.d. property. We present them in full in Sections 4 and 5 in the
hope that they may be found useful by anyone dealing with the difficult task of
proving this property. In Section 6 we establish results for positive vectors which
lead to kernels created as a combination of different one-dimensional distance-based
kernels, thereby extending the RBF kernel.

2 Kernels and similarities defined on real numbers

We consider kernels that are similarities in the classical sense: strongly reflexive,
symmetric, non-negative and bounded (Chandon and Pinson (1971)). More specifi-
cally, kernels k for positive vectors of the general form:

k(x,y) = f

⎛⎝ n∑
j=1

g j(d j(x j,y j))

⎞⎠ , (1)

where x j,y j belong to some subset of IR, {d j}n
j=1 are metric distances and

{ f ,g j}n
j=1 are appropriate continuous and monotonic functions in IR+ ∪ {0} mak-

ing the resulting k a valid p.s.d. kernel. In order to behave as a similarity, a natural
choice for the kernels k is to be distance-based. Almost invariably, the choice for
distance-based real number comparison is based on the standard metric in IR. The
aggregation of a number n of such distance comparisons with the usual 2-norm
leads to Euclidean distance in IRn. It is known that there exist inverse transformations
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of this quantity (that can thus be seen as similarity measures) that are valid kernels.
An example of this is the kernel:

k(x,y) = exp{−||x−y||2
2 2 }, x,y ∈ IRn, �≡ 0 ∈ IR, (2)

popularly known as the RBF (or Gaussian) kernel. This particular kernel is ob-
tained by taking d(x j,y j) = |x j − y j|,g j(z) = z2/(2 2

j) for non-zero 2
j and f (z) =

e−z. Note that nothing prevents the use of different scaling parameters j for every
component. The decomposition need not be unique and is not necessarily the most
useful for proving the p.s.d. property of the kernel.

In this work we concentrate on upper-bounded metric distances, in which case
the partial kernels g j(d j(x j,y j)) are lower-bounded, though this is not a necessary
condition in general. We list some choices for partial distances:

dTrE(xi,yi) = min{1, |xi− yi|} (Truncated Euclidean) (3)

dCan(xi,yi) =
|xi− yi|
xi + yi

(Canberra) (4)

d(xi,yi) =
|xi− yi|

max(xi,yi)
(Maximum) (5)

d(xi,yi) =
(xi− yi)

2

xi + yi
(squared 2) (6)

Note the first choice is valid in IR, while the others are valid in IR+. There is some
related work worth mentioning, since other choices have been considered elsewhere:
with the choice g j(z) = 1− z, a kernel formed as in (1) for the distance (5) appears
as p.s.d. in Shawe-Taylor and Cristianini (2004). Also with this choice for g j, and
taking f (z) = ez/ , > 0 the distance (6), leads to a kernel that has been proved
p.s.d. in Fowlkes et al. (2004).

3 Semantics and applicability

The distance in (3) is a truncated version of the standard metric in IR, which can
be useful when differences greater than a specified threshold have to be ignored.
In similarity terms, it models situations wherein data examples can become more
and more similar until they are suddenly indistinguishable. Otherwise, it behaves
like the standard metric in IR. Notice that this similarity may lead to more sparse
matrices than those obtainable with the standard metric. The distance in (4) is called
the Canberra distance (for one component). It is self-normalised to the real interval
[0,1), and is multiplicative rather than additive, being specially sensitive to small
changes near zero. Its behaviour can be best seen by a simple example: let a variable
stand for the number of children, then the distance between 7 and 9 is not the same



6 Lluís Belanche, Jean Luis Vázquez and Miguel Vázquez

“psychological” distance than that between 1 and 3 (which is triple); however, |7−
9|= |1−3|. If we would like the distance between 1 and 3 be much greater than that
between 7 and 9, then this effect is captured. More specifically, letting z = x/y, then
dCan(x,y) = g(z), where g(z) = |z−1|/(z+1) and thus g(z) = g(1/z). The Canberra
distance has been used with great success in content-based image retrieval tasks in
Kokare et al. (2003).

4 Truncated Euclidean similarity

Let xi be an arbitrary finite collection of n different real points xi ∈ IR, i = 1, . . . ,n.
We are interested in the n×n similarity matrix A = (ai j) with

ai j = 1−di j, di j = min{1, |xi− x j|}, (7)

where the usual Euclidean distances have been replaced by truncated Euclidean dis-
tances. We can also write ai j = (1−di j)+ = max{0,1−|xi− x j|}.

Theorem 1. The matrix A is positive definite (p.s.d.).

PROOF. We define the bounded functions Xi(x) for x ∈ IR with value 1 if |x− xi| ≤
1/2, zero otherwise. We calculate the interaction integrals

li j =
∫

IR
Xi(x)Xj(x)dx .

The value is the length of the interval [xi−1/2,xi +1/2]∩ [x j−1/2,x j +1/2] . It is
easy to see that li j = 1−di j if di j < 1, and zero if |xi−x j| ≥ 1 (i.e., when there is no
overlapping of supports). Therefore, li j = ai j if i �= j. Moreover, for i = j we have∫

IR
Xi(x)Xj(x)dx =

∫
X2

i (x)dx = 1.

We conclude that the matrix A is obtained as the interaction matrix for the system of
functions {Xi}N

i=1. These interactions are actually the dot products of the functions in
the functional space L2(IR). Since ai j is the dot product of the inputs cast into some
Hilbert space it forms, by definition, a p.s.d. matrix.

Notice that rescaling of the inputs would allow us to substitute the two “1” (one) in
equation (7) by any arbitrary positive number. In other words, the kernel with matrix

ai j = (s−di j)+ = max{0,s−|xi− x j|} (8)

with s > 0 is p.s.d. The classical result for general Euclidean similarity in Gower
(1971) is a consequence of this Theorem when |xi− x j| ≤ 1 for all i, j.
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5 Canberra distance-based similarity

We define the Canberra similarity between two points as follows

SCan(xi,x j) = 1−dCan(xi,x j), dCan(xi,x j) =
| xi− x j |
xi + x j

, (9)

where dCan(xi,x j) is called the Canberra distance, as in (4). We establish next
the p.s.d. property for Canberra distance matrices, for xi,x j ∈ IR+.

Theorem 2. The matrix A = (ai j) with ai j = SCan(xi,x j) is p.s.d.

PROOF. First step. Examination of equation (9) easily shows that for any xi,x j ∈ IR+

(not including 0) the value of sCan(xi,x j) is the same for every pair of points xi,x j

that have the same quotient xi/x j. This gives us the idea of taking logarithms on the
input and finding an equivalent kernel for the translated inputs. From now on, define
x≡ xi,z≡ x j, for clarity. We use the following straightforward result:

Lemma 1. Let K′ be a p.s.d. kernel defined in the region B×B, let be map from a
region A into B, and let K be defined on A×A as K(x,z) = K′( (x), (z)). Then the
kernel K is p.s.d.

PROOF. Clearly is a restriction of B, and K′ is p.s.d in all B×B.

Here, we take K = SCan, A = IR+, (x) = log(x), so that B is IR. We now find
what K′ would be by defining x′ = log(x), z′ = log(z), so that distance dCan can be
rewritten as

dCan(x,z) =
| x− z |
x+ z

=
| ex′ − ez′ |
ex′ + ez′ .

As we noted above, dCan(x,z) is equivalent for any pair of points x,z ∈ IR+ with
the same quotients x/z or z/x. Assuming that x > z without loss of generality, we
write this as a translation invariant kernel by introducing the increment in logarith-
mic coordinates h =| x′ − z′ |= x′ − z′ = log(x/z):

dCan(x,z) =
ez′eh− ez′

ez′eh + ez′ =
eh−1
eh +1

.

Substitution on K = SCan gives

SCan(x,z) = 1− eh−1
eh +1

=
2

eh +1

Therefore, for x′,z′ ∈ IR, x′ = z′+h, we have

K′(x′,z′) = K′(x′ − z′) =
2

eh +1
= F(h). (10)

Note that F is a convex function of h ∈ [0, ) with F(0) = 1, F( ) = 0.
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Second step. To prove our theorem we now only have to prove the p.s.d. property for
kernel K′ satisfying equation (10).

A direct proof uses an integral representation of convex functions that proceeds
as follows. Given a twice continuously differentiable function F of the real variable
s≥ 0, integrating by parts we find the formula

F(x) =−
∫

x
F ′(s)ds =

∫
x

F ′′(s)(s− x)ds,

valid for all x > 0 on the condition that F(s) and sF ′(s)→ 0 as s→ . The formula
can be written as

F(x) =
∫

0
F ′′(s)(s− x)+ ds,

which implies that whenever F ′′ > 0, we have expressed F(x) as an integral combina-
tion with positive coefficients of functions of the form (s−x)+. This is a non-trivial,
but commonly used, result in convex theory.

Third step. The functions of the form (s− x)+ are the building blocks of the Trun-
cated Euclidean Similarity kernels (7). Our kernel K′ is represented as an integral
combination of these functions with positive coefficients. In the previous Section we
have proved that functions of the form (8) are p.s.d. We know that the sum of p.s.d.
terms is also p.s.d., and the limit of p.s.d. kernels is also p.s.d. Since our expression
for K′ is, like all integrals, a limit of positive combinations of functions of the form
(s− x)+, the previous argument proves that equation (10) is p.s.d., and by Lemma 1
our theorem is proved. More precisely, what we say is that, as a convex function, F
can be arbitrarily approximated by sums of functions of the type

fn(x) = max{0,an− x
rn
} (11)

for n∈ [0, ...,N], and the rn equally spaced in the range of the input (so that the bigger
the N the closer we get to (10)). Therefore, we can write

2
eh +1

= lim
n→

n∑
i=0

(ai− h
ri

)+, (12)

where each term in the succession (12) is of the form (11), equivalent to (8).

6 Kernels defined on real vectors

We establish now a result for positive vectors that leads to kernels analogous to the
Gaussian RBF kernel. The reader can find useful additional material on positive and
negative definite functions in Berg et al. 1984 (esp. Ch. 3).

Definition 1 (Hadamard function). If A = [ai j] is a n× n matrix, the function f :
A → f (A) = [ f (ai j)] is called a Hadamard function (actually, this is the simplest
type of Hadamard function).
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Theorem 3. Let a p.s.d. matrix A = [ai j] and a Hadamard function f be given. If
f is an analytic function with positive radius of convergence R > |ai j| and all the
coefficients in its power series expansion are non-negative, then the matrix f (A) is
p.s.d. as proved in Horn and Johnson (1991).

Definition 2 (p.s.d. function). A real symmetric function f (x,y) of real variables
will be called p.s.d. if for any finite collection of n real numbers x1, ...,xn, the n× n
matrix A with entries ai j = f (xi,x j) is p.s.d.

Lemma 2. Let b > 1 ∈ IR,c ∈ IR and let c− f (x,y) be a p.s.d. function. Then b− f (x,y)

is a p.s.d. function.

PROOF. The function x→ bx is analytic with infinite radius of convergence and all the
coefficients in its power series expansion are non-negative in case b > 1. By theorem
(3) the function bc− f (x,y) is p.s.d.; then so is bcb− f (x,y) and consequently b− f (x,y) is
p.s.d. (since bc is a positive constant).

Theorem 4. The following function

k(x,y) = exp

(
−
∑n

i=1

d(xi,yi)
i

)
, xi,yi, i ∈ IR+

where d is any of (3), (4), (5), is a valid p.s.d. kernel.

PROOF. For simplicity, make di≡ d(xi,yi). We know 1−di is a p.s.d. function, for the
choices of di defined in (3), (4), (5). Therefore, (1−di)/ i for i > 0∈R is also p.s.d.
Making c ≡∑n

i=1 1/ i and f ≡ di/ i, by lemma (2), the function exp(−di/ i) is

p.s.d. The product of p.s.d. functions is p.s.d., and thus
n∏

i=1
exp(−di/ i) =

exp

(
−

n∑
i=1

di
i

)
is p.s.d.

This result is useful since it establishes new kernels analogous to the Gaussian
RBF kernel but based on alternative metrics. Computational considerations should
not be overlooked: the use of the exponential function considerably increases the
cost of evaluating the kernel. Hence, kernels not involving this function are specially
welcome.

Proposition 1. Let d(xi,x j) = |xi−x j |
xi+x j

be the Canberra distance. Then k(xi,x j) = 1−
d(xi,x j)/ is a valid p.s.d. kernel if and only if ≥ 1.

PROOF. Let di j ≡ d(xi,x j). We know
∑n

i=1

∑n
j=1 cic j(1− di j) ≥ 0 for all ci,c j ∈

IR. We have to show that
∑n

i=1

∑n
j=1 cic j(1− di j ) ≥ 0. This can be expressed as

(
∑n

i=1

∑n
j=1 cic j)≥

∑n
i=1

∑n
j=1 cic jdi j.

This result is a generalization of Theorem (2), valid for = 1. It is immediate
that the following function (the Canberra kernel) is a valid kernel:
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k(x,y) = 1− 1
n

n∑
i=1

di(xi,yi)
i

, i ≥ 1

The inclusion of the i (acting as learning parameters) has the purpose of adding
flexibility to the models. Concerning the truncated Euclidean distance, a correspond-
ing kernel can be obtained in a similar way. Let d(xi,x j) = min{1, |xi− x j|} and de-
note for a real number a, a+ ≡ 1−min(1,a) = max(0,1−a). Then −min{ , |xi−
x j|} is p.s.d. by Theorem (1) and so is max{0,1− |xi−x j | }. In consequence, it is im-
mediate to affirm that the following function (the Truncated Euclidean kernel) is
again a valid kernel:

k(x,y) =
1
n

n∑
i=1

(
di(xi,yi)

i

)
+

, i > 0

7 Conclusions

We have considered distance-based similarity measures for real-valued vectors of
interest in kernel-based methods, like the Support Vector Machine. The first is a
truncated Euclidean similarity and the second a self-normalized similarity. Derived
real kernels analogous to the RBF kernel have been proposed, so the kernel toolbox
is widened. These can be considered as suitable alternatives for a proper modeling of
data affected by multiplicative noise, skewed data and/or containing outliers. In addi-
tion, some rather general results concerning positivity properties have been presented
in detail.
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